
On the rank of p-schemes

Fatemeh Raei Barandagh
Department of Mathematics

K. N. Toosi University of Technology
Tehran, Iran

f.raei@dena.kntu.ac.ir

Amir Rahnamai Barghi ∗

Department of Mathematics
K. N. Toosi University of Technology

Tehran, Iran
and School of Mathematics and Statistics

Carleton University
Ottawa, Canada

rahnama@kntu.ac.ir

Submitted: Jan 27, 2013; Accepted: May 6, 2013; Published: May 16, 2013

Mathematics Subject Classifications: 05E30, 20E22

Abstract

Let n > 1 be an integer and p be a prime number. Denote by Cpn the class
of non-thin association p-schemes of degree pn. A sharp upper and lower bounds
on the rank of schemes in Cpn with a certain order of thin radical are obtained.
Moreover, all schemes in this class whose rank are equal to the lower bound are
characterized and some schemes in this class whose rank are equal to the upper
bound are constructed. Finally, it is shown that the scheme with minimum rank
in Cpn is unique up to isomorphism, and it is a fusion of any association p-schemes
with degree pn.

Keywords: association scheme, thin radical, wreath product

1 Introduction

Towards generalization of the theory of finite groups to the theory of schemes or coherent
configurations, it is quite natural question which schemes correspond to p-groups, where p
is a prime number. In this direction, the concept of p-schemes was given in [3] as follows:
a scheme C is called p-scheme if the cardinality of each basis relation of C is a power of p.
Recently some algebraic and combinatorial properties of this notion were studied in [4],
[5] and [1].

In this paper we focus on association p-schemes and refer them as p-schemes. Let n
be an integer. The class of thin p-schemes of degree pn are denoted by Tpn . All p-schemes

∗Part of this work has been done while the author was visiting the School of Mathematics and Statistics,
Carleton University as an Adjunct Research Professor.
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on p points are thin, thus they are unique up to isomorphism, we denote it by Tp. For
n > 1, the class of non-thin p-schemes of degree pn are denoted by Cpn . Given a scheme
in Tpn , the rank of scheme is equal to degree of scheme. We will determine upper and
lower bounds on the rank of p-schemes in Cpn .

Suppose that C ∈ Cpn , this implies that the thin radical Oϑ(C) of C is a non-trivial
p-group [7]. Thus the order of the thin radical is a power of p. The following theorems
are the main results of this paper.

Theorem 1. Given integers n and t, 1 6 t < n, let l(t, p, n) and u(t, p, n) be the minimum
and maximum rank of schemes with thin radical of order pt in Cpn, respectively. Then

l(t, p, n) = pt + (n− t)(p− 1), u(t, p, n) = pn−1 + pt−1(p− 1).

Remark 2. The minimum and the maximum rank for p-schemes in Cpn is given where
t = 1 and t = n− 1, respectively. Thus

l(p, n) := min{rk(C) : C ∈ Cpn} = n(p− 1) + 1,

u(p, n) := max{rk(C) : C ∈ Cpn} = 2pn−1 − pn−2.

Especially, in Theorem 7 we characterize p-schemes with rank l(t, p, n). It follows that
the p-schemes with minimum rank in Cpn are isomorphic to the wreath product of n copies
of Tp, which denoted by (Tp)

on. Moreover, we prove the following theorem:

Theorem 3. Any p-scheme with degree pn is isomorphic to a fission of (Tp)
on.

This paper is organized as follows. In Section 2, we present some notations and
terminology on association schemes. In Section 3, we review some basic results on p-
schemes. In Section 4, we prove our main theorems.

2 Background on association schemes

2.1

Let V be a non-empty finite set and let R = {R0, R1, . . . , Rd} be a set of non-empty
binary relations on V that partitions V × V , where R0 = ∆(V ), the set of all pairs (v, v)
with v ∈ V . The pair C = (V,R) is called an association scheme (or simply scheme)
if for every Ri ∈ R, Rt

i := {(u, v) : (v, u) ∈ Ri} ∈ R so denote Rt
i by Ri′ , and for all

Ri, Rj, Rk ∈ R there exists an intersection number pkij such that pkij = |Ri(u) ∩ Rj′(v)|
for all (u, v) ∈ Rk, where R(u) is the set of all elements v ∈ V with (u, v) ∈ R for each
R ∈ R.

Observe that p0ij = |Ri(u) ∩ Rj′(u)| for all u ∈ V . In particular, p0ij is zero unless
Ri = Rj′ . The elements of V are called points and those of R are called basis relations
of C. The numbers |V | and |R| are called the degree and the rank of C, and are denoted
by deg(C) and rk(C), respectively. We write d(Ri) = p0ii′ , and refer to this number as the
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valency of Ri. The d+ 1 relations Ri are conveniently described by their {0, 1}-adjacency
matrices A0, A1, . . . , Ad defined by (Ai)uv = 1 if (u, v) ∈ Ri; 0 otherwise. Denote by R∪
the set of all unions of the elements of R.

Let S and Q be non-empty subsets of R. We define SQ to be the set of all basis
relations Rk in R for which there exists Ri in S and Rj in Q satisfying pkij 6= 0. If
S = {Ri} and Q = {Rj}, we write RiRj instead of SQ. The set SQ is called the complex
product of S and Q.

A scheme C = (V,R) is said to be schurian if there exists a transitive permutation
group G 6 Sym(V ) such that the set of 2-orbits of G is equal to R.

2.2

Let C = (V,R) be a scheme. An equivalence relation E on V is called an equivalence of
C if E is a union of some basis relations of C. Denote by E(C) the set of all equivalences
of C. For each E ∈ E(C) we define degree of E, d(E), the sum of valency of all basis
relations of C which lie in E. Let X be a non-empty subset of V and let E be an
equivalence of the scheme C. Denote by X/E the set of classes of the equivalence relation
E ∩ (X × X), and RX/E the set of pairs (Y, Z) in (X/E) × (X/E) such that RY,Z 6= ∅,
where RY,Z = R∩ (Y ×Z). Also denote by RX/E the set of all non-empty relations RX/E

on X/E where R ∈ R. Then the pair

CX/E = (X/E,RX/E)

is a scheme. If X ∈ V/E, then the pair CX = (X,RX) is a scheme.

2.3

Let C = (V,R) be a scheme. The set

Oϑ(C) = {R ∈ R : d(R) = 1}

is called the thin radical of C. It is clear that
⋃

R∈Oϑ(C) R ∈ E(C).

2.4

Two schemes C and C ′ are called isomorphic if there exists a bijection between their point
sets which induces a bijection between their sets of basis relations, and we denote it by
C ' C ′. Such a bijection is called an isomorphism between C and C ′.

2.5

There is a partial order on the set of all schemes on set V . Given two schemes C = (V,R)
and C ′ = (V,R′) we define C 6 C ′ if and only if R∪ ⊆ (R′)∪. In this case C is called a
fusion of C ′ and also C ′ is called a fission of C. The minimal element with respect to that
order is trivial scheme, the scheme with the set of basis relations {∆(V ), V 2\∆(V )}.
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2.6

Given non-empty finite sets V1, V2, denote by R1 ⊗R2 the set of elements ((u, v), (u′, v′))
in (V1×V2)× (V1×V2) such that (u, u′) ∈ R1 and (v, v′) ∈ R2. Let Ci = (Vi,Ri), i = 1, 2,
be two schemes. Denote by C1 ⊗ C2 the set of all relations R1 ⊗ R2 where R1 ∈ R1 and
R2 ∈ R2. Then the pair

C1 ⊗ C2 = (V1 × V2,R1 ⊗R2)

is a scheme and is called the tensor product of C1 and C2. It is easily seen that

deg(C1 ⊗ C2) = deg(C1)deg(C2), rk(C1 ⊗ C2) = rk(C1)rk(C2).

2.7

Let Ci = (Vi,Ri), i = 1, 2 be two schemes, where V1 and V2 are disjoint. Let

R1 o R2 = {∆(V2)⊗R : R ∈ R1} ∪ {S ⊗ V1 × V1 : S ∈ R2 \∆(V2)}.

Then the pair C1 o C2 = (V1 × V2,R1 o R2) is a scheme and is called the wreath product
of C1 by C2. Moreover, let R1 = {R0, R1, . . . , Rd}, R2 = {S0, S1, . . . , Se}; and also let
A0, A1, . . . , Ad and B0, B1, . . . , Be be the adjacency matrices of Ri and Sj, respectively,
0 6 i 6 d and 0 6 j 6 e. Then the elements of V1 × V2 can be ordered such that the
adjacency matrices of C1 o C2 are given by

C0 = B0 ⊗ A0, C1 = B0 ⊗ A1, . . . , Cd = B0 ⊗ Ad,

Cd+1 = B1 ⊗ J|V1|, . . . , Cd+e = Be ⊗ J|V1|,

where Jn is the n×n matrix whose entries are all 1. From definition of the wreath product
it follows that

deg(C1 o C2) = deg(C1)deg(C2), rk(C1 o C2) = rk(C1) + rk(C2)− 1.

Note that C1 o C2 is schurian if and only if C1 and C2 are schurian. It is well known that
E =

⋃
v∈V2

V1 × {v} is an equivalence of C = C1 o C2 such that CX ' C1 for all X ∈ V/E
and CV/E ' C2.

For a given scheme C and a natural number m, we define the wreath power (C)om :=
C o C o . . . o C, the wreath product of m copies of C.

3 p-schemes

Fix a prime number p. A scheme C is called p-scheme if the cardinality of each basis
relation of C is a power of p. Thus the degree of any p-scheme is a power of p, and Oϑ(C)
is a non-trivial p-group with respect to complex product. Thus there is a positive integer
m(C) such that the order of thin radical is pm(C). So there exists non-diagonal relation
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R ∈ Oϑ(C) such that d(R) = 1. The smallest equivalence 〈R〉 of C containing R is the
union of relations Ri, i = 0, 1, . . . , p−1. This implies that the scheme CX is a thin scheme
on p points, for any X ∈ V/〈R〉. In [7, Corollary 5.6.8] it is proved that C = (V,R) is a
p-scheme if and only if there exists a sequence of equivalences of the scheme C,

∆(V ) = E0 ⊂ E1 ⊂ . . . ⊂ Em = V × V, (1)

such that Ei ∈ E(C) and CX/Ei
is a thin scheme on p points for i = 0, 1, . . . ,m − 1 and

all X ∈ V/Ei+1, we denote such a sequence by {Ei}mi=0. The set of all these sequences
denoted by PE(C).

For each {Ei}mi=0 ∈ PE(C) clearly d(E1) = p. Since CX/Ei
has p points, for any

X ∈ V/Ei+1 it follows that d(Ei+1) = pd(Ei), where 0 6 i 6 m − 1. This implies that
m = n and d(Ei) = pi, for 0 6 i 6 n. Therefore, we proved the following lemma.

Lemma 4. Let C be a p-scheme on pn points and let {Ei}mi=0 ∈ PE(C). Then m = n and

d(Ei) = pi, for each i, 0 6 i 6 n.

�

Let C = (V,R) be a scheme with R = {R0, R1, . . . , Rd}. The valency pattern of C is
the multiset {ni | 0 6 i 6 d} denoted by

VP(C) =

(
n0 n1 . . . ns

t0 t1 . . . ts

)
,

where n0 < n1 < . . . < ns are the distinct valencies and tj’s are multiplicities of nj, i.e.,

tj = |{i ∈ {0, 1, . . . , d} : d(Ri) = nj}|.

Let C be a p-scheme on pn points with {Ei}ni=0 ∈ PE(C). As we have seen in the
above, the thin radical of C is a p-group of order pm(C), where m(C) > 1. Hence the
valency pattern of C is as follows

VP(C) =

(
1 ps1 ps2 . . . psk

pm(C) t1 t2 . . . tk

)
where 0 < s1 < . . . < sk < n. Now, suppose that for all i, 1 6 i 6 n−m(C)

k = n−m(C), si = m(C) + i− 1, ti = p− 1.

From Lemma 4, it follows that d(Em(C)+j) = pm(C)+j for j, 0 6 j 6 n−m(C)− 1. Since
∆(V ) ⊂ Em(C), we conclude that

d(Em(C)) = 1 +
∑
R∈Oϑ

d(R).
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Moreover, from the inclusion Em(C)+j ⊂ Em(C)+j+1 it follows that

d(Em(C)+j+1) = d(Em(C)+j) +
∑

R⊆Em(C)+j+1\Em(C)+j

d(R). (2)

On the other hand, for R ⊆ Em(C)+j+1 \ Em(C)+j, we have pm(C)+j−1 < d(R) < pm(C)+j+1.
This implies that d(R) = pm(C)+j. From Lemma 4 and (2) it follows that

|{R ∈ R : R ⊆ Em(C)+j+1 \ Em(C)+j, d(R) = pm(C)+j}| = p− 1.

Thus Em(C)+j+1 =
⋃

d(R)6pm(C)+j R. Therefore, we proved the following lemma.

Lemma 5. Let C be a p-scheme with {Ei}ni=0 ∈ PE(C). If the valency pattern of C is as
the following form

VP(C) =

(
1 pm(C) pm(C)+1 . . . pn−1

pm(C) p− 1 p− 1 . . . p− 1

)
then for each i, m(C) 6 i 6 n we have

Ei =
⋃

d(R)6pi−1

R.

�

4 Proofs of the main theorems

4.1 Wedge product

In [2], Muzychuk has defined wedge product of association schemes. We construct a
p-scheme with maximum rank u(t, p, n) by wedge product of association schemes.

Let C = (V,R) be a association scheme such that

1) there exist E,F ∈ E(C), where E ⊆ F ,

2) for each R ∈ R which R ∩ F = ∅, we have E ⊆ Rad(R).

Where Rad(R) = {S ∈ R : SR = R}. Then we say that C is a wedge product of CX and
CV/E, for each X ∈ V/F . This is equivalent to Muzychuk definition of wedge product.

Example 6. Let n > 1 be an integer and let p be a prime number. Fix t such that
1 6 t < n. Let C be the wedge product of a scheme in class Tpt and a scheme in class
Tpn−1 , with two equivalences E and F , where d(E) = p and d(F ) = pt. Then C ∈ Cpn ,
m(C) = t and rk(C) = pn−1 + pt−1(p− 1).
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Proof of Theorem 1.

Let n > 1 be an integer and let p be a prime number. Fix t such that 1 6 t < n. Suppose
that C ∈ Cpn with the set of basis relations R such that m(C) = t. For 0 6 j < n, let

Rj = {R ∈ R : d(R) = pj}, rj = |Rj|.

It is easily seen that

R =
n−1⋃
j=0

Rj.

Since the sum of all valencies of C is equal to pn, from the above partition we conclude
that

pn =
∑
R∈R

d(R) =
n−1∑
j=0

∑
R∈Rj

d(R),

which implies the following equality

pn =
n−1∑
k=0

rkp
k = pt +

n−1∑
k=1

rkp
k. (3)

If t = 1 then from (3), we have p|1 + r1, so there is an integer r′1 such that 1 + r1 = r′1p.
Now suppose that t > 1. Then from (3), we conclude that p|r1, so there is an integer r′1
such that r1 = r′1p, and so we have

pt−2 + r′1 + r2 +
n−1∑
k=3

rkp
k−2 = pn−2.

The above equality shows that if t = 2, then p|1+r′1+r2, so there is an integer r′2 such that
1+r′1+r2 = r′2p. For t > 2 we have p|r′1+r2 so there is an integer r′2 such that r′1+r2 = r′2p.
In the same way, inductively, there is an integer r′t such that 1 + r′t−1 + rt = r′tp.

Thus, with the above explanation, for 0 6 j 6 n− 2 we define r′j as follows:

r′j =


0, j = 0

r′j−1+rj

p
, 1 6 j 6 n− 2, j 6= t

1+r′t−1+rt

p
, j = t.

(4)

Thus follow from (4), we have

rj =


r′jp− r′j−1, 1 6 j 6 n− 2, j 6= t

r′tp− r′t−1 − 1, j = t

p− r′n−2, j = n− 1.

(5)
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On the other hand, the rank of C is the number of basis relations of C, so

rk(C) =
n−1∑
k=0

rk = pt +
n−1∑
k=1

rk. (6)

Thus from (5) and (6) it follows that

rk(C) = pt +
n−2∑
j=1

(r′jp− r′j−1) + p− r′n−2 − 1

= pt + (p− 1)(
n−2∑
j=1

r′j + 1). (7)

Now, from (3) and (4) it follows that

pn−j =


pt−j + r′j−1 + rj +

n−1∑
k=j+1

rkp
k−j, 0 6 j 6 t

r′j−1 + rj +
n−1∑

k=j+1

rkp
k−j, t + 1 6 j 6 n− 2.

(8)

From (4) and (8) one can see that r′j is non negative integer for all j with 0 6 j 6 t− 1
and r′j is positive integer for all j with t 6 j 6 n− 2. Thus from (7) we conclude that

rk(C) > pt + (n− t)(p− 1).

On the other hand, let C1 ∈ Tpt . Then the scheme C ′ = C1 o (Tp)
o(n−t) belongs to Cpn

with m(C ′) = t and its rank is equal to pt + (n− t)(p− 1). Thus

l(t, p, n) = pt + (n− t)(p− 1).

Now, we obtain the upper bound of rank C ∈ Cpn with m(C) = t. From equation (3), we
have

r1 = pn−1 − pt−1 −
n−1∑
j=2

pj−1rj. (9)

Equations (6) and (9) imply that

rk(C) = pt + pn−1 − pt−1 −
n−1∑
j=2

pj−1rj +
n−1∑
j=2

rj

= pt + pn−1 − pt−1 −
n−1∑
j=2

(pj−1 − 1)rj.
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Thus rk(C) is maximum if
n−1∑
j=2

(pj−1 − 1)rj = 0 and so rj = 0 for j, 2 6 j 6 n − 1.

Therefore
rk(C) 6 pn−1 + pt−1(p− 1).

On the other hand, the rank of the p-scheme constructed in Example 6 is equal to pn−1 +
pt−1(p− 1). Thus

u(t, p, n) = pn−1 + pt−1(p− 1).

This completes the proof of the theorem. �

4.2 Wreath power

Let Tp = (V,R). Since |R| = p, let R = {R0, R1, . . . , Rp−1}. By induction we construct
the scheme (Tp)

on, and its valency pattern is as the following form

VP((Tp)
on) =

(
1 p p2 . . . pn−1

p p− 1 p− 1 . . . p− 1

)
.

By Lemma 5, we conclude that {Ei}ni=0 ∈ PE((Tp)
on) is unique. Also for each X ∈ V/En−1

we have (Tp)
on
X is isomorphic to (Tp)

on−1. For the scheme (Tp)
on by reordering if necessary,

we conclude that the adjacency matrices of each basis relation with valency pn−1 is equal
to Ri ⊗ Jpn−1 , for some 0 < i 6 p − 1; also the adjacency matrices of each basis relation
with valency less than pn−1 is equal to Ip ⊗ S, where S is one of the basis relations of
(Tp)

o(n−1).

Theorem 7. Let n > 1 be an integer and let p be a prime number. Fix t such that
1 6 t < n. A p-scheme on pn points has the minimum rank l(t, p, n) if and only if it is
isomorphic to C ′ o (Tp)

o(n−t), where C ′ ∈ Tpt. In particular such a p-scheme is schurian.

Proof. Let C ′ ∈ Tpt , it is clear that the rank of the p-scheme C ′ o (Tp)
o(n−t) is equal to

l(t, p, n) which is the minimum rank among all p-schemes in Cpn with thin radical of order
pt.

Conversely, suppose C ∈ Cpn with the set of basis relations R such that m(C) = t and
rk(C) = pt + (n− t)(p− 1). If n = 2 then t = 1 and the result is true. So we can proceed
by induction on n. Assume n > 3. From (5), (7) and (8) in the proof of Theorem 1,
we conclude that for each j, 1 6 j < t, r′j = 0 and for each j, t 6 j 6 n − 2, r′j = 1.
Therefore,

rj =

{
0, 1 6 j 6 t− 1

p− 1, t 6 j 6 n− 1

and so the valency pattern of C is

VP(C) =

(
1 pt pt+1 . . . pn−1

pt p− 1 p− 1 . . . p− 1

)
.
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Let {Ei}ni=0 ∈ PE(C) and X ∈ V/En−1. Then CX is a p-scheme on pn−1 points and from
Lemma 5 we have

En−1 =
⋃

d(R)6pn−2

R. (10)

Hence the valency pattern of CX is as follows

VP(CX) =

(
1 pt pt+1 . . . pn−2

pt p− 1 p− 1 . . . p− 1

)
and so rk(CX) = pt + (n − 1 − t)(p − 1). So induction shows that there is C ′ ∈ Tpt such
that

CX ' C ′ o (Tp)
o(n−1−t). (11)

Now, let S ∈ R. If d(S) 6 pn−2, then from (10) it follows that S ⊆ En−1 and so

S = Ip ⊗ SX . (12)

If d(S) = pn−1, then S * En−1 and so SX = ∅. Since CV/En−1 is a thin scheme on p
points, there exists exactly one Y ∈ V/En−1, Y 6= X such that SX,Y 6= ∅. Therefore, from
|X| = |Y | = pn−1 and d(S) = pn−1 we conclude that X × Y ⊆ S. This shows that

S = SV/En−1 ⊗ Jpn−1 . (13)

From (12) and (13) it follows that C is isomorphic to the wreath product of CX and
CV/En−1 . Since CV/En−1 is a thin scheme on p points so it is isomorphic to Tp. The latter
along with (11) implies that C ' C ′ o (Tp)

o(n−t).
For the last statement, the schemes C ′ and Tp are schurian and so is C ′ o (Tp)

o(n−t). This
completes the proof of the theorem.

4.3

Let C = (V,R) be an association scheme, and E ∈ E(C). According to [6, Definition 2.2]
we may order the elements of V as follows: if the elements of V are ordered in such a way
that for any u, v ∈ V such that u, v ∈ X for some X ∈ V/E, u and v are ordered exactly
in the same way as in X, then we say that the elements of V are ordered according to the
equivalence E.

Proof of Theorem 3.

We prove the theorem by using induction on n. For n = 1, the result is clear. Suppose
that the statement holds for any p-scheme of degree pn−1. Let C = (V,R) be a p-scheme
of degree pn and let {Ei}ni=0 ∈ PE(C).

The scheme CV/En−1 is a thin scheme on p points, let V/En−1 = {X0, X1, . . . , Xp−1}.
By reordering of elements of V if necessary, we can consider that the elements of V are
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ordered according to the equivalence En−1. But En−2 ⊆ En−1, so each Xi, 0 6 i 6 p−1, is
equal to the union of p blocks of V/En−2. Thus by reordering of elements of Xi if necessary,
we can consider that the elements of Xi are ordered according to the equivalence En−2.
In this case the elements of V are ordered according to the equivalences En−2 and En−1,
simultaneously. In this way by using {Ei}ni=0 we can consider that the elements of V
are ordered according to the all of equivalences Ei, 1 6 i 6 n − 1. But d(E1) = p and
CY/E0 = CY is a thin scheme on p points for each Y ∈ V/E1.

Therefore we can see that by the above reordering on V , without loss of generality, V
is equal to cartesian product of p copies of a set with p elements. Thus we consider (Tp)

on

on the set V with the above ordering.
Suppose (Tp)

on = (V,P). It is sufficient to show that each element of P is equal to a
union of some elements of R. Let {Fi}ni=0 be the unique element of PE((Tp)

on). It is easy
to see that for all i, 0 6 i 6 n we have V/Fi = V/Ei, and also from Lemma 4 we have
d(Fi) = d(Ei) = pi. Since (Tp)

on
V/Fn−1

and CV/En−1 are p-schemes on p points, without loss
of generality we may assume that

(Tp)
on
V/Fn−1

= CV/En−1 . (14)

On the other hand for each Y ∈ V/Fn−1, we have

((Tp)
on)Y ' (Tp)

o(n−1). (15)

Now let X ∈ V/En−1, then CX is a p-scheme on pn−1 points. From the hypothesis of the
induction, it follows that

(Tp)
o(n−1) 6 CX . (16)

By (15) and (16), for each P ∈ P with d(P ) 6 pn−2, there exists a subset DP ⊆ R such
that

P =
⋃

R∈DP

R. (17)

Now we want to show that each relation of P with degree pn−1 is also a union of
some elements of R. Let V/En−1 = {X1, X2, . . . , Xp} be the set of points of the p-scheme

CV/En−1 . Any R̂ := RV/En−1 ∈ RV/En−1 is corresponding to a permutation gR̂ on the set
V/En−1 as follows:

X
gR̂
i = Xj ⇐⇒ RXi,Xj

6= ∅.
Define a binary relation ∼ on R as follows:

R, S ∈ R, R ∼ S ⇐⇒ R̂ = Ŝ.

Clearly, ∼ is an equivalence relation on R. Let [R] be the congruent class containing R.
It is clear that T ∈ [R] if and only if gT̂ = gR̂. Also define U := {[Rk], 0 6 k 6 p− 1} the
set of all distinct congruent class of relation ∼ on R such that [R0] = {R ∈ R : RXi,Xi

6=
∅, 1 6 i 6 p}.

Let [Rk] ∈ U , 0 6 k 6 p− 1, and Xi, Xj ∈ V/En−1 such that Rk ∩Xi ×Xj 6= ∅. For
each (x, y) ∈ Xi × Xj, there exists a basis relation T ∈ R such that (x, y) ∈ T and so
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X
gT̂
i = Xj. Therefore, T ∈ [Rk]. This shows that Xi ×Xj ⊆

⋃
T∈[Rk]

T . Then it follows
that ⋃

T∈[Rk]

T =
⋃

X
g
R̂

i =Xj

Xi ×Xj,

and so ⋃
T∈[Rk]

T = PgR̂k
⊗ Jpn−1 , (18)

where PgR̂k
is a permutation matrix correspond to gR̂k

.

Let P ∈ P with d(P ) = pn−1, then P is equal to tensor product of an adjacency
matrix of a non diagonal basis relation of Tp with Jpn−1 . From equations (14) and (18) we
conclude that for each P ∈ P with d(P ) = pn−1 there exists a class [Rk] ∈ U , 0 < k 6 p−1
such that

P =
⋃

T∈[Rk]

T. (19)

By equations (17) and (19), the proof is complete. �
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