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Abstract

We extend the classical coupon collector problem to find the expected number
of selections needed to collect mi (possible random) copies of coupon i, when the
distribution of the coupons is not necessarily equally likely. Upper and lower bounds
which provide limiting asymptotics are also obtained for the expected number of
selections needed to fulfill a random quota for each coupon.

1 Introduction

The classic coupon collector problem describes a process in which n distinct coupons are
placed in an urn. Coupons are randomly selected one at a time (with replacement) until
at least one of each type of coupon has been selected. This creates one complete set of
coupons. The coupon collector problem has a long history (see for example [3, 1]). The
coupon collector problem has also been cited as the single dixie cup problem [8]. Detailed
questions include the birthday problem, which considers the number of coupons that must
be selected in order to have two copies of any one of the coupons, and the double dixie
cup problem, which considers the number of coupons that must be selected in order to
obtain two complete sets of coupons.

Several other variations of these problems have been explored. Examples include the
coupon collector problem with random sample sizes [6], the coupon collector problem with
unequally likely coupons [2, 4, 7, 9], and collecting a partial set of coupons [4]. There
is also interest in the asymptotics for these problems as the number of possible coupons
increases [2, 5, 7, 8, 9].

In the classic paper by Newman and Shepp [8], the authors derived an integral for
the expected number of selections needed to form m complete sets of coupons assuming
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each of the n coupons is equally likely to be selected. They also derive asymptotics for
the expected number of selections as the number of coupons increase and the number of
desired sets stays constant. Flajolet et al. [4] derived similar formulas and asymptotics
assuming the coupons were not equally likely. Instead, coupon i was assumed to be
selected with probability pi so that

∑
pi = 1. In 1998, Papanicolaou et al. [9] expanded

these results to allow the pi to be random variables.
Another interesting variation occurs when we collect a specific amount of each coupon:

a quota. Thus we may desire mi copies of coupon i, where the mi are not necessarily all
equal. If the mi are constant, mi = m for all i, then this reduces to collecting m complete
sets of coupons. In [7], the author derived an integral formula similar to the one found
by Newman and Shepp [8], along with asymptotics for this new coupon collector problem
with quotas.

To further complicate the problem consider the following application: Assume a biolo-
gist would like to track the swim pattern for fish in a particular pond by placing tracking
devices on fish. The biologist knows there are 10 different species of fish in the pond
which are not all equally distributed. The researcher would like to track one male of each
species, however the researcher would be satisfied by tracking two females instead (this
restriction could be for environmental reasons or minimizing cost associated to catching
the fish). What is the expected number of fish needed to be caught in order to have one
male or at least two fish of each species?

We can answer this question by considering the coupon collector problem with random
quotas. In this paper we consider the expected number of selections needed to acquire
mi copies of coupon i where each coupon type is not necessarily equally likely and the
mi could be random. The generalization to unequally likely coupons and random quotas
allows us to find the expected number of fish the researcher needs to catch.

Under certain assumptions of mi, we also find asymptotics for the expected number of
coupon selections required as the number of distinct coupon types increases. We will use
the techniques developed in [8] to expand upon the results of May [7] to allow random
quotas and consider asymptotics for several variations.

2 Background and definitions

Throughout this manuscript, let ~x denote a possibly infinite vector and let xi be the ith

component of ~x. In addition, any bold variable or vector is assumed to be random, for
example X denotes a random variable. For any m ∈ N+ := {1, 2, 3, . . .} and any t ∈ R,
let

Sm(t) =
m−1∑
k=0

tk

k!
,

which is the first m terms of the series expansion of et.
We will assume there are n distinct coupon types, however there can be more than one

copy of each coupon type. We will refer to an individual coupon as a copy of a coupon
type. We shall always assume there are n coupon types, xi copies of the ith coupon type,
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we select a coupon uniformly from all of the Xn coupons where Xn =
∑n

i=1 xi, and we
will select coupons with replacement.

Under these assumptions, we are interested in finding the expected number of selec-
tions until a particular quantity of each of the n coupon type are selected. This expectation
depends upon the quantity of each coupon type available, xi, and the desired quantity,
mi, of each of the n coupon types.

More formally, assume an urn contains xi copies of coupon i for each i ∈ {1, 2, . . . , n}.
In addition, assume for each i we need to select mi copies of coupon i. Let Tn (~m, ~x)
denote the expected number of selections until, for each i, mi coupons of coupon type i
have been selected.

In some classical coupon collector problems it is often the case that each coupon type is
equally likely to be selected or that we desire to collect multiple complete sets of coupons.
In these cases, the variables mi and xi may be constants. We will adopt the notation that
if a and b are constants, then Tn (a, ~x) := Tn (~a, ~x) where ~a is a vector whose components

are all a. Similarly define Tn (~m, b) := Tn

(
~m,~b

)
.

The values of mi and xi could also be random. Thus let E (Tn ( ~m, ~x)) denote the
expected value of Tn (~m, ~x) over all values of ~m, E (Tn (~m,~x)) denote the expected value
of Tn (~m, ~x) over all values of ~x and E (Tn ( ~m, ~x)) denote the expected value of Tn (~m, ~x)
over all values of ~m and ~x.

3 Main Results

First we will consider a general theorem for E (Tn ( ~m, ~x)), followed by several corollaries
which have been individually studied in previous literature.

Theorem 3.1. For all i ∈ N+, let xi ∈ N+ and let mi be independent random variables
whose support is N+. Consider an urn such that for each i, the urn contains xi coupons
of type i. Let Xn =

∑n
i=1 xi be the total number of coupons in the urn. Assume each of

the Xn coupons are equally likely to be selected. If coupons are randomly selected from
the urn with replacement, then the expected number of selections needed until for each
i ∈ {1, 2, . . . , n}, mi coupons of type i have been selected is

E (Tn ( ~m, ~x)) = Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(xit)) e
−xit
))

dt.

Consider the application for the biologist trying to catch one male fish or at least
two fish of 10 different species of fish. Assume there are 3 rare species which constitute
only 5% of the fish population each, 3 dominate species which constitute 15% of the fish
population each, and the remaining 4 species make up 10% of the population each. In
addition, assume the biologist is equally likely to catch a female or a male fish for each of
the 10 species. Evaluating the integral in Theorem 3.1 under these assumptions tells us
the expected number of fish the biologist would have to catch is approximately 56.4.
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The following corollary provides an explicit formula for the expected number of selec-
tions needed to collect one complete set of unevenly distributed coupons.

Corollary 3.2. Under the assumptions of Theorem 3.1, if mi = 1 a.s. for all i, then

Tn (1, ~x) = Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− e−xit

))
dt.

In the classic coupon collector problem, each coupon type is equally likely to be se-
lected. If we consider equally likely coupons, however we collecting a random number of
copies of each individual coupon, then we have the following corollary.

Corollary 3.3. Under the assumptions of Theorem 3.1, if xi = 1 for all i, then

E (Tn ( ~m, 1)) = n

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(t)) e−t
))

dt.

Corollary 3.3 provides an explicit formula for the expected number of selections such
that for each i, we collect mi copies of coupon i assuming that each of the coupons is
equally likely to be selected. This result was considered in [8] for non-random mi. Note
that if xi is equal to any positive constant for all i, the same result holds.

Recall the example of the biologist interesting in catching one male or at least two
fish of 10 different species of fish. If each species is equally likely to be caught and the
gender of the fish caught is also equally likely to be female or male then the integral in
Corollary 3.3 evaluates to approximately 39.995. Thus the biologist can expect to catch
approximately 40 fish.

Finally, we can combine the previous two corollaries and consider collecting m com-
plete sets of coupons assuming that each coupon type is equally likely to be selected.
Thus we only have one random variable m and not a sequence of random variables mi.

Corollary 3.4. Under the assumptions of Theorem 3.1, if for all i, xi = 1 and mi = m,
then

E (Tn (m, 1)) = n

∫ ∞
0

(
1−

(
1− E (Sm(t)) e−t

)n)
dt.

Corollary 3.4 was developed in [8] by Newman and Shepp for a non-random m.
For small values of n and xi, and simple distributions of mi (including constants),

the previous explicit formulas can be easily computed. Asymptotics of these expectations
have also been considered in previous literature. For example, Newman and Shepp [8] con-
sidered collecting m sets of n equally likely coupons. They showed that for a fixed m, and
for n large, the expected number of selections is n (log n+ (m− 1) log log n+ cm + o(1)),
where cm is a constant depending on m. In [9] the authors provide a technique for find-
ing asymptotics for unequally likely coupons. In addition, [9] provides explicit examples
of distributions which have different asymptotic behavior than those found in [8]. We
expand upon these asymptotic results.
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Let mn− = min
i6n

mi and x−n = min
i6n

xi. Let m− denote the minimum of the support of

mi and x− denote the minimum support of xi. Similarly define mn+ , m+, x+, and x+n for
the maximum. In order to have a valid coupon collector problem, there must be at least
one copy of each coupon type in the urn. We will assume we are collecting at least one
copy of each type of coupon. Thus we can assume mn− ,m−, x−, x−n > 1

Theorem 3.5. Under the assumptions of Theorem 3.1,

x−n
x+n

E (Tn (mn− , 1)) 6 E (Tn ( ~mn, ~x)) 6
x+n
x−n

E (Tn (mn+ , 1)) .

Theorem 3.5 provides an upper and lower bound for E (Tn ( ~m, ~x)). Notice that the
bounds depend on x−n , x

+
n ,mn− , and mn+ .

In [8] the authors showed that Tn (m, 1) = n[log n+ (m− 1) log log n+ cm + o(1)] for
fixed m and n→∞. Under some general assumptions on the behavior of x−n , x

+
n ,m

−, and
m+ we can use this result to obtain the following corollary for bounds on the asymptotics
for E (Tn ( ~m, ~x)) .

Corollary 3.6. Under the assumptions of Theorem 3.1, if lim
n→∞

x−n
x+n

= α where 0 < α <∞,

m− > 0, and m+ <∞, then

αn(log n+ (m− − 1) log log n+ c− + o(1)) 6 E (Tn ( ~m, ~x))

6
1

α
n(log n+ (m+ − 1) log log n+ c+ + o(1)),

as n→∞, where c− and c+ are constants depending on m− and m+ respectively.

Corollary 3.6 follows easily from Theorem 3.5, Theorem 2 of [8], and the observation
that if 0 < a 6 b then Tn (a, 1) 6 Tn (b, 1), i.e. the expected amount of time to collect a
complete sets of coupons is less than the expected amount of time to collect b complete
sets of coupons.

We can also consider the number of copies of each coupon in the urn to be random,
thus the xi are random in addition to the mi. In doing so, it is more difficult to find
a simple expression for the expected number of selections because of the dependency.
However we are able to find an upper bound on the asymptotics based on some simple
assumptions. Similar to [5], the authors also studied asymptotics of the random coupon
collector problem with random xi. In sections 3 and 4 of [5] the author provided several
examples of distributions of xi which produced asymptotics which were not bounded by
constant multiples of those in Corollary 3.6 and [8].

The following theorem provides bounds for random xi. In Corollary 3.8 we find re-
strictions on the distribution of the xi which produce asymptotics which are bounded by
constant multiples of the limits found in Corollary 3.6 and [8].
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Theorem 3.7. In addition to the assumptions of Theorem 3.1 assume xi are independent
random variables such that 1 6 x− and x+ <∞. Then

µXn

nx+
E (Tn ( ~m, 1)) 6 E (Tn ( ~m, ~x)) 6

µXn

nx−
E (Tn ( ~m, 1)) ,

where µXn = E(Xn).

Corollary 3.8. Under the assumptions of Theorem 3.7, if lim
n→∞

µXn

n
= µ, 0 < m−, and

m+ <∞, then

µ

x+
n(log n+ (m− − 1) log log n+ c− + o(1))

6 E (Tn ( ~m, ~x))

6
µ

x−
n(log n+ (m+ − 1) log log n+ c+ + o(1)),

as n→∞, where c− and c+ are constants depending on m− and m+ respectively.

Again, Corollary 3.8 follows easily from Theorem 3.7, Theorem 2 of [8], and the ob-
servation that if 0 < a 6 b then Tn (a, 1) 6 Tn (b, 1).

4 Proofs of main results

Proof of Theorem 3.1

Proof. Let qi be the probability of not obtaining mk copies of coupon k for all 1 6 k 6 n
in the first i selections. Thus qi represents the probability of failure at selection i. Let
Ni denote the number of ways of selecting i coupons from the urn and failing to obtain
mk copies of coupon k for some 1 6 k 6 n. Thus

qi =
Ni

(
∑n

j=1 xj)
i

=
Ni

(Xn)i
. (1)

Let {(x1+x2+· · ·+xn)i/ ~m} denote the expansion of the polynomial (y1+y2+· · ·+yn)i,
with all terms whose power for yk is at least mk for all 1 6 k 6 n removed, evaluated at
(x1, x2, . . . , xn).

Notice that

(Xn)i = (x1 + x2 + · · ·+ xn)i and Ni = {(x1 + x2 + · · ·+ xn)i/ ~m}. (2)

For any positive integer valued random variable X > 0 we know E(X) =
∞∑
i=0

P(X > i).
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Thus by conditioning on ~m then substituting in (1) and (2) we have

E (Tn ( ~m, ~x)) = E

(
∞∑
i=0

qi

)

= E

(
∞∑
i=0

Ni

(Xn)i

)

= E

(
∞∑
i=0

{(x1 + x2 + · · ·+ xn)i/ ~m}
(Xn)i

)
.

A simple integration by parts shows n

∫ ∞
0

ti

i!
e−ntdt =

1

ni
. Thus

E (Tn ( ~m, ~x)) = XnE

(
∞∑
i=0

∫ ∞
0

{(x1t+ x2t+ · · ·+ xnt)
i/ ~m}

i!
e−Xntdt

)
.

Tonelli’s theorem justifies changing the order of integration, summation, and expec-
tation. Hence

E (Tn ( ~m, ~x)) = Xn

∫ ∞
0

E

((
∞∑
i=0

{(x1t+ x2t+ · · ·+ xnt)
i/ ~m}

i!

)
e−Xnt

)
dt. (3)

The series expansion for the exponential function shows

eXnt −
n∏

k=1

(
exkt − Smk

(xkt)
)

= ex1t+x2t+···+xnt −
n∏

k=1

(
exkt − Smk

(xkt)
)

=
∞∑
i=0

(x1t+ x2t+ · · ·+ xnt)
i

i!

−

(
∞∑

i=m1

(x1t)
i

i!

)(
∞∑

i=m2

(x2t)
i

i!

)
. . .

(
∞∑

i=mn

(xnt)
i

i!

)

=
∞∑
i=0

{(x1t+ x2t+ · · ·+ xnt)
i/ ~m}

i!
.

Substituting the previous identity into equation (3) reveals

E (Tn ( ~m, ~x)) = Xn

∫ ∞
0

E

((
eXnt −

n∏
i=1

(
exit − Smi

(xit)
))

e−Xnt

)
dt

= Xn

∫ ∞
0

E

(
1−

n∏
i=1

(
1− Smi

(xit)e
−xit
))

dt.
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Independence of mi gives

E (Tn ( ~m, ~x)) = Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(xit)) e
−xit
))

dt,

which completes the proof.

In order to prove Theorem 3.5, first notice that for any x, t,m > 0, the function
f(x) = Sm(xt)e−xt is positive. Differentiating with respect to x shows

f ′(x) = −te−xtSm(xt) + te−xtSm−1(xt)

= −te−xt(Sm(xt)− Sm−1(xt))

= −te−xt (xt)m−1

(m− 1)!
,

which is clearly negative for x, t,m > 0. Thus Sm(xt)e−xt is non-increasing for x, t,m > 0.

Proof of Theorem 3.5

Proof. By Theorem 3.1 and by the definition of x+n , we have

E (Tn ( ~m, ~x)) = Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(xit)) e
−xit
))

dt

6 x+nn

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(xit)) e
−xit
))

dt. (4)

Since Sm(xt)e−xt is non-increasing for x, t,m > 0 and by the definition of x−n and mn+ ,
(4) is bounded above by

E (Tn ( ~m, ~x)) 6 x+nn

∫ ∞
0

(
1−

n∏
i=1

(
1− E

(
Smn+

(
x−n t
))
e−x

−
n t
))

dt.

Let u = x−n t. Thus by the definition of E (Tn (mn+ , 1)) we have

E (Tn ( ~m, ~x)) 6
x+n
x−n

[
n

∫ ∞
0

(
1−

(
1− E

(
Smn+ (u)

)
e−u
)n)

du

]
=
x+n
x−n

E (Tn (mn+ , 1))

Similarly, we derive that
x−n
x+n

E (Tn (mn− , 1)) 6 E (Tn ( ~m, ~x)) which completes the proof.
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Proof of Theorem 3.7

Proof. Conditioning on ~x we have

E (Tn ( ~m, ~x)) = E (E (Tn ( ~m, ~x) |~x)) .

Applying Theorem 3.1 we see

E (Tn ( ~m, ~x)) = E

(
Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− E (Smi

(xit)) e
−xit
))

dt|~x

)
.

Since Sm(xt)e−xt is non-increasing for x, t,m > 0 we obtain the following upper bound

E (Tn ( ~m, ~x)) 6 E

(
Xn

∫ ∞
0

(
1−

n∏
i=1

(
1− E

(
Smi

(x−t)
)
e−x

−t
))

dt|~x

)
.

By Theorem 3.1 the previous becomes

E (Tn ( ~m, ~x)) 6
1

nx−
E
(
XnE

(
Tn
(
~m, x−

))
|~x
)
.

Since E
(
Tn
(
~m, x−

))
does not depend on ~x, we have

E (Tn ( ~m, ~x)) 6
µXn

nx−
E
(
Tn
(
~m, x−

))
where µXn = E(Xn).

Similarly, we can derive that

µXn

nx+
E (Tn ( ~m, 1)) 6 E (Tn ( ~m, ~x))

which completes the proof.
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