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Abstract

We generalise an extension theorem for terraces for abelian groups to apply to non-
abelian groups with a central subgroup isomorphic to the Klein 4-group V . We also
give terraces for three of the non-abelian groups of order a multiple of 8 that have a
cyclic subgroup of index 2 that may be used in the extension theorem. These results
imply the existence of terraces for many groups that were not previously known to
be terraced, including 27 non-abelian groups of order 64 and all groups of the form
V s ×D8t for all s and all t > 1 where D8t is the dihedral group of order 8t.

AMS 2010 Subject Classification. Primary: 20D60. Secondary: 05B99.
Keywords: 2-sequencing, Bailey’s conjecture, extendable terrace, rotational terrace,

terrace.

1 Introduction

Let G be a group of order n and let a = (a1, a2, . . . , an) be an arrangement of all of the
elements of G. Define b = (b1, b2, . . . , bn−1) by bi = a−1

i ai+1. If each involution of G appears
once in b and there are two appearances from each set {g, g−1 : g2 6= e} in b then a is
a terrace for G and b is its associated 2-sequencing. If a group has a terrace then it is
terraced. Left-multiplying each element of a terrace by any element of the group produces
another terrace for the group; choosing a−1

1 gives a terrace with the identity, e, as the first
element—such a terrace is called basic.

Terraces for cyclic groups were implicitly used by Williams in [13] and the concept was
formally defined and extended to arbitrary groups by Bailey [3]. They were originally of
interest because the Cayley table of a group may be presented as a quasi-complete Latin
square if and only if the group is terraced [3] but have since been used for other applications
and studied as objects of interest in their own right. The purpose of this paper is to move
closer to a proof of Bailey’s Conjecture:
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Conjecture 1 [3] All groups, except the non-cyclic elementary abelian 2-groups, are ter-
raced.

It is known that the non-cyclic elementary abelian 2-groups are not terraced [3].

Example 1 Let Zn be the additively-written cyclic group of order n. The Lucas-Walecki-
Williams terrace (so-called because it was implicitly used by Lucas and Walecki [7] for even n
and by Williams [13] for all n) for Zn is (0, 1, n − 1, 2, n − 2, . . .) and has associated 2-
sequencing (1, n− 2, 3, n− 4, . . .).

There have been two main lines of attack on Bailey’s Conjecture. First, one may directly
construct terraces for a particular family of groups. Second, one can produce theorems that
build a terrace for a group out of terraces for smaller groups. The most powerful example
of the second approach is the following result:

Theorem 1 [1, 2] Let G be a group with normal subgroup N . If N has odd index and is
terraced, then G is terraced. If N has odd order and G/N is terraced then G is terraced.

In [9] a theorem that constructed a terrace for an abelian group G that has a subgroup of
order 4 and a particular type of terrace for the quotient group was presented. This theorem
is not fully correct in the case when the subgroup of order 4 is cyclic; see [11] in which the
error is corrected and it is shown that all of the groups claimed to be terraced are indeed
terraced. In the next section we present a more general version of the correct case (when the
subgroup is isomorphic to V , the Klein 4-group) that applies to many non-abelian groups.

The extension result in the next section allows us to find terraces for a considerable array
of previously unterraced groups. As input the theorem requires terraces with particular
properties; some such terraces are catalogued in Section 3.

2 The extension theorem

We first define the properties we require of a terrace to be used in the theorem. Let K be a
group of order m > 6 and let a = (a1, a2, . . . , am) be a basic terrace for K. If am = a22 and
aj−1aj+1 = aj = aj+1aj−1 for some 5 6 j < m then a is extendable.

An important intermediary object is an R-terrace, or rotational terrace. Following the
convention of earlier papers we write circular lists in square brackets and consider the sub-
scripts to be calculated modulo the length of the list. Let K be a group of order m and let
a = [a1, a2, . . . , am−1] be a circular arrangement of the non-identity elements of K. Define
b = [b1, b2, . . . , bm−1] by bi = a−1

i ai+1 for 1 6 i 6 m−1. If b contains exactly one occurrence
of each involution of K and exactly two occurrences from each set {k, k−1 : k2 6= e} then a
is a rotational terrace or R-terrace for K and b is the associated rotational 2-sequencing or
R-2-sequencing of K. If there are no repeats among the elements of b then the R-terrace is
directed and the R-2-sequencing is an R-sequencing. Further, if a1 = am−1a2 = a2am−1 then
a is a standard R∗-terrace for K and if br = a−1

r+1 for some r then r is a right match-point
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of b. Note that a standard R∗-terrace cannot have an R-2-sequencing with 1 as a right
match-point.

Standard R∗-terraces whose R-2-sequencings have particular right match-points and ex-
tendable terraces are equivalent: The circular list [a1, a2, . . . , am−1] is a standard R∗-terrace
whose R-2-sequencing has a right match-point r for some 2 6 r 6 m− 3 if and only if

(e, ar+1, ar+2, . . . , am−1, a1, a2, . . . , ar)

is an extendable terrace.
The following lemma restricts which groups may have an extendable terrace.

Lemma 1 [9] If the order of G is congruent to 2 modulo 4 then G does not have a rotational
terrace.

We can now prove our main result. The Klein 4-group is the non-cyclic group of order 4
and a subgroup is central if each of its elements commutes with every element of the group
(that is, it is contained in the centre of the group).

Theorem 2 Let G be a group with a central subgroup V of index m > 7, where V is
isomorphic to the Klein 4-group. Suppose G/V has a standard R∗-terrace [K1, K2, . . . , Km−1]
whose R-2-sequencing has a match-point r for some 2 6 r 6 m − 3 and such that there is
a pair of elements, one in K2 and one in Km−1, that commute. Then G has an extendable
terrace.

Proof. Choose coset representatives ki, for 1 6 i 6 m − 1, such that ki ∈ Ki and that
both km−1k2 = k1 = k2km−1 and k−1

r kr+1 = k−1
r+1. These two criteria potentially interact if

r = 2. In this case, choose any k3 ∈ K3, set k2 = k23 and then there is a km−1 ∈ Km−1 that
commutes with k2: if `2 ∈ K2 and `m−1 ∈ Km−1 are the commuting elements we know to
exist then there is a v0 ∈ V with k2 = v0`2 and this commutes with `m−1, which we may set
to be km−1, by the centrality of V .

Note that each element of G is uniquely expressible in the form vk for v ∈ V and
k ∈ {e, k1, k2, . . . , km−1}.

We build the standard R∗-terrace by showing the lists of the v components and k com-
ponents separately. Let V = {e, v1, v2, v3}, then [v1, v2, v3] is an R-terrace for V (that is, any
circular list of the non-identity elements of V is an R-terrace). We list the v components
as the rows of a 4 × m matrix. Let (v1, v2, v3)t−1 denote t − 1 repetitions of the sequence
(v1, v2, v3), and similarly for other subscripted sequences. There are three slightly different
matrices for the v components as m varies modulo 3.

Case 1: m = 3t for t > 3. Take
e e . . . e v2 v1
v3 (v1, v2, v3)t−2 v1 v3 v3 v2 v1
v3 v2 (v3, v1, v2)t−2 v3 v2 v1 v3
v2 v1 (v2, v3, v1)t−2 v2 v1 e


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to be the v component matrix.

Case 2: m = 3t+ 1 for t > 2. Take
e e . . . v2 v1
v3 (v2, v1, v3)t−1 v3 v2 v1
v3 v2 (v1, v3, v2)t−1 v1 v3
v2 v1 (v3, v2, v1)t−1 e


to be the v component matrix.

Case 3: m = 3t+ 2 for t > 2. Take
e e . . . e v2 v1
v3 (v2, v1, v3)t−1 v2 v3 v2 v1
v3 v2 (v1, v3, v2)t−1 v1 v1 v3
v2 v1 (v3, v2, v1)t−1 v3 e


to be the h component matrix.

For each of the above cases the k component matrix is
k1 k2 . . . km−1 e
k2 k3 . . . km−1 k1 k1
k1 k2 . . . km−1 e
e k2 k3 . . . km−1


As V is central in G and km−1k2 = k1 = k2km−1 we get the following matrix of quotients

in the k component:
k−1
1 k2 k−1

2 k3 . . . . . . k−1
m−2km−1 k−1

1 k2 k−1
m−1k1

k−1
2 k3 k−1

3 k4 . . . k−1
m−2km−1 k−1

m−1k1 e e
k−1
1 k2 k−1

2 k3 . . . . . . k−1
m−2km−1 k−1

1 k2 e
k−1
m−1k1 k−1

2 k3 k−1
3 k4 . . . k−1

m−2km−1 k−1
m−1k1


Each repeated sequence in the v component matrix is a directed R-terrace and so when
the quotient matrices are combined we get a sequence that obeys the conditions of an R-2-
sequencing.

Further, as the first two entries and the last entry of every v component matrix is e, it
follows from our choices of k1, k2, and km−1 that the R-terrace is a standard R∗-terrace. As
the first m− 2 entries of every v component matrix are all e, our choices of kr and kr+1 give
us the match-point we require in position r of the R-2-sequencing. 2

The awkward condition in Theorem 2 regarding commuting elements in commuting cosets
is automatically satisfied in the cases where we have appropriate direct products or abelian
(sub)groups. Hence an immediate consequence of the theorem is:
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Corollary 1 Let A be an abelian 2-group that has a normal series with all factors isomorphic
to the Klein 4-group and let K be a group with an extendable terrace. Then A ×K has an
extendable terrace. In particular, Z2s

2 ×K has an extendable terrace for all s.

Our goal now is to construct extendable terraces for as many groups as possible.

3 Extendable terraces

The following results for abelian groups are established in [9, 10, 11]:

• The cyclic group Zn has an extendable terrace if and only if n > 7 and n is not twice
an odd number.

• All abelian 2-groups of order at least 8, except the elementary abelian 2-groups, have
an extendable terrace.

• Let p be an odd prime. The group Z2t
2 ×Zp has an extendable terrace unless t = 0 and

p 6 5.

• The groups Z2t+1
2 × Z3 and Z2t+1

2 × Z5 have an extendable terrace for all t > 1.

Other than the unterraceable elementary abelian 2-groups, these results and Theorem 1
now give terraces for all abelian groups except for those of order coprime to 15 with elemen-
tary abelian Sylow 2-subgroup of order 22t+1 for t > 1 [9, 10, 11]. When t > 2 it is known
that these groups are terraced [10].

In this section we present extendable terraces for each of three non-abelian groups of
order 8t with t > 2: the dihedral group D8t, the semidihedral group S8t and a third group
that also has a cyclic subgroup of index 2 but does not appear to have a common name in
the literature—we denote it M8t following Gorenstein’s use, reported in [6], of the letter M
(but with a different subscript convention) for this group when it has order a power of 2.
For even t, other than finitely many small cases, the terraces given for S8t and M8t are the
first known. Here are presentations for these groups:

D8t = 〈u, v : u4t = e = v2, vu = u4t−1v〉
S8t = 〈u, v : u4t = e = v2, vu = u2t−1v〉
M8t = 〈u, v : u4t = e = v2, vu = u2t+1v〉

Before constructing the desired terraces we introduce a related concept and prove a lemma
that is crucial to the construction.

An arrangement g = (g1, g2, . . . , gn) of the integers {0, 1, . . . , n−1} is a graceful sequence
of length n if each element of the set {1, 2, . . . , n − 1} can be written |gi+1 − gi| for some i.
This is equivalent to the notion of a graceful labelling of a path in graph theory [4]. If g is
a graceful sequence then so are its reverse (gn, gn−1, . . . , g1) and its complement ((n − 1) −
g1, (n−1)−g2, . . . , (n−1)−gn). Considered to be a sequence in Zn rather than Z a graceful
sequence is a terrace, called a graceful terrace.
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Example 2 The negated LWW terrace for Zn, obtained by negating each element of the
LWW terrace of Example 1, is a graceful terrace.

Lemma 2 For all t > 2 there is a graceful sequence of length 2t − 1 with endpoints t − 2
and 2t− 3.

Proof. When t ≡ 5 (mod 6) we use the complement of the “3-twizzler” graceful terrace
described in [12]. The 3-twizzler terrace is obtained from the negated LWW terrace for
Z2t−1 by dividing the terrace into subsequences of length 3 and reversing (“twizzling”) each
of them. After taking the complement we have:

2t− 3, 0, 2t− 2︸ ︷︷ ︸, 2, 2t− 4, 1︸ ︷︷ ︸, . . . , t− 1, t, t− 2︸ ︷︷ ︸ .
When t ≡ 2 (mod 6) the complement of 3-twizzler terrace begins the same way but ends
t− 1, t− 2, t. Switching the last two elements preserves the gracefulness of the sequence and
gives us the t− 2 that we need as an endpoint.

When t ≡ 0 (mod 3) we can use the complement of the “imperfect 3-twizzler” graceful
terrace of [12]. In Preece’s imperfect 3-twizzler terrace all but the final two elements are
obtained by 3-twizzling as above. Here is its complement:

2t− 3, 0, 2t− 2︸ ︷︷ ︸, 2, 2t− 4, 1︸ ︷︷ ︸, . . . , t, t− 3, t+ 1︸ ︷︷ ︸, t− 1, t− 2.

Finally, when t ≡ 1 (mod 3) we give a new graceful terrace using similar ideas. We
begin as in the previous cases by twizzling subsequences of length 3 from the negated LWW
graceful terrace, however this time we stop with 7 elements remaining and rearrange those
to give a final element of t− 2 while preserving the gracefulness of the sequence:

2t− 3, 0, 2t− 2︸ ︷︷ ︸, 2, 2t− 4, 1︸ ︷︷ ︸, . . . , t− 5, t+ 3, t− 6︸ ︷︷ ︸,
t+ 1, t− 3, t+ 2, t− 4, t− 1, t, t− 2.

This completes the proof. 2

Theorem 3 The groups D8t, S8t and M8t have an extendable terrace for all t > 2.

Proof. The similar structure of the three groups allows us to use a slightly unusual
approach. We give a sequence of elements of the form uxvy with 0 6 x 6 4t − 1 and
y ∈ {0, 1} and this sequence is a terrace regardless of to which group we interpret the
elements belonging.

The terrace takes the form a = (e, α, β, u2t, v, γ, utv, δ), where each Greek letter represents
a sequence of elements. With the exception of δ, each of these sequences can be expressed
in a “zigzag” pattern. The partial terrace up to utv is given in Table 1.
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Table 1: Partial extendable terrace for D8t, S8t and M8t

e e
α u2t−1, uv, u2t−2, u2v, u2t−3, . . . , ut+1, ut−1v, ut

β ut+1v, ut−1, ut+2v, ut−2, . . . , u2, u2t−1v, u, u2tv
u2t u2t

v v
γ u2t+1v, u4t−1v, u2t+2v, u4t−2v, . . . , u3t−1v, u3t+1v, u3tv
utv utv

Table 2: Partial 2-sequencing for D8t

α u2t−1, u2t+2v, u2t+3v, u2t+4v, . . . , u4t−2v, u4t−1v
β uv, u2v, u3v, . . . , u2t−2v, u2t−1v
u2t v
v u2tv
γ u2t−1, u2t+2, u2t−3, u2t+4, . . . , u3, u4t−2, u
utv u2t

The associated partial 2-sequencings arising from the partial terrace for D8t, S8t and M8t

are given in Tables 2, 3 and 4 respectively with each row starting with the difference created
by joining the subsequence with the previous one.

In each case, to complete the sequence to a terrace δ needs to satisfy three conditions.
First, it must generate the final quotient of the form uxv, which it can do by starting with
u3t−1. Second, it must contain the elements of the form ux for 2t + 1 6 x 6 4t − 1. Third,
it must generate one from each inverse pair within 〈u〉 except for u2t and u±(2t−1). Further,
for the terrace to be extendable, the last element of δ must be u4t−2.

These conditions can be met by taking a graceful sequence (g1, g2, . . . , g2t−1) that starts
with t − 2 and ends with 2t − 3 and defining the ith element of δ to be u2t+1+gi . Such a
sequence exists by Lemma 2.

Finally, we need to check the other condition to be extendable; that aj−1aj+1 = aj =
aj+1aj−1 for some j > 5. Setting j = 4t− 1, we find that aj−1 = u2tv, aj = u2t and aj+1 = v;
a valid choice in each of the three groups. 2

Example 3 The terrace for D32, S32 and M32 given by Theorem 3 is

e, u7, uv, u6, u2v, u5, u3v, u4, u5v, u3, u6v, u2, u7v, u, u8v, u8,

v, u9v, u15v, u10v, u14v, u11v, u13v, u12v, u4v, u11, u13, u12, u9, u15, u10, u14.

When considering which groups are most likely to give a counterexample to Bailey’s con-
jecture those with many involutions and/or large elementary abelian 2-groups as subgroups
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Table 3: Partial 2-sequencing for S8t

α u2t−1, u2t+2v, u3v, u2t+4v, u5v, . . . , u4t−2v, u2t−1v
β uv, u2v, u3v, . . . , u2t−2v, u2t−1v
u2t v
v u2tv
γ u4t−1, u2t+2, u4t−3, u2t+4, . . . , u2t+3, u4t−2, u
utv u2t

Table 4: Partial 2-sequencing for M8t

α u2t−1, u2t+2v, u4t−3v, u2t+4v, u4t−5v, . . . , u4t−2v, u2t+1v
β uv, u4t−2v, u3v, u4t−4, . . . , u2t+2v, u2t−1v
u2t v
v u2tv
γ u, u2t−2, u3, u2t−4, . . . , u2t−3, u2, u2t−1

utv u2t

are natural contenders. Theorem 3 and Corollary 1 imply that many such contenders are
indeed terraced; groups of the form Z2s

2 ×D8t for all s and for t > 2, for example.
A computer search for extendable terraces for small groups has been implemented in GAP

[5]. Neither of the two non-abelian groups of order 8 has an extendable terrace. Extendable
terraces were found for all twelve non-abelian groups of orders 12, 16 and 20 not covered by
Theorem 3. The notation Gn/p indicates that the group has order n and is in position p in
GAP’s small group library. Where the group has a common name that is indicated as well,
and we use the more familiar permutation notation for the alternating group A4. The value
for j in the definition of an extendable terrace is also given.

Order 12:

G12/1 = 〈a, b : a6 = e, b2 = a3, ab = ba−1〉 ∼= Q12, j = 5

e, a2, a, b, a3b, a3, a4b, a5, a5b, ab, a2b, a4

G12/3
∼= A4, j = 7

(), (123), (234), (124), (134), (14)(23), (12)(34), (13)(24), (142), (143), (243), (132)

G12/4 = 〈a, b : a6 = b2 = e, ab = ba−1〉 ∼= D12, j = 6

e, a, a2b, a5, a4b, ab, a3, a3b, a5b, b, a4, a2
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Order 16:

G16/3 = 〈a, b, c : a4 = b2 = c2 = e, ab = bac, [a, c] = [b, c] = e〉, j = 6

e, a, a3, a3c, a2b, bc, a2c, b, ab, ac, abc, c, a3bc, a2bc, a3b, a2

G16/4 = 〈a, b : a4 = b4 = e, ab = ba−1〉, j = 13

e, a2b, a3b3, a3, ab3, a2, a, a3b2, b, b3, a2b3, a3b, a2b2, ab, ab2, b2

G16/9 = 〈a, b : a8 = e, b2 = a4, ab = ba−1〉 ∼= Q16, j = 5

e, a2b, ab, a, a7, a6, b, a3b, a7b, a5b, a2, a5, a6b, a3, a4b, a4

G16/11 = 〈a, b, c : a4 = b2 = c2 = e, ab = ba−1, [a, c] = [b, c] = e〉 ∼= D8 × Z2, j = 8

e, a3c, a3, a, b, a3b, bc, a2c, a2b, c, ab, a3bc, a2bc, ac, abc, a2

G16/12 = 〈a, b, c : a4 = c2 = e, b2 = a2, ab = ba−1, [a, c] = [b, c] = e〉 ∼= Q8 × Z2, j = 10

e, b, ab, ac, bc, c, a, a3c, a3b, a2c, a3bc, abc, a2b, a2bc, a3, a2

G16/13 = 〈a, b, c : a2 = b2 = c4 = e, ab = bac2, [a, c] = [b, c] = e)〉, j = 8

e, c, ac2, abc2, bc3, ac, bc, b, c3, ab, bc2, ac3, abc, abc3, a, c2

Order 20:

G20/1 = 〈a, b : a10 = e, b2 = a5, ab = ba−1〉 ∼= Q20, j = 9

e, b, a6b, ab, a4b, a, a3b, a7, a6, a9, a2b, a2, a4, a8b, a7b, a8, a5b, a9b, a3, a5

G20/3 = 〈a, b : a5 = b4 = e, ab = ba2〉, j = 17

e, a2, ab, a3, a4b3, ab3, a2b2, a2b, b2, a, a4b2, b, a3b, a3b3, a3b2, ab2, a2b3, a4b, b3, a4

G20/4 = 〈a, b : a10 = b2 = e, ab = ba−1〉 ∼= D20, j = 5

e, a6, a4b, a5, a8b, a3b, b, a4, a5b, a8, a2b, a9b, a7b, a6b, a, ab, a9, a7, a3, a2

The smallest order for which Bailey’s conjecture is not settled is 64. The abelian case
for this order was proven in [9, 11]. Of the 256 non-abelian groups of order 64, only three
were known to have terraces prior to this work [8]. The extendable terraces for groups of
order 16 above imply that at least 25 further non-abelian groups of order 64 are terraced
(this is the number of groups that have commuting elements in all pairs of commuting cosets
of some central Klein 4-group to use in Theorem 2). Combining this with the known ones
and the new terraces here for S64 and M64 gives a total of 30. There are 208 non-abelian
groups of order 64 that have a central Klein 4-group with at least one pair of commuting
cosets that contain a pair of commuting elements; many of these may fall to Theorem 2 if
an appropriate extendable terrace for the quotient group of order 16 can be found.
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