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Abstract

A floorplan is a tiling of a rectangle by rectangles. There are natural ways to
order the elements – rectangles and segments – of a floorplan. Ackerman, Barequet
and Pinter studied a pair of orders induced by neighborhood relations between
rectangles, and obtained a natural bijection between these pairs and (2-41-3,3-14-2)-
avoiding permutations, also known as (reduced) Baxter permutations.

In the present paper, we first perform a similar study for a pair of orders in-
duced by neighborhood relations between segments of a floorplan. We obtain a
natural bijection between these pairs and another family of permutations, namely
(2-14-3,3-41-2)-avoiding permutations.
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Then, we investigate relations between the two kinds of pairs of orders – and,
correspondingly, between (2-41-3,3-14-2)- and (2-14-3,3-41-2)-avoiding permuta-
tions. In particular, we prove that the superposition of both permutations gives a
complete Baxter permutation (originally called w-admissible by Baxter and Joichi
in the sixties). In other words, (2-14-3,3-41-2)-avoiding permutations are the hid-
den part of complete Baxter permutations. We enumerate these permutations. To
our knowledge, the characterization of these permutations in terms of forbidden
patterns and their enumeration are both new results.

Finally, we also study the special case of the so-called guillotine floorplans.

1 Introduction

A floorplan1 is a partition of a rectangle into interior-disjoint rectangles such that no point
belongs to the boundary of four rectangles (Fig. 1). We call segment of the floorplan any
straight line, not included in the boundary of the partitioned rectangle, that is the union
of some rectangle sides, and is maximal for this property. For example, each of the
floorplans of Fig. 1 has four horizontal and four vertical segments. Since four rectangles
of a floorplan never meet, the segments do not cross, and a meeting of segments has one
of the following forms: ⊣, ⊥, ⊢, ⊤ (but not + ).
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Figure 1: Two R-equivalent floorplans.

An easy induction shows that the number of segments in a floorplan is smaller than
the number of rectangles by 1. Throughout the paper, for a given floorplan P , the number
of segments in P is denoted by n; accordingly, n+ 1 is the number of rectangles in P . We
say that P has size n + 1. For instance, the floorplans in Fig. 1 have size 9.

Many papers have appeared about floorplans, not only in combinatorial but also in
computational geometry literature [14, 28, 31]. The interest in floorplans is motivated,
in particular, by the fact that their generation is a critical stage in integrated circuit
layout [26, 27, 34, 40, 41], in architectural designs [8, 17, 22, 36, 37], etc.

The present paper is combinatorial in nature, and describes the relationship between
a pair of natural orders defined on the segments of a floorplan and certain pattern avoid-
ing permutations. It parallels a previous paper of Ackerman, Barequet and Pinter in
which a similar study was carried out for a pair of orders defined on rectangles of a
floorplan, in connection with the so-called Baxter permutations [1]. These permutations

1Sometimes called mosaic floorplan in the literature.
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were introduced in the sixties, and were originally called reduced Baxter permutations,
as opposed to complete Baxter permutations [6, 7, 12]. A complete Baxter permutation
π has an odd size, say 2n + 1, and is completely determined by its values at odd points,
π(1), π(3), . . . , π(2n + 1). After normalization, these values give the associated reduced
Baxter permutation πo (the subscript ’o’ stands for odd; we denote by πe the permutation
obtained by normalizing the list π(2), π(4), . . . , π(2n)). Our paper provides the even part
of the theory initiated in [1]: we prove that the permutation associated with the segments
and the permutation associated with the rectangles are respectively the even and odd
parts πe and πo of the same complete Baxter permutation π. We also characterize the
even parts of Baxter permutations in terms of forbidden patterns and enumerate them.

One of our motivations for studying segments of floorplans was the observation that
many questions on floorplans deal with segments rather than rectangles. An interesting
example is the rectangulation conjecture by Ackerman et al. [2, Conj. 7.1] about embed-
dings of point sets in floorplans, recently proved by Felsner [19].

In order to present our results in greater detail, we first need to describe the related
results obtained for rectangles in [1]. In that paper, the authors study a representation
of two order relations between rectangles in floorplans by means of permutations. These
order relations are induced by neighborhood relations, which are defined as follows. A
rectangle A is a left-neighbor of B (equivalently, B is a right-neighbor of A) if there is a
vertical segment in the floorplan that contains the right side of A and the left side of B.
(Note that the right side of A and the left side of B may be disjoint.) Now, the relation “A
is to the left of B” (equivalently, “B is to the right of A”), denoted by A← B, is defined
as the transitive closure of the relation “A is a left-neighbor of B.” Finally, the relation↞
is the reflexive closure of ←. The terms A is a below-neighbor of B (equivalently, B is an
above-neighbor of A) and A is below B (equivalently, B is above A) are defined similarly,
as well as the notation A ↓ B for “A is below B,”2 and A ↡ B for “A = B or A ↓ B.” It
is easy to see that the relations ↞ and ↡ are partial orders. In both floorplans of Fig. 1,
we have, among other relations, A ↓ I (because A is a below-neighbor of C, and C is a
below-neighbor of I), A← G, and B ← F .

The following results are proved in [1]. Let P be a floorplan of size n+1. Two distinct
rectangles A and B of P are in exactly one of the relations A ← B, B ← A, A ↓ B, or
B ↓ A. It follows that the relations � and � between rectangles of P defined by

A� B if A = B, or A is to the left of B, or A is below B,
A� B if A = B, or A is to the left of B, or A is above B,

are linear orders (the signs � and � are intended to resemble the inequality sign ⩽).
Each of these orders can be used to label the rectangles of P by 1,2, . . . , n + 1. In the
� order, the rectangle in the lower left corner is labeled 1, and the rectangle in the upper
right corner n + 1. In the � order, the rectangle in the upper left corner is labeled 1,

2Hence, A ↓ B should be understood as
B

↓
A

; and similarly for ↡.
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and the rectangle in the lower right corner n+1. Let R(P ) be the sequence a1 a2 . . . an+1,
where, for all 1 ≤ i ≤ n + 1, ai is the label in the � order of the rectangle which is labeled
i in the � order. It is clear that R(P ) is a permutation of [n + 1] ∶= {1,2, . . . , n + 1};
we call it the R-permutation of P . Loosely speaking, R(P ) is obtained by labeling the
rectangles according to the � order, and then reading these labels while passing the
rectangles according to the � order. Fig. 2 shows the construction of the R-permutation
of a floorplan P ; the right part of the figure is the graph of ρ = R(P ), that is, the point
set {(i, ρ(i)) ∶ 1 ≤ i ≤ n + 1}.
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Figure 2: Constructing the R-permutation of a floorplan P .

Two floorplans P1 and P2 of size n + 1 are said to be R-equivalent3 if there exists a
labeling of the rectangles of P1 by A1,A2, . . . ,An+1 and a labeling of the rectangles of P2 by
B1,B2, . . . ,Bn+1 such that for all k,m ∈ [n+1], the rectangles Ak and Am exhibit the same
neighborhood relation as Bk and Bm. The two floorplans in Fig. 1 are R-equivalent: this
follows from the labeling presented in this figure (in fact, A,B,C, . . . I is the �-order).
It is easy to prove that two floorplans are R-equivalent if and only if they have the same
R-permutation.

The main results of [1] state that the R-permutation of any floorplan P is a (2-41-3,
3-14-2)-avoiding permutation4, originally called (reduced) Baxter permutation; moreover,
R is a bijection between R-equivalence classes of floorplans and (2-41-3,3-14-2)-avoiding
permutations. Through this bijection, the size of a floorplan becomes the size of the per-
mutation, and the order relations between rectangles in P can be easily read from R(P ).

We can now describe our results in greater detail.
In the first part of the paper, we develop for segments a theory that parallels the

theory developed for rectangles in [1]. We define two order relations between segments
(Section 2), which leads to the notion of S-equivalent floorplans5. Then we use these
orders to construct a permutation S(P ) called the S-permutation of P . In Section 3
we prove that S-permutations coincide with (2-14-3,3-41-2)-avoiding permutations, and
that S, regarded as a function from S-equivalence classes to (2-14-3,3-41-2)-avoiding
permutations, is a bijection. The description of S and S−1 are fairly simple (both can be

3In [1], two R-equivalent floorplans are actually treated as two representations of the same floorplan.
4This notation is explained in Section 3.3.
5In the notion of R-equivalence and S-equivalence, R stands for rectangles and S for segments.
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constructed in linear time), but as often, the proof remains technical, despite our efforts
to write it carefully.

In the second part of the paper, we super-impose our theory with the analogous theory
developed for rectangles in [1]. In Section 4 we show that the R-equivalence of floorplans
implies their S-equivalence (this means that the R-equivalence refines the S-equivalence),
and explain how S(P ) can be constructed directly from R(P ). This construction shows
that S(P ) and R(P ), combined together, form the so-called complete Baxter permutation
associated with R(P ), as defined in the seminal papers on Baxter permutations [6, 7, 12].
We also describe in terms of R when two floorplans give the same S-permutation. This is
another difficult proof, but we need this result to express the number of (2-14-3,3-41-2)-
avoiding permutations in terms of the number of Baxter permutations (Section 5).

To finish, in Section 6 we characterize and enumerate S-permutations corresponding to
the so-called guillotine floorplans; a similar study was carried out in [1] for R-permutations.
We end in Section 7 with a few remarks.

2 Orders between segments of a floorplan

In this section we define neighborhood relations between segments of a floorplan, use them
to define two partial orders (denoted↞ and ↡) and two linear orders (denoted� and�),
and prove several facts about these orders. Most of them are analogous to facts about
the orders on rectangles mentioned in the introduction, and proved in [1].

I J I J I J I J I JJI

Figure 3: The segment I is a left-neighbor of the segment J .

Definition 2.1. Let I and J be two segments in a floorplan P . We say that I is a
left-neighbor of J (equivalently, J is a right-neighbor of I) if one of the following holds:

• I and J are vertical, and there is exactly one rectangle A in P such that the left
side of A is contained in I and the right side of A is contained in J ;

• I is vertical, J is horizontal, and the left endpoint of J lies in I; or

• I is horizontal, J is vertical, and the right endpoint of I lies in J .

The terms “I is a below-neighbor of J” (equivalently, “J is an above-neighbor of I”) are
defined similarly.
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Typical examples are shown in Fig. 3. Note that a horizontal segment I has at most one
left-neighbor and at most one right-neighbor (no such neighbor(s) when the corresponding
endpoint(s) of I lie on the boundary), which are both vertical segments. In contrast, a
vertical segment may have several left- and right-neighbors, which may be horizontal or
vertical (see Fig. 4).

I

J

Figure 4: The right-neighbors of a vertical segment I (thick segments). Note that the
vertical segment J is not a right-neighbor of I.

Definition 2.2. The relation “I is to the left of J” (equivalently, J is to the right of I),
denoted by I ← J , is the transitive closure of the relation “I is a left-neighbor of J .” The
relation ↞ is the reflexive closure of ←. The relations I ↓ J (“I is below J”) and I ↡ J
(for “I = J or I ↓ J”) are defined similarly.

Observation 2.3. The relations ↞ and ↡ are partial orders.

Proof. We prove the claim for the relation ↞. Reflexivity and transitivity follow from
the definition. For antisymmetry, note that I ← J and J ← I cannot hold simultaneously
because if I ← J , then any interior point of I has a smaller abscissa than any interior
point of J .

I

Figure 5: A chain in the ↞ order (thick segments), and the corresponding traversing
edges (dashed lines).

The following observation may help to understand the↞ order. If I and J are vertical
segments and right-left neighbors, let us create a horizontal edge, called traversing edge,
in the rectangle A that lies between them. Fig. 5 shows a chain of neighbors in the ↞
order, starting from a segment I, and the corresponding traversing edges (dashed lines).
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Observation 2.4. Assume I ↞ J . Then any point of J lies weakly to the right of any
point of I (that is, its abscissa is at least as large).

Let x (respectively, y) be a point of minimal (respectively, maximal) abscissa on I

(respectively, J). Then there exists a polygonal line from x to y formed of vertical and
horizontal sections, such that

– each vertical section is part of a vertical segment of the floorplan P ,

– each horizontal section is an (entire) horizontal segment of P , or a traversing edge
of P , visited from left to right,

– if I (respectively, J) is horizontal, it is entirely included in the polygonal line.

It suffices to prove these properties when J is a right-neighbor of I, and they are
obvious in this case (see Fig. 3).

Lemma 2.5. In the ↞ order, J covers I if and only if J is a right-neighbor of I. A
similar statement holds for the ↡ order.

Proof. Since ↞ is constructed as the transitive closure of the left-right neighborhood
relation, every covering relation is a neighborhood relation.

Conversely, let us prove that any neighborhood relation is a covering relation. Equiv-
alently, this means that the right-neighbors of any segment I form an antichain. If I is
horizontal, it has at most one right-neighbor, and there is nothing to prove. Assume I is
vertical (as in Fig. 4), and that two of its neighbors, J1 and J2, satisfy J1 ← J2. By the
first part of Observation 2.4, J2 cannot be horizontal (its leftmost point would then lie
on I, leaving no place for J1). Hence J2 is vertical. The possible configurations of I and
J2 are depicted in the first four cases of Fig. 3. Let x (resp. y) be a point of I (resp. J2).
By Observation 2.4, there exists a polygonal line from x to y that visits a point of J1.
This rules out the third and fourth cases of Fig. 3 (the line would be reduced to a single
traversing edge). By symmetry we can assume that I and J2 are as in the first case of
Fig. 3. Then the polygonal line, which is not a single traversing edge, has to leave I at
a point that lies lower than the lowest point of J2, and to reach J2 at a point that lies
higher than the highest point of I: this means that it crosses two horizontal segments,
which is impossible given the description of this line.

Lemma 2.6. Let I and J be two different segments in a floorplan P . Then exactly one
of the relations: I ← J , J ← I, I ↓ J , or J ↓ I, holds.

Proof. Assume without loss of generality that I is a horizontal segment. Construct the
NE-sequence K1,K2, . . . of I as follows (see Fig. 6 for an illustration): K1 is the right-
neighbor of I, K2 the above-neighbor of K1, K3 the right-neighbor of K2, and so on,
until the boundary is reached. Construct similarly the SE-, NW-, and SW-sequences of
I. These sequences partition the rectangle into four regions (or fewer, if some endpoints
of I lie on the boundary); each segment of P (except I and those belonging to either of
the sequences) lies in exactly one of them. Also, if J is in the interior of a region, then its
neighbors are either in the same region, or in one of the sequences that bound the region.
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It is not hard to see that the vertical segments of the NE-sequence are to the right of
I, while horizontal segments are above I. A horizontal segment K2i cannot be to the left
of I, since it ends to the right of I. Let us prove that K2i cannot be the right of I either.
Assume this is the case, and consider the polygonal line going from the leftmost point of
I to the rightmost point of K2i, as described in Observation 2.4. The last section of this
line is K2i. Hence the line has points in the interior of the region comprised between the
NW- and NE-sequences. But since the line always goes to the right, and follows entirely
every horizontal segment it visits, it can never enter the interior of this region. Thus K2i

cannot be to the right of I. Thus, its only relation to I is I ↓ K2i. Similar arguments
apply for vertical segments of the NE-sequence, and for the other three sequences.

Consider now a segment J that lies, for instance, in the North region (that is the
region bounded by the NE-sequence, the NW-sequence, and the boundary; the case of
other regions is similar). Then I is below J : if we consider the below-neighbors of J ,
then their below-neighbors, and so on, then we necessarily reach one of the horizontal
segments of the NW- or NE-sequence, which, as we have seen, are above I (we cannot
reach a vertical segment of the sequences without reaching a horizontal segment first).

Hence, we have that I ↓ J ; it remains to prove that the other three relations are
impossible. First, J ↓ I is impossible since the relation ↓ is antisymmetric. To prove that
J cannot be to the right of I, we argue as we did for K2i: the polygonal line from I to
J starting from the leftmost point of I cannot enter the North region. Symmetrically, J
cannot be to the left of I. This completes the proof.

J

I
K

K

K

K2

4

1

3

Figure 6: Four regions determining the relationship between I and other segments.

Definition 2.7. The relations � and � between segments of a floorplan are defined by:

I � J if I = J , or I is to the left of J , or I is below J ,
I � J if I = J , or I is to the left of J , or I is above J .

We also write I ↲ J when I � J and I ≠ J ; and I ↰ J when I � J and I ≠ J .

Proposition 2.8. The relations � and � are linear orders.
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Proof. We prove the claim for the relation �. Reflexivity follows from the definition.
Antisymmetry follows from the fact that↞ and ↡ are order relations, and from Lemma 2.6.

For transitivity, assume that I ↲ J and J ↲ K. If I ← J and J ← K (respectively,
I ↓ J and J ↓ K), then we have I ← K (respectively, I ↓ K) by the transitivity of ←
(respectively, ↓). Assume now that I ← J and J ↓K (the case I ↓ J and J ←K is proven
similarly). By Lemma 2.6, I =K is impossible, and we have either I ←K, K ← I, I ↓K,
or K ↓ I. However, the combination of K ← I and I ← J yields K ← J , contradicting the
assumption that J ↓ K (by Lemma 2.6). Similarly, combining K ↓ I with J ↓ K yields
J ↓ I, contradicting the assumption that I ← J . Therefore, we have either I ← K or
I ↓K; in particular, I ↲K.

Linearity follows from Lemma 2.6.

Observation 2.9. The orders ↞ and ↡ can be recovered from � and �. Indeed, I ↞ J

if and only if I � J and I � J ; moreover, I ↡ J if and only if I � J and J � I.

Throughout the paper, the ith segment in the � order (1 ≤ i ≤ n) will be denoted by Ii.
See Fig. 10 for examples.

We now explain how to determine Ii+1 among the neighbors of Ii. By Lemma 2.5, Ii+1 is
either a right- or below-neighbor of Ii. There are several cases depending on the existence
of these neighbors and the relations between them. For a horizontal segment I, we denote
by R(I) the right-neighbor of I (when it exists). By Lemma 2.5, the below-neighbors of
I form an antichain of the ↡ order. Since � is a linear order, they are totally ordered
for the ↞ order. By the first part of Observation 2.4, the leftmost is also the smallest,
denoted LB(I). Thus LB(I) is either LVB(I) (the leftmost vertical below-neighbor of I)
or LHB(I) (the leftmost horizontal below-neighbor of I). Similarly, for a vertical segment
I, we denote by B(I) the below-neighbor of I; by UR(I) the highest6 right-neighbor of
I, and by UHR(I) (respectively, UVR(I)) the highest horizontal (respectively, vertical)
right-neighbor of I. Fig. 7 illustrates the following observation (it is assumed that all
candidates for Ii+1 are depicted. The dashed lines belong to the boundary).

Observation 2.10. Let Ii be a segment in a floorplan P of size n+ 1. If Ii is horizontal,
then Ii+1 is either R(Ii) or LB(Ii). More precisely,

1. If none of R(Ii) and LB(Ii) exists, then Ii is the last segment in the � order (that
is, i = n).

2. If exactly one of R(Ii) and LB(Ii) exists, then Ii+1 is this segment.

3. If LVB(Ii) exists, then Ii+1 = LB(Ii). This segment is LHB(Ii) if it exists, and
otherwise LVB(Ii).

4. If LVB(Ii) does not exist but LHB(Ii) and R(Ii) exist, then
• If the join of LHB(Ii) and R(Ii) is of type ⊣, then Ii+1 = LHB(Ii).

6The letter U stands for up.
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• If the join of LHB(Ii) and R(Ii) is of type ⊥, then Ii+1 = R(Ii).
If Ii is vertical, then Ii+1 is either B(Ii), UHR(Ii), or UVR(Ii) (the details are similar

to those in the case of a horizontal segment).

In

In

Ii

Ii+1

Ii+1
Ii

Ii

Ii+1

Ii+1Ii

Ii

Ii+1

Ii Ii+1Ii

Ii+1

Ii
Ii+1

Ii+1Ii

Ii

Ii+1

Ii

Ii+1

Ii

Ii+1

Ii

Ii+1

Ii

i+1I

(1) (2.1) (2.2) (2.3) (3.1) (3.2) (4.1) (4.2)

Figure 7: The segment Ii+1 follows Ii in the � order (Top: Ii is horizontal. Bottom: Ii is
vertical).

One can in fact construct in a single pass the labeling of rectangles and segments.

Proposition 2.11. Let P be a floorplan of size n + 1, and let Ak denote the rectangle
labeled k in the � order. For 1 ≤ k ≤ n, the following property, illustrated in Fig. 8, holds:

• If the segments forming the SE-corner of Ak have a ⊥ join, let Jk be the segment
containing the right side of Ak. Then Ak+1 is the highest rectangle whose left side is
contained in Jk.

• If the segments forming the SE-corner of Ak have a ⊣ join, let Jk be the segment
containing the lower side of Ak. Then Ak+1 is the leftmost rectangle whose upper
side is contained in Jk.

In both cases, Jk is the kth segment in the � order of segments, denoted so far by Ik.

Proof. By definition of the � order, Ak+1 is either a right-neighbor or a below-neighbor
of Ak. If there is a ⊥ join in the SE-corner of Ak, then all the right-neighbors of Ak are
above all its below-neighbors. Therefore, Ak+1 is the topmost among them. If there is a

J

k

+1kA

Ak

Ak

A

k kJ

+1

Figure 8: The rectangle Ak+1 follows Ak in the � order.

the electronic journal of combinatorics 20(2) (2013), #P35 10



⊣ join in the SE-corner of Ak, then all the below-neighbors of Ak are to the left of all its
right-neighbors. Therefore, Ak+1 is the leftmost among them.

To prove the second statement, we observe it directly for k = 1, and proceed by
induction. One has to examine several cases, depending on whether the segments in the
SE-corners of Ak and of Ak+1 have ⊥ or ⊣ joins. In all cases, Jk+1 is found to be the
immediate successor of Jk in the � order, as described in Observation 2.10. See Fig. 9
for several typical situations.

k

+1kA

+2kA

+1kI

kI
Ak

+1kA
+2kA

kI

+1kI

Ak

+1kA

+2kA

kI

+1kIA

Figure 9: Successors of segments and rectangles for the � orders.

The group of symmetries of the square acts on floorplans (when floorplans are drawn
in a square). It is thus worth examining how the orders are transformed when applying
such symmetries. As this symmetry group is generated by two generators, for instance
the reflections in the first diagonal and across a horizontal line, it suffices to study these
two transformations. The following proposition easily follows from the description of the
neighborhood relations of Fig. 3.

Proposition 2.12. Let P be a (square) floorplan, and let P ′ be obtained by reflecting P

in the first diagonal. If I is a segment of P , and I ′ the corresponding segment of P ′, then

I ↞ J ⇔ I ′ ↡ J ′,
I ↡ J ⇔ I ′↞ J ′,
I � J ⇔ I ′� J ′,
I � J ⇔ J ′� I ′.

If instead P ′ is obtained by reflecting P in a horizontal line,

I ↞ J ⇔ I ′↞ J ′,
I ↡ J ⇔ J ′ ↡ I ′,
I � J ⇔ I ′� J ′,
I � J ⇔ I ′� J ′.

One consequence of this proposition is that a half-turn rotation of P reverses all four
orders. We shall also use the fact that, if P ′ is obtained by applying a clockwise quarter-
turn rotation to P , then I � J ⇔ J ′� I ′.
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3 A bijection between S-equivalence classes of floor-

plans and (2-14-3,3-41-2)-avoiding permutations

In this section we define S-equivalence of floorplans and construct a map S from floorplans
to permutations. We show that S induces an injection from S-equivalence classes to
permutations. We then characterize the class of permutations obtained from floorplans
in terms of (generalized) patterns.

3.1 S-equivalence

Definition 3.1. Two floorplans P1 and P2 of size n+1 are S-equivalent if it is possible to
label the segments of P1 by I1, I2, . . . , In and the segments of P2 by J1, J2, . . . , Jn so that
for all k,m ∈ [n], the segments Ik and Im exhibit the same neighborhood relation as Jk
and Jm.

5
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I

J

J

J

J
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1

3

4 J5

J6I3

I1

2

I4

I

6

Figure 10: Two S-equivalent (but not R-equivalent) floorplans.

Fig. 10 shows two S-equivalent floorplans: in both cases, the left-right neighborhood
relations are 1 ← 4, 2 ← 4, 3 ← 4, 4 ← 5, 4 ← 6, and the below-above neighborhood
relations are 2 ↓ 1, 3 ↓ 2, 6 ↓ 5. These floorplans are not R-equivalent, as can be seen
by constructing their R-permutations. We will prove in Section 4 that, conversely, R-
equivalence implies S-equivalence.

3.2 S-permutations

Let P be a floorplan of size n + 1. There are n segments in P . Let S(P ) be the sequence
b1, b2, . . . , bn, where bi is the label in the� order of the segment labeled i in the� order,
for all 1 ≤ i ≤ n. Then S(P ) is a permutation of [n]; we call it the S-permutation of P
and denote it by S(P ). Equivalently, if I1, . . . , In is the list of segments in the � order,
then Iσ−1(1), . . . , Iσ−1(n) is the list of segments in the � order, with σ = S(P ). Since the�- and �-orders on segments can be determined in linear time (Proposition 2.11), the
S-permutation is also constructed in linear time. An example is shown in Fig. 11.

Thus, we assign a permutation to a floorplan in a way similar to that used in [1], but
this time we use order relations between segments rather than rectangles. Note that S(P )
is a permutation of [n], while R(P ) is a permutation of [n + 1].
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By definition of S(P ), if a segment of P is labeled i in the � order and j in the� order, then S(P )(i) = j. In other words, the graph of S(P ) contains the point (i, j),
which will be denoted by Ni.

PS (   )

(1, 7)

(2, 8)

(3, 6)

(4, 1)

(5, 9)

(6, 12)

(7, 5)

(8, 2)

(9, 3)
(10, 4)

(11, 10)
(12, 11)

P
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= 7  8  6  1  9  12  5  2  3  4  10  11

Figure 11: A floorplan P , with segments labeled (i, j), where i (respectively, j) is the
label according to the � (respectively, �) order, and the corresponding S-permutation.

It follows from Proposition 2.12 that S is well-behaved with respect to symmetries.

Proposition 3.2. Let P be a (square) floorplan, and P ′ be obtained by reflecting P in
the first diagonal. Let σ = S(P ) and σ′ = S(P ′). Then σ′ is obtained by reading σ from
right to left or equivalently, by reflecting the graph of σ in a vertical line.

If instead P ′ is obtained by reflecting P in a horizontal line, then σ′ = σ−1. Equiva-
lently, σ′ is obtained by reflecting the graph of σ in the first diagonal.

Proof. The following statements are equivalent:

• σ(i) = j,
• there exists a segment of P that has label i in the �-order and j in the �-order
(by definition of S),

• there exists a segment of P ′ that has label n + 1 − i in the �-order and j in the�-order (by Proposition 2.12),

• σ′(n + 1 − i) = j.
This proves the first result. The proof of the second result is similar.

Since the two reflections of Proposition 3.2 generate the group of symmetries of the
square, we can describe what happens for the other elements of this group: applying a
rotation to P boils down to applying the same rotation to S(P ), and reflecting P in
∆, a symmetry axis of the bounding square, boils down to reflecting S(P ) in ∆′, a line
obtained by rotating ∆ of 45○ in counterclockwise direction. These properties will be
extremely useful to decrease the number of cases we have to study in certain proofs.
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We will now prove that S(P ) characterizes the S-equivalence class of P . Clearly, two
S-equivalent floorplans give rise to the same orders, and thus to the same S-permutation.
Conversely, let us define neighborhood relations between points in the graph of a permu-
tation σ as follows. Let Ni = (i, σ(i)), Nj = (j, σ(j)) be two points in the graph of σ. If
i < j and σ(i) < σ(j), then the point Nj is to the NE of the point Ni. If, in addition,
there is no i′ such that i < i′ < j and σ(i) < σ(i′) < σ(j), then Nj is a NE-neighbor of Ni.
In a similar way we define when Nj is to the SE / SW / NW of Ni, and when the point
Nj is a SE- / SW- / NW-neighbor of Ni. For example, in the graph of Fig. 11, the points(1,7), (2,8), (3,6), (5,9) and (6,12) are to the NW of N7 = (7,5); among them, (3,6),(5,9) and (6,12) are NW-neighbors of N7.

The neighborhood relations between segments of P correspond to the neighborhood
relations in the graph of S(P ) in the following way.

Observation 3.3. Let P be a floorplan, and let Ii and Ij be two segments in P .
The segment Ij is to the right of Ii if and only if the point Nj lies to the NE of Ni.

Consequently, Ij is a right-neighbor of Ii if and only if Nj is a NE-neighbor of Ni.
Similar statements hold for the other directions: left (respectively, above, below) neigh-

bors in segments correspond to SW- (respectively, NW-, SE-) neighbors in points.

Proof. The segment Ij is to the right of Ii if and only if Ii � Ij and Ii � Ij. By
construction of σ = S(P ), this means that i < j and σ(i) < σ(j). Equivalently, Nj lies to
the NE of Ni.

Remark. An analogous fact holds for rectangles of a floorplan and points in the graph
of the corresponding R-permutation. It is not stated explicitly in [1], but follows directly
from the definitions in the same way as Observation 3.3 does.

Since the neighborhood relations characterize the S-equivalence class, we have proved
the following result.

Corollary 3.4. Two floorplans are S-equivalent if and only if they have the same S-
permutation.

3.3 (2-14-3,3-41-2)-avoiding permutations

In this section we first discuss the dash notation and bar notation for pattern avoidance in
permutations, and then prove several facts about (2-14-3,3-41-2)-avoiding permutations.
We will prove later that these are precisely the S-permutations obtained from floorplans.

In the classical notation, a permutation π = a1a2 . . . an avoids a permutation (a pat-
tern) τ = b1b2 . . . bk if there are no 1 ≤ i1 < i2 < . . . < ik ≤ n such that ai1ai2 . . . aik (a
subpermutation of π) is order isomorphic to τ (bx < by if and only if aix < aiy).

The dash notation and the bar notation generalize the classical notation and provide
a convenient way to define more classes of restricted permutations [38].

In the dash notation, some letters corresponding to those from the pattern τ may be
required to be adjacent in the permutation π, in the following way. If there is a dash
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between two letters in τ , the corresponding letters in π may occur at any distance from
each other; if there is no dash, they must be adjacent in π. For example, π = a1a2 . . . an
avoids 2-14-3 if there are no 1 ≤ i < j < ℓ <m such that ℓ = j + 1 and aj < ai < am < aℓ.

In the bar notation, some letters of τ may have bars. A permutation π avoids a barred
pattern τ if every occurrence of the unbarred part of τ is a sub-occurrence of τ (with bars
removed). For example, π = a1a2 . . . an avoids 213̄54 if for any 1 ≤ i < j < ℓ < m such that
aj < ai < am < aℓ, there exists k such that j < k < ℓ and ai < ak < am (any occurrence of the
pattern 2154 is a sub-occurrence of the pattern 21354).

A (reduced) Baxter permutation is a permutation of [n] such that

There are no i, j, ℓ,m ∈ [n] satisfying i < j < ℓ <m, ℓ = j + 1, such that
either π(j) < π(m) < π(i) < π(ℓ) and π(i) = π(m) + 1,
or π(ℓ) < π(i) < π(m) < π(j) and π(m) = π(i) + 1.

In the dash notation, Baxter permutations are those avoiding (2-41-3,3-14-2), and in
the bar notation, Baxter permutations are those avoiding (413̄52,253̄14) (see [24] or [38,
Sec. 7]). As proved in [1], the permutations that are obtained as R-permutations are
precisely the Baxter permutations. It turns out that the permutations that are obtained
as S-permutations may be defined by similar conditions, given below in Proposition 3.6.
As in the Baxter case, these conditions can be defined in three different ways.

Lemma 3.5. Let π be a permutation of [n]. The following conditions are equivalent:

1. There are no i, j, ℓ,m ∈ [n] such that i < j < ℓ < m, ℓ = j + 1, π(j) < π(i) < π(m) <
π(ℓ), π(m) = π(i) + 1.

2. In the dash notation, π avoids 2-14-3.

3. In the bar notation, π avoids 213̄54.

Fig. 12 illustrates these three conditions. The rows (respectively, columns) marked by
dots in parts (1) and (2) denote adjacent rows (respectively, columns). The shaded area
in part (3) does not contain points of the graph.

m

1 2 3

i j l i ij jl lm m

Figure 12: Three ways to define permutations avoiding 2-14-3.
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Proof. It is clear that 3⇒ 2⇒ 1: the four points displayed in Fig. 12(1) form an occur-
rence of the pattern of Fig. 12(2), and the four points displayed in Fig. 12(2) form an
occurrence of the pattern of Fig. 12(3).

Conversely, let us prove that if a permutation π contains the pattern 213̄54, then there
exist i′, j′, ℓ′,m′ as in the first condition. Assume that there are i < j < ℓ < m such that
π(j) < π(i) < π(m) < π(ℓ), and there is no k such that j < k < ℓ and π(i) < π(k) < π(m).
Let j′ be the maximal number for which j ≤ j′ < ℓ and π(j′) < π(i). Let ℓ′ = j′ + 1. Then
π(ℓ′) > π(m), and we have a pattern 2-14-3 with i, j′, ℓ′,m.

Furthermore, let i′ be the number satisfying i′ < j′ and π(i) ≤ π(i′) < π(m), for which
π(i′) is the maximal possible. Let m′ = π−1(π(i′)+1). Then m′ > ℓ′ and π(m′) = π(i′)+1,
and, thus, the first condition holds with i′, j′, ℓ′,m′.

A similar result holds for permutations that avoid 3-41-2. Therefore, the following
proposition holds.

Proposition 3.6. Let σ be a permutation of [n]. The following statements are equivalent:

1. There are no i, j, ℓ,m ∈ [n] satisfying i < j < ℓ <m, ℓ = j + 1, such that
either σ(j) < σ(i) < σ(m) < σ(ℓ) and σ(m) = σ(i) + 1,
or σ(ℓ) < σ(m) < σ(i) < σ(j) and σ(i) = σ(m) + 1.

2. In the dash notation, σ avoids 2-14-3 and 3-41-2.

3. In the bar notation, σ avoids 213̄54 and 453̄12.

Corollary 3.7. The group of symmetries of the square leaves invariant the set of (2-14-3,
3-41-2)-avoiding permutations.

Proof. The second description in Proposition 3.6 shows that the set of (2-14-3,3-41-2)-
avoiding permutations is closed under reading the permutations from right to left. The
first (or third) description shows that it is invariant under taking inverses, and these two
transformations generate the symmetries of the square.

We shall also use the following fact.

Lemma 3.8. Let σ be a (2-14-3,3-41-2)-avoiding permutation of [n]. Then no point in
the graph of σ has several NW-neighbors and several NE-neighbors. Similar statements
hold for other pairs of adjacent diagonal directions.

Proof. Assume that Ni = (i, σ(i)) has several NW-neighbors and several NE-neighbors.
Let i′ be the maximal number for which Ni′ is a NW-neighbor of Ni, and let Nj be
another NW-neighbor of Ni. Then we have j < i′ and σ(i) < σ(j) < σ(i′). We conclude
that i′ = i − 1: otherwise σ(i′ + 1) < σ(i) and, therefore, j, i′, i′ + 1, i form the forbidden
pattern 3-41-2, which is a contradiction.

Similarly, if i′′ is the minimal number for which Ni′′ is a NE-neighbor of Ni, then
i′′ = i + 1. Let Nk be another NE-neighbor of Ni. We have σ(i) < σ(k) < σ(i + 1).

Assume without loss of generality that σ(i − 1) < σ(i + 1). Now, if σ(j) < σ(k), then
j, i, i+1, k form the forbidden pattern 2-14-3; and if σ(k) < σ(j), then j, i−1, i, k form the
forbidden pattern 3-41-2, which is, again, a contradiction.
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3.4 S-permutations coincide with (2-14-3,3-41-2)-avoiding per-
mutations

By Corollary 3.4, the map S induces an injection from S-equivalence classes of floorplans
to permutations. Here, we characterize the image of S.

Theorem 3.9. The map S induces a bijection between S-equivalence classes of floorplans
of size n + 1 and (2-14-3, 3-41-2)-avoiding permutations of size n.

The proof involves two steps: In Proposition 3.11 we prove that all S-permutations
are (2-14-3, 3-41-2)-avoiding. Then, in Proposition 3.12, we show that for any (2-14-3,
3-41-2)-avoiding permutation σ of [n], there exists a floorplan P such that S(P ) = σ.

Recall that a horizontal segment has at most one left-neighbor and at most one right-
neighbor, and a vertical segment has at most one below-neighbor and at most one above-
neighbor. This translates as follows in terms of S-permutations.

Observation 3.10. Let Ii be a segment in a floorplan P , and let Ni be the corresponding
point in the graph of S(P ). If Ii is a horizontal segment, then the point Ni has at most
one NE-neighbor and at most one SW-neighbor. Similarly, if Ii is a vertical segment, then
Ni has at most one SE-neighbor and at most one NW-neighbor.

Proposition 3.11. Let P be a floorplan. Then S(P ) avoids 2-14-3 and 3-41-2.

Proof. By Proposition 3.2, the image of S is invariant by all symmetries of the square.
Hence it suffices to prove that σ = S(P ) avoids 2-14-3.

Assume that σ contains 2-14-3. By Lemma 3.5, there exist i < j < ℓ <m, ℓ = j + 1 such
that σ(j) < σ(i) < σ(m) < σ(ℓ) and σ(m) = σ(i) + 1 (see Fig. 13(1)). We claim that the
four segments Ii, Ij, Iℓ, Im are vertical.

Consider Ij. The point Nℓ is a NE-neighbor of Nj. Consider the set {x ∶ x > ℓ, σ(j) <
σ(x) < σ(ℓ)}. This set is not empty since it contains m. Let p be the smallest element in
this set. Then Np is a NE-neighbor of Nj. Thus, Nj has at least two NE-neighbors, Nℓ

and Np. Therefore, Ij is vertical by Observation 3.10. In a similar way one can show that
Ii, Iℓ, Im are also vertical.

k’

j

Im

Ii

Il

Ik

1 2

i j l m

I

I

Figure 13: The pattern 2-14-3 never occurs in an S-permutation.
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By Observation 3.3 we have that: Ij ↓ Ii, Im ↓ Iℓ; Ii ← Iℓ, Ij ← Im, Ii ← Im, Ij ← Iℓ.
Moreover, the last two relations are neighborhood relations. Let Ik be the below-neighbor
of Ii, and let Ik′ be the below-neighbor of Iℓ (see Fig. 13 (2)). The segments Ik and Ik′

are horizontal. If the line supporting Ik is (weakly) lower than the line supporting Ik′ ,
then Ij (which is below Ii) cannot be a left-neighbor of Iℓ since the interiors of their
vertical projections do not intersect. Similarly, if the line supporting Ik is higher than
the line supporting Ik′ , then Ii cannot be a left-neighbor of Im. We have thus reached a
contradiction, and σ cannot contain 2-14-3.

Proposition 3.12. For each (2-14-3,3-41-2)-avoiding permutation σ of [n], there exists
a floorplan P with n segments such that S(P ) = σ.
Proof. We construct P on the graph of σ. The boundary of the graph is also the bound-
ary of P . For each point Ni = (i, σ(i)) of the graph, we draw a segment Ki passing
through Ni according to certain rules. We first determine the direction of the segments
Ki (Paragraph A below), and then the coordinates of their endpoints (Paragraph B). We
prove that we indeed obtain a floorplan (Paragraph C), and that its S-permutation is σ
(Paragraph D). This is probably one of the most involved proofs of the paper.

A. Directions of the segments Ki

Let Ni = (i, σ(i)) be a point in the graph of σ. Our first two rules are forced by Observa-
tion 3.10 (see Fig. 14, where the the shaded areas contain no point):

• If Ni has several NW-neighbors or several SE-neighbors, then Ki is horizontal;

• If Ni has several SW-neighbors or several NE-neighbors, then Ki is vertical.

By Lemma 3.8, these two rules never apply simultaneously to the same point Ni. If one
of them applies, we say that Ni is a strong point. Otherwise, Ni is a weak point. This
means that Ni has at most one neighbor in each direction.

3

i i i i

2 41

Figure 14: The direction of the segment Ki passing through a strong point.

We claim that if Ni and Nj are weak points, then they are in adjacent rows if and only
if they are in adjacent columns. Due to symmetry, it suffices to show the if direction. Let
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Ni and Ni+1 be weak points, and assume without loss of generality that σ(i) < σ(i+1). If
σ(i + 1) − σ(i) > 1, then there are points of the graph of σ between the rows that contain
Ni and Ni+1; thus, either Ni has at least two NE-neighbors or Ni+1 has at least two
SW-neighbors, which means that one of them at least is strong. Hence σ(i+1) = σ(i)+1.

Thus, weak points appear as ascending or descending sequences of adjacent neighbors:
Ni,Ni+1, . . . ,Ni+ℓ with σ(i) = σ(i+1)−1 = ⋯ = σ(i+ℓ)−ℓ or σ(i) = σ(i+1)+1 = ⋯ = σ(i+ℓ)+ℓ.
Note that a weak point Ni can be isolated.

For weak points, the direction of the corresponding segments is determined as follows:

• If Ni,Ni+1, . . . ,Ni+ℓ is a maximal ascending sequence of weak points, then the di-
rections of Ki,Ki+1, . . . , Ki+ℓ are chosen in such a way that Kj and Kj+1 are never
both horizontal, for i ≤ j < i+ ℓ. Hence several choices are possible (this multiplicity
of choices is consistent with the fact that all S-equivalent floorplans give the same
permutation).

• If Ni,Ni+1, . . . ,Ni+ℓ is a maximal descending sequence of weak points, then the
directions of Ki,Ki+1, . . . , Ki+ℓ are chosen in such a way that Kj and Kj+1 are never
both vertical, for i ≤ j < i + ℓ.

In particular, for an isolated weak point Ni, the direction of Ki can be chosen arbitrarily.

B. Endpoints of the segments Ki

Once the directions of all Ki’s are chosen, their endpoints are set as follows (see Fig. 15
for an illustration):

• If Ki is vertical (which implies that Ni has at most one NW-neighbor and at most
one SE-neighbor):

– IfNi has a NW-neighborNj, then the upper endpoint ofKi is set to be (i, σ(j)).
We say that Nj bounds Ki from above. Otherwise (if Ni has no NW-neighbor),
Ki reaches the upper side of the boundary.

Nk

Nk

Ni

Nj

i k i kj

N

j

j

Ni

Figure 15: The points Nj and Nk bound the segment Ki.
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– If Ni has a SE-neighbor Nk, then the lower endpoint of Ki is (i, σ(k)). We
say that Nk bounds Ki from below. Otherwise, Ki reaches the lower side of the
boundary.

• If Ki is horizontal (which implies that Ni has at most one SW-neighbor and at most
one NE-neighbor):

– If Ni has a SW-neighbor Nj, then the left endpoint of Ki is (j, σ(i)). We say
that Nj bounds Ki from the left. Otherwise, Ki reaches the left side of the
boundary.

– If Ni has a NE-neighbor Nk, then the right endpoint of Ki is (k, σ(i)). We say
that Nk bounds Ki from the right. Otherwise, Ki reaches the right side of the
boundary.

Fig. 16 presents an example of the whole construction: in Part 1, the directions are
determined for strong (black) points, and chosen for weak (gray) points; in Part 2, the
endpoints are determined and a floorplan is obtained. Notice that σ is the S-permutation
associated with the floorplan P of Fig. 11, but here we have obtained a different floorplan,
P ′. We leave it to the reader to check that another choice of directions of segments passing
through weak points leads to P .

The question of when S(P ) = S(P ′) will be studied in Section 4.2.
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Figure 16: Constructing a floorplan from a (2-14-3,3-41-2)-avoiding permutation.

Remark. Using dynamic programming, one can determine in linear time the values

mi =max{k < i ∶ σ(k) < σ(i)} ∪ {0} and Mi =max{k < i ∶ σ(k) > σ(i)} ∪ {0}.
By applying this procedure to σ and to the permutations obtained by applying to σ

a symmetry of the square, one can decide in linear time, for each point Ni of σ, if it
has one or several NW-neighbours and locate one of them. This implies that the above
construction of a floorplan starting from a (2-14-3,3-41-2)-avoiding permutation can be
done in linear time.
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C. The construction indeed determines a floorplan
In order to prove this, we need to show that two segments never cross, and that the
endpoints of any segment Ki are contained in segments perpendicular to Ki (unless they
lie on the boundary). The following observation will simplify some of our proofs.

Observation 3.13. Let σ be a (2-14-3,3-41-2)-avoiding permutation, and let σ′ be ob-
tained by applying a rotation ρ (by ±90○ or 180○) to (the graph of) σ. If P is a configu-
ration of segments obtained from σ by applying the rules of Paragraphs A and B above,
then ρ(P ) can be obtained from σ′ using those rules.

It suffices to check that the rules are invariant by a 90○ rotation, which is immediate7.

C.1. Let Ki be a vertical (respectively, horizontal) segment, and let Nj and
Nk be the points that bound it. Then the segments Kj and Kk are horizontal
(respectively, vertical).
By Observation 3.13, it suffices to prove this claim for a vertical segment Ki and for the
point Nj that bounds it from above. We need to prove that Kj is a horizontal segment.

We have j < i and σ(i) < σ(j), and, since Nj is a NW-neighbor of Ni, there is no ℓ

such that j < ℓ < i and σ(i) < σ(ℓ) < σ(j). Furthermore, there is no ℓ such that j < ℓ < i,
σ(j) < σ(ℓ), or such that ℓ < j, σ(i) < σ(ℓ) < σ(j): otherwise Ni would have several
NW-neighbors and, therefore, Ki would be horizontal. Now, if i − j > 1, then there exists
ℓ such that j < ℓ < i, σ(ℓ) < σ(i); and if σ(j) − σ(i) > 1, then there exists m such that
i <m, σ(i) < σ(m) < σ(j). In both cases Nj has several SE-neighbors, and, therefore, Kj

is horizontal as claimed.
It remains to consider the case where j = i − 1 and σ(j) = σ(i) + 1. If the point Ni is

strong, then (since Ki is vertical) it has several NE-neighbors or several SW-neighbors.
Assume without loss of generality that Ni has several NE-neighbors. Let ℓ be the minimal
number such that Nℓ is a NE-neighbor of Ni, and let Nm be another NE-neighbor of Ni.
Then we have σ(i − 1) < σ(m) < σ(ℓ) and σ(ℓ − 1) ≤ σ(i). However, then i − 1, ℓ − 1, ℓ,m
form a forbidden pattern 2-14-3. Therefore, Ni is a weak point. Clearly, Ni−1 as a unique
SE-neighbor (which is Ni). Its NE- and SW-neighbors coincide with those of Ni, so that
there is at most one of each type. Thus if Ni−1 is strong, it has several NW-neighbors,
and Ki−1 is horizontal, as claimed. If Ni−1 is weak, then the rules that determine the
direction of the segments passing through (descending) weak points implies that Ki−1 and
Ki cannot be both vertical. Therefore, Kj =Ki−1 is horizontal, as claimed.

C.2. If Nj and Nk are the points that bound the segment Ki, then the
segments Kj and Kk contain the endpoints of Ki.
Thanks to Observation 3.13, it suffices to show that if Ki is a vertical segment and Nj

bounds it from above, then Kj (which is horizontal as shown in Paragraph C.1 above)
contains the point (i, σ(j)). We saw in Paragraph C.1 that in this situation there is no ℓ

such that j < ℓ < i, σ(j) < σ(ℓ). This means that there is no point Nℓ that could bound
Kj from the right before it reaches (i, σ(j)).

7That the construction has the other symmetries of Proposition 3.2 is also true, but less obvious. We
shall only use Observation 3.13.
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C.3. Two segments Ki and Kj cannot cross.
Assume that Ki and Kj cross. Assume without loss of generality that Ki is vertical and
Kj is horizontal, so that their crossing point is (i, σ(j)). We have either i < j or j < i,
and σ(i) < σ(j) or σ(j) < σ(i). Assume without loss of generality j < i and σ(i) < σ(j).
Then Nj is to the NW of Ni. The ordinate of the (unique) NE-neighbor of Ni is hence at
most σ(j). By construction, the upper point of Ki has ordinate at most σ(j), while Kj

lies at ordinate σ(j), and thus Ki and Kj cannot cross.
We have thus proved that our construction indeed gives a floorplan. Let us finish with

an observation on joins of segments of this floorplan, which follows from Paragraph C.2
and is illustrated below.

Observation 3.14. Suppose that a vertical segment Ki and a horizontal segment Kj join
at the point (i, σ(j)). Then:

• If the join of Ki and Kj is of the type ⊤, then i > j.

• If the join of Ki and Kj is of the type ⊥, then i < j.

• If the join of Ki and Kj is of the type ⊢, then σ(i) < σ(j).
• If the join of Ki and Kj is of the type ⊣, then σ(i) > σ(j).

iK

iK iK iK
KjKj

Kj

Kj

D. For any floorplan P obtained by the construction described above, S(P ) = σ

This (concluding) part of the proof is given in Appendix A.

4 Relations between the R- and S-permutations

In this section we prove that if two floorplans are R-equivalent, they are S-equivalent. In
fact, we give a simple graphical way to construct S(P ) from R(P ), which also shows that
S(P ) and R(P ) taken together form the complete Baxter permutation associated with
the reduced Baxter permutation R(P ). Finally, we characterize the R-equivalence classes
that belong to the same S-equivalence class.

4.1 Constructing S(P ) from R(P )

Let P be a floorplan of size n + 1. We draw the graphs of ρ = R(P ) and σ = S(P ) on the
same diagram in the following way (Fig. 17). For the graph of ρ we use an (n+1)×(n+1)
square whose columns and rows are numbered by 1,2, . . . , n + 1. The points of the graph

the electronic journal of combinatorics 20(2) (2013), #P35 22



of ρ are black and placed at the centers of these squares. For the graph of σ we use the
grid lines of the same drawing, when the ith vertical (respectively, horizontal) line is the
grid line between the ith and the (i+1)st columns (respectively, rows). The point (i, σ(i))
is white and placed at the intersection of the ith vertical grid line and the jth horizontal
grid line, where j = σ(i). The whole drawing is called the combined diagram of P . The
extreme (rightmost, leftmost, etc.) grid lines are not used.
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Rectangles Segments Combined diagram

Figure 17: The floorplan P from Fig. 11: (1) The labeling of rectangles; (2) The labeling
of segments; (3) The combined diagram: R(P ) = 8 7 9 1 6 13 10 3 2 5 4 12 11 (black
points) together with S(P ) = 7 8 6 1 9 12 5 2 3 4 10 11 (white points).

Definition 4.1. Let ρ be a Baxter permutation of [n+1]. For i ∈ [n], define ji as follows:
• if ρ(i) < ρ(i + 1), then ji =max{ρ(k), k ≤ i and ρ(k) < ρ(i + 1)},
• if ρ(i) > ρ(i + 1), then ji =max{ρ(k), k ≥ i + 1 and ρ(k) < ρ(i)}.

The definition of Baxter permutations implies that

• if ρ(i) < ρ(i + 1), k ≥ i + 1 and ρ(k) > ρ(i), then ρ(k) > ρ(ji),
• if ρ(i) > ρ(i + 1), k ≤ i and ρ(k) > ρ(i + 1), then ρ(k) > ρ(ji).

Theorem 4.2. Let P be a floorplan of size n + 1, and let ρ = R(P ). Then S(P ) =(j1, j2, . . . , jn), where ji is defined in Definition 4.1. In particular, R-equivalent floorplans
are also S-equivalent.

Returning to the original papers on Baxter permutations (see for instance [12, Thm. 2],
or the definition of complete permutations in [13, p. 180]) this means that the combined
diagram forms a (complete) Baxter permutation π. The points of R(P ) form the reduced
Baxter permutation πo associated with π, and the points of S(P ) are those that are
deleted from π when constructing πo.
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Proof. Let i ∈ [n]. Denote σ = S(P ) and j = σ(i). Then the segment Ii labeled i in the� order, is labeled j in the � order. We denote by Ak (resp. Bk) the kth rectangle in
the �- (resp. �-) order. We wish to prove that j = ji.

Assume first that Ii is horizontal. By Observation 2.11, the rightmost rectangle whose
lower side is contained in Ii is Ai, and the leftmost rectangle whose upper side is contained
in Ii is Ai+1 (Fig. 18).

By definition of ρ, we have Ak = Bρ(k) for all k. By symmetry, since Ii is the jth
segment in the � order, the rightmost rectangle whose upper side is contained in Ii is
Bj, and the leftmost rectangle whose lower side is contained in Ii is Bj+1. There holds
Ai+1 � Bj ↲ Bj+1 � Ai and Bj+1 � Ai ↰ Ai+1 � Bj. By definition of ρ = R(P ), this
means ρ(i + 1) ≤ j < j + 1 ≤ ρ(i) and ρ−1(j + 1) ≤ i < i + 1 ≤ ρ−1(j). This shows that j

coincides with the value ji of Definition 4.1 (for the case ρ(i) > ρ(i + 1)).
The case where Ii is vertical is similar, and corresponds to an ascent in ρ.

I

i

+1j Ai

A

B

B
j

i

+1

Figure 18: Illustration of the proof of Theorem 4.2.

The symmetry in the definition of ji makes the following property obvious, without
going through floorplans.

Corollary 4.3. Let P be a floorplan and let ρ = R(P ) be the corresponding Baxter per-
mutation. Let us abuse notation by denoting S(ρ) ∶= S(P ). If ρ′ is obtained by applying
to ρ a symmetry of the square, then the same symmetry, applied to S(ρ), gives S(ρ′).

Figure 19: Inflating the segments of a floorplan.

Remark. The combined diagram is actually the R-permutation of a floorplan of size
2n + 1. Indeed, let P be a floorplan of size n + 1. If we inflate segments of P into narrow
rectangles, we obtain a new floorplan of size 2n + 1, which we denote by P̃ (Fig. 19).
Observe that a rectangle of P̃ corresponding to a rectangle A of P has a unique above
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(respectively, right, below, left) neighbor, which corresponds to the segment of P that
contains the above (respectively, right, below, left) side of A.

It follows from Observation 2.11 and Fig. 8 that the � order in P̃ is A1I1⋯AnInAn+1.
It is thus obtained by shuffling the � orders for rectangles and segments of P . Sym-
metrically, the � order in P̃ is Aρ−1(1)Iσ−1(1)⋯Aρ−1(n)Iσ−1(n)Aρ−1(n+1). Thus the combined

diagram of R(P ) and S(P ), as in Fig. 17, coincides with the graph of R(P̃ ).
4.2 Floorplans that produce the same S-permutation

We now characterize in terms of their R-permutations the floorplans that have the same
S-permutation. This will play a central role in the enumeration of S-permutations.

We first describe the floorplans whose S-permutation is 123 . . . n. We call them ascend-
ing F-blocks8. It is easy to see that in an ascending F-block, all vertical segments extend
from the lower to the upper side of the boundary, and there is at most one horizontal
segment between a pair of adjacent vertical segments (this can be shown inductively, by
noticing that at most one horizontal segment starts from the left side of the bounding rect-
angle). See Fig. 20. Conversely, every floorplan of this type has S-permutation 123 . . . n.
Therefore, an ascending F-block consists of several rectangles that extend from the lower
to the upper side of the boundary, some of them being split into two sub-rectangles by a
horizontal segment. The corresponding R-permutations are those that satisfy ∣ρ(i)− i∣ ≤ 1
for all 1 ≤ i ≤ n + 1. The number of ascending F-blocks of size n + 1 (and, therefore, the
number of such permutations) is the Fibonacci number Fn+1 (where F0 = F1 = 1).

Figure 20: The 8 ascending F-blocks for n = 4, and their R-permutations.

A similar observation holds for the floorplans whose S-permutation is n . . .321, which
we call descending F-blocks. In descending F-blocks, all horizontal segments extend from
the left side to the right side of the boundary, and there is at most one vertical segment
between a pair of adjacent horizontal segments. In other words, descending F-blocks
consist of several rectangles that extend from the left to the right side of the boundary,
some of them being split into two sub-rectangles by a vertical segment. The corresponding
R-permutations are characterized by the condition ∣ρ(i)− (n+ 2− i)∣ ≤ 1 for all i ∈ [n+ 1].

For an F-block F , the size of F (that is, the number of rectangles) will be denoted
by ∣F ∣. If ∣F ∣ = 1, we say that F is a trivial F-block. Note that if ∣F ∣ ≤ 2, then F is

8The letter F refers to Fibonacci, for reasons that will be explained further down.
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both ascending and descending, while if ∣F ∣ ≥ 3, then its type (ascending or descending)
is uniquely determined.

Let P be a floorplan. We define an F-block in P as a set of rectangles of P whose
union is an F-block, as defined above. In other words, their union is a rectangle, and the
S-permutation of the induced subpartition is either 123 . . . or . . .321. The F-blocks of P
are partially ordered by inclusion. Since segments of P do not cross, a rectangle in P

belongs precisely to one maximal F-block (which may be of size 1). So there is a uniquely
determined partition of P into maximal F-blocks (Fig. 21, left).

A block in a permutation ρ is an interval [i, j] such that the values {ρ(i), . . . , ρ(j)}
also form an interval [3]. We also call block the corresponding set of points in the graph of
ρ. Consider ℓ rectangles in P that form an ascending (respectively, descending) F-block.
By Observation 2.11 and the analogous statement for the � order, these ℓ rectangles
form an interval in the � and � orders. Hence the corresponding ℓ points of the graph
of R(P ) form a block, and their inner order is isomorphic to a permutation τ of [ℓ] that
satisfies ∣τ(i) − i∣ ≤ 1 (respectively, ∣τ(i) − (ℓ + 1 − i)∣ ≤ 1) for all i ∈ [ℓ].

The converse is also true: If ℓ points of the graph of R(P ) form an ℓ×ℓ block, and their
inner order is isomorphic to a permutation τ of [ℓ] that satisfies ∣τ(i)− i∣ ≤ 1 (respectively,∣τ(i) − (ℓ + 1 − i)∣ ≤ 1) for all 1 ≤ i ≤ ℓ, then the corresponding rectangles in P form an
ascending (respectively, descending) F-block. Indeed, let H be such an ascending block in
the graph of R(P ). Let us partition the points of H in singletons (formed of points that
lie on the diagonal) and pairs (formed of transposed points at adjacent positions). Let
Q1,Q2, . . . be the parts of this partition, read from the SW to the NE corner of H. For
each i = 1,2, . . . , the point(s) of Qi+1 are the only NE-neighbors of the point(s) of Qi, and,
conversely, the point(s) of Qi are the only SW-neighbors of the point(s) of Qi+1. Therefore,
by the remark that follows Observation 3.3, the left side of the rectangle(s) corresponding
to the point(s) of Qi+1 coincides with the right side of the rectangle(s) corresponding to
the point(s) of Qi. If Qi consists of two points then we have two rectangles whose union is
a rectangle split by a horizontal segment. The argument is similar for a descending block.
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Figure 21: Maximal F-blocks in floorplans and in permutations.
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Therefore, such blocks in the graph of ρ will be also called ascending (respectively,
descending) F-blocks. Fig. 21 shows a floorplan P with maximal F-blocks denoted by
bold lines, and the F-blocks in the permutation R(P ) (the graph of S(P ) is also shown).

Let F1, F2, . . . be all the maximal F-blocks in the graph of ρ (ordered from left to
right). For i ≥ 1, let [yi, y′i] be the interval of values ρ(j) occurring in Fi, and define
di ∶= + if Fi is ascending, and di ∶= − if Fi is descending (di is left undefined if Fi has
size 1 or 2). The F-structure of ρ is the sequence F̂1, F̂2, . . . , where F̂i = ([yi, y′i], di). For
example, the F-structure of the permutation in Fig. 21 is

([7,9],+) , ([1]) , ([6]) , ([13]) , ([10]) , ([2,5],+) , ([11,12]) .
Theorem 4.4. Let P1 and P2 be two floorplans with n segments. Then S(P1) = S(P2) if
and only if R(P1) and R(P2) have the same F-structure.

In other words, S(P1) = S(P2) if and only if R(P1) and R(P2) may be obtained from
each other by replacing some F-blocks F1, F2, . . . with, respectively, F-blocks F ′

1
, F ′

2
, . . . ,

where Fi is S-equivalent to F ′i for all i.

Proof. The “if” direction is easy to prove. Assume R(P1) and R(P2) have the same
F-structure. In view of the way one obtains S(P ) from R(P ) (Theorem 4.2), we have
S(P1) = S(P2). Observe that inside a maximal F-block of R(P ), the points of S(P ) lie
on the diagonal (in the ascending case) or the anti-diagonal (in the descending case).

In order to prove the “only if” direction, we will first relate, for a point of S(P ), the
fact of being inside a maximal F-block to the property of being weak. (Recall that a point
Ni in the graph of S(P ) is weak if it has at most one neighbor in each of the directions
NW, NE, SE, SW, and strong otherwise.) If a maximal F-block of R(P ) occupies the
area [x, x′]×[y, y′], then the point Ni = (i, j) is inside this block if x ≤ i < x′ and y ≤ j < y′.
For example, in Fig. 21 six points in the graph of S(P ) (the white points in the combined
diagram) are inside a maximal F-block: (1,7), (2,8), (8,2), (9,3), (10,4) and (12,11).
Observe that the notion of “being inside” a maximal F-block is a priori relative to R(P ).
The following proposition shows that it is an intrinsic notion, depending on S(P ) only.
Lemma 4.5. Let Ni be a point in the graph of σ = S(P ). Then Ni is inside a maximal
F-block of R(P ) if and only if it is a weak point of S(P ).

This lemma is proved in Appendix B, and the rest of the theorem in Appendix C.

5 Counting (2-14-3,3-41-2)-avoiding permutations

It follows from Theorem 4.4 that S-permutations of size n are in bijection with Baxter
permutations of size n + 1 in which all maximal ascending F-blocks are increasing (that
is, order isomorphic to a permutation of the form 123 . . .m), and all maximal descending
F-blocks of size at least 3 are decreasing. A Baxter permutation that does not satisfy
these conditions has at least one improper pair.
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Definition 5.1. Let ρ be a Baxter permutation. Two points of the diagram of ρ that lie
in adjacent rows and columns form an improper pair if they form a descent in a maximal
ascending F-block, or an ascent in a maximal descending F-block of size at least 3.

This definition is illustrated in Fig. 22. Observe that a point belongs to at most one
improper pair. In particular, a permutation of size n+1 has at most ⌊n+1

2
⌋ improper pairs.

Figure 22: Improper pairs in maximal F-blocks.

Proposition 5.2. Let

bn =
n

∑
m=0

2

n(n + 1)2(
n + 1

m
)(n + 1

m + 1
)(n + 1

m + 2
)

be the number of Baxter permutations of size n (see [16]). The number an of (2-14-3,
3-41-2)-avoiding permutations of size n is

an =
⌊(n+1)/2⌋
∑
i=0

(−1)i(n + 1 − i
i
)bn+1−i.

Proof. We have just explained that (2-14-3,3-41-2)-avoiding permutations of size n are
in bijection with Baxter permutations of size n + 1 having no improper pair. By the
inclusion-exclusion principle,

an =∑
i≥0
(−1)ibn+1,i,

where bn+1,i is the number of Baxter permutations of size n + 1 with i marked improper
pairs. Let ρ be such a permutation, and contract every marked improper pair into a single
(marked) point: this gives a Baxter permutation ρ′ of size n+ 1− i, with i marked points.

Observe that if two points of ρ are in the same maximal F-block, then their images,
after contraction, are in the same maximal F-block of ρ′. (The converse is false: the
permutation 1342 has two maximal F-blocks and one improper pair (consisting of the
values 34). By contracting it, one obtains the permutation 132, which is an F-block.)

We claim that each Baxter permutation of size n+1−i with i marked points is obtained
exactly once in our construction, and that the unique way to expand each marked point
into an improper pair is the following:
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• if the marked point lies on the diagonal of an ascending maximal F-block (of size
≥ 1), replace it by a descending pair of adjacent points,

• if the marked point lies on the anti-diagonal of a descending maximal F-block of
size ≥ 2, replace it by an ascending pair of adjacent points,

• otherwise, observe that the block has size at least 3; if it is ascending (resp. de-
scending), and the marked point does not lie on the diagonal (resp. anti-diagonal),
replace it by an ascending (resp. descending) pair of adjacent points.

Details are left to the reader.
This construction implies that the number of Baxter permutations of size n+1 having

i marked improper pairs is bn+1,i = (n+1−ii
)bn+1−i, and the proposition follows.

Remarks
1. Let A(t) be the generating function of (2-14-3,3-41-2)-avoiding permutations, and let
B(t) be the generating function of (non-empty) Baxter permutations. The above result
can be rewritten as

A(t) =∑
k≥0

tk(1 − t)k+1bk+1 = 1

t
B(t(1 − t)). (1)

Observe that t(1 − t) = s is equivalent (in the world of formal power series) to t = C(s),
where C(s) = 1−

√
1−4s
2

is the (shifted) generating function of Catalan numbers. Hence,

B(s) = C(s)A(C(s)) =∑
k≥0

akC(s)k+1. (2)

This can be interpreted as follows. Consider a Baxter permutation. As in the proof of
Proposition 5.2, contract its improper pairs. If the resulting permutation (which is also
a Baxter pemutation) has again improper pairs, contract them, and repeat this process
until a Baxter permutation without improper pairs is obtained.

This process can be reversed by starting with a Baxter permutation without improper
pairs and splitting, at each step, some point into an improper pair. It can be checked
that the generating function of permutations obtained from a single point is C(s), and
therefore, the generating function of Baxter permutations produced from any fixed Baxter
permutation of size k+1 without improper pairs is C(s)k+1, which implies (2). The details
are left to the reader.

2. Our first proof of Proposition 5.2 used a generating tree of (2-14-3,3-41-2)-avoiding
permutations, obtained by inserting/deleting the rightmost entry. We had to consider
separately three types of permutations, and our trees involved (like the generating tree of
Baxter permutations [11]) two integer labels. We thus obtained a system of three equations
with two catalytic variables, which was reminiscent of the corresponding equation for
Baxter permutations, and were finally able to relate both families of permutations through
this system. The advantage of this method was to be completely independent from the
rest of the paper, and in particular from Theorem 4.4. It also allowed us to refine (1) by
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finding the counterparts in (2-14-3,3-41-2)-avoiding permutations of the numbers of left-
to-right and right-to-left maxima in Baxter permutations (but not of the descent number).
However, this proof was much longer, and also less combinatorial.

3. The form of an and bn implies that A(t) and B(t) are D-finite, that is, satisfy a linear
differential equation with polynomial coefficients [29, 30]. In fact,

−12t + 6(1 − 2t)B(t) − 2t (−3 + 14t + 8t2)B′(t) − t2 (t + 1) (8t − 1)B′′(t) = 0
and

12 (t − 1) (2t − 1)3 + (104t − 338t2 + 512t3 − 294t4 − 110t5 + 192t6 − 48t7 − 12)A(t)
− 2t (t − 1) (40t6 − 128t5 + 89t4 + 53t3 − 88t2 + 35t − 4)A′(t)

− t2 (2t − 1) (8t2 − 8t + 1) (t2 − t − 1) (t − 1)2A′′(t) = 0.
This implies that the asymptotic behavior of the numbers an and bn can be determined
almost automatically (see for instance [21, Sec. VII.9]). For Baxter permutations, it is
known [35] that bn ∼ 8nn−4 (up to a multiplicative constant, which can be determined
thanks to standard techniques [32]). For an, we find an ∼ (4 + 2√2)n n−4.
3. For 1 ≤ n ≤ 30, the number of (2-14-3,3-41-2)-avoiding permutations of [n] is given in
the following table, which we have sent to the OEIS [33, A214358].

1 1668 25274088 709852110576 27277772831911348
2 7744 135132886 4053103780006 161762725797343554
6 37182 732779504 23320440656376 963907399885885724
22 183666 4023875702 135126739754922 5769548815574513550
88 929480 22346542912 788061492048436 34679563373252224012
374 4803018 125368768090 4623591001082002 209275178482957838142

6 The case of guillotine floorplans

In this section we study the restriction of the map S to an important family of floorplan
called guillotine floorplans [15, 25, 39].

Definition 6.1. A floorplan P is a guillotine floorplan (also called slicing floorplan [27])
if either it consists of just one rectangle, or there is a segment in P that extends from one
side of the boundary to the opposite side, and splits P into two guillotine floorplans.

The restriction of the map R to guillotine floorplans induces a bijection between R-
equivalence classes of guillotine floorplans and separable permutations (defined below) [1].
Here, we first characterize permutations that are obtained as S-permutations of guillotine
floorplans, and then enumerate them.
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6.1 Guillotine floorplans and separable-by-point permutations

A nonempty permutation σ is separable if it has size 1, or its graph can be split into two
nonempty blocks H1 and H2, which are themselves separable. Then, either all the points
in H1 are to the SW of all the points of H2 (then σ, as a separable permutation, has an
ascending structure), or all the points in H1 are to the NW of all the points of H2 (then
σ, as a separable permutation, has a descending structure). Separable permutations are
known to coincide with (2-4-1-3,3-1-4-2)-avoiding permutations [10]. In particular, they
form a subclass of Baxter permutations. The number gn of separable permutations of [n]
is the (n−1)st Schröder number [33, A006318], and the associated generating function is:

G(t) ∶=∑
n≥1

gnt
n
=
1 − t −

√
1 − 6t + t2

2
. (3)

Definition 6.2. A permutation σ of [n] is separable-by-point if it is empty, or its graph
can be split into three blocks H1, H2, H3 such that

– H2 consists of one point N ,

– H1 and H3 are themselves separable-by-point (thus, they may be empty), and

– either all the points of H1 are to the SW of N , and all the points of H3 are to the NE
of N (then σ has an ascending structure), or all the points of H1 are to the NW of
N and all the points of H3 are to the SE of N (then σ has a descending structure).

The letter N refers to the fact that we have denoted by Ni the point (i, σ(i)) of an
S-permutation σ. Observe that N corresponds to a fixed point of σ if σ is ascending, and
to a point such that σ(i) = n + 1 − i is σ is descending and has size n.

Figure 23: Separable-by-point permutations.

An example is shown in Fig. 23. For n ≤ 3, all permutations are separable-by-point.
Clearly, a (nonempty) separable-by-point permutation is separable. The permutations
2143 and 3412 are separable, but not separable-by-point. The following result charac-
terizes separable-by-point permutations in terms of forbidden patterns. In particular, it
implies that these permutations are S-permutations.

Proposition 6.3. Let σ be a permutation of [n]. Then σ is separable-by-point if and only
if it is (2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-avoiding.
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Proof. Assume that σ is separable-by-point. Then it is separable, and therefore avoids
2-4-1-3 and 3-1-4-2. Assume for the sake of contradiction that σ contains an occurrence
of 2-14-3, corresponding to the points Ni,Nj,Nj+1 and Nk, and has a minimal size for this
property. Then the points forming the pattern must be spread in at least two of the three
blocks. This forces σ to have an ascending structure, with Ni and Nj in one block, Nj+1
and Nk in the following one (because Nj and Nj+1 are adjacent). But this is impossible as
the central block of σ contains a unique point. Similarly one shows that σ avoids 3-41-2.

Conversely, we argue by induction on the size of σ. Let σ be a (2-14-3, 3-41-2, 2-4-1-3,
3-1-4-2)-avoiding permutation of [n]. For n ≤ 3 there is nothing to prove. Let n ≥ 4. Since
σ is (2-4-1-3, 3-1-4-2)-avoiding, it is separable. Assume without loss of generality that σ
(as a separable permutation) has an ascending structure: the first block is [1, i] × [1, i],
the second block is [i+1, n]× [i+1, n] where 1 ≤ i < n. If σ(i) ≠ i and σ(i+1) ≠ i+1, then
σ−1(i), i, i+ 1, σ−1(i+ 1) form a forbidden pattern 2-14-3. Thus, σ(i) = i or σ(i+ 1) = i+ 1,
and one obtains a three-block decomposition of σ by choosing for the central block N one
of these two fixed points. The remaining two blocks avoid all four patterns, and, therefore
are separable-by-point by the induction hypothesis. Then so is σ.

Theorem 6.4. A floorplan P is guillotine if and only if S(P ) is separable-by-point.
Proof. Let P be a guillotine floorplan. We argue by induction on the size of P . If P
consists of a single rectangle, then S(P ) is the empty permutation, and is separable-by-
point. Otherwise, consider a segment that splits P into two rectangles. Assume that this
segment is Ii (that is, the ith segment in the � order) and that it is vertical. All the
segments to the left (respectively, right) of Ii come before (respectively, after) Ii in the
� and � orders. Consequently:

– Ii is also the ith segment in the � order, so that Ni = (i, i),
– by Observation 3.3, all the points of the graph of σ that correspond to segments
located to the left (respectively, right) of Ii are to the SW (respectively, NE) of Ni.

Thus, we have three blocks H1, H2 and H3with an ascending structure. The blocks H1 and
H3 are the S-permutations of the two parts of P , which are themselves guillotine: by the
induction hypothesis, H1 and H3 are separable-by-point. Thus S(P ) is separable-by-point
with an ascending structure. Similarly, if Ii is horizontal, we obtain a separable-by-point
permutation with a descending structure.

Conversely, assume that σ ∶= S(P ) is separable-by-point. We will prove by induction
on the size n of σ that P is a guillotine floorplan.

The claim is clear for n = 1. For n > 1, assume without loss of generality that σ has an
ascending structure. Let H2 = {(i, i)} be the second block in a decomposition of σ. Then
for j < i, we have Ij ← Ii, and for j > i, we have Ii ← Ij. Therefore, if Ii is vertical, it has
no below- or above-neighbors, and thus extends from the lower to the upper side of the
boundary. The two sub-floorplans of P correspond respectively to the blocks H1 and H3:
hence they are guillotine by the induction hypothesis. Suppose now that Ii is horizontal.
Then we have σ(i− 1) = i− 1 (if i > 1) and σ(i + 1) = i+ 1 (if i < n), since otherwise Ii has
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several left-neighbors or several right-neighbors (Observation 3.3), which never holds for
a horizontal segment. Assume without loss of generality that i > 1. Then another block
decomposition of σ is obtained with the central block H ′

2
= {(i − 1, i − 1)}, corresponding

to the vertical segment Ii−1. The previous argument then shows that P is guillotine.

6.2 Enumeration

In this section we enumerate S-equivalence classes of guillotine floorplans, or equivalently,
separable-by-point permutations.

Proposition 6.5. For n ≥ 1, let gn be the number of separable permutations of size n, and
let G(t) the associated generating function, given by (3). The number hn of separable-by-
point permutations of size n is

hn =

⌊(n+1)/2⌋
∑
i=0

(−1)i(n + 1 − i
i
)gn+1−i.

Equivalently, the generating function of separable-by-point permutations is

H(t) =∑
n≥0

hnt
n
=∑

n≥0
tn(1 − t)n+1gn+1 = 1

t
G(t(1 − t)) = 1 − t + t2 −

√
1 − 6t + 7t2 − 2t3 + t4

2t
.

Proof. Recall that the R-permutations associated with guillotine floorplans are the sepa-
rable permutations, and return to the proof of Proposition 5.2. The contraction/expansion
of points used in this proof preserves separability, so that we can apply the same argument,
which yields directly the proposition.

Remarks
1. The first values are 1,1,2,6,20,70,254,948,3618,14058. This sequence [33, A078482]
also enumerates (2-4-3-1,3-2-4-1,2-4-1-3,3-1-4-2)-avoiding permutations (or permutations
sortable by a stack of queues), as found by Atkinson and Stitt [5, Thm. 17].
2. Our proof is trivial after the (much harder) proof of Proposition 5.2, but a more direct
proof is possible using Definition 6.2. Indeed, denoting by Ha(t) the generating function
of ascending separable-by-point permutations of size at least 2, it is easy to see that

H(t) = 1 + t + 2Ha(t) and Ha(t) = t(1 +Ha(t))2
1 − t(1 +Ha(t)) − t,

which gives the above expression of H(t).
3. Using the transfer theorems from [21, Sec. VI.4], we can find the asymptotic behavior
of the numbers hn:

hn ∼
⎛
⎝

2

1 −
√
8
√
2 − 11

⎞
⎠
n

n−3/2,

up to a multiplicative constant.
4. See [4] for a generalization of Proposition 6.5 to d-dimensional guillotine partitions.
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7 Final remarks

We have shown that many analogies exist between R- and S-equivalence. However, there
also seems to be one important difference. Looking at Fig. 1 suggests that one can trans-
form a floorplan into an R-equivalent one by some continuous deformation. In other
words, R-equivalence classes appear as geometric planar objects. This is confirmed by the
papers [9, 20, 23], which show that bipolar orientations of planar maps provide a conve-
nient geometric description of R-equivalence classes of floorplans. However, S-equivalence
is a coarser relation, and two S-equivalent floorplans may look rather different (Figs. 10
and 20). It would be interesting to find a class of geometric objects that captures the
notion of S-equivalence classes, as bipolar orientations do for R-equivalence classes.

In Section 5 we have established a simple enumerative connection, involving Cata-
lan numbers, between Baxter permutations and (2-14-3,3,41-2)-avoiding permutations
(Proposition 5.2). Is there a direct combinatorial proof of (2), that would not use The-
orem 4.4, nor the heavy generating trees alluded to in the remarks that follow Proposi-
tion 5.2? Recall that C(s) is related to pattern avoiding permutations, since it counts
τ -avoiding permutations, for any pattern τ of size 3.

Another question, raised by one of the referees, would be to determine the S-permuta-
tions corresponding to (2-4-1-3,3-14-2)-avoiding permutations, which occur for instance
in [18].

We conclude with a summary of the enumerative results obtained in [1] for R-equiva-
lence classes and in the present paper for S-equivalence classes.

All floorplans Guillotine floorplans

R-equivalence
classes

Forbidden patterns:
2-41-3,3-14-2

Enumerating sequence:
1,2,6,22,92,422,2074,10754, . . .
(Baxter numbers[33, A001181])
Growth rate:
8

Forbidden patterns:
2-4-1-3,3-1-4-2

Enumerating sequence:
1,2,6,22,90,394,1806,8558, . . .
(Schröder numbers [33, A006318])
Growth rate:

3 + 2
√
2 ≈ 5.8284

S-equivalence
classes

Forbidden patterns:
2-14-3,3-41-2

Enumerating sequence:
1,2,6,22,88,374,1668,7744, . . .
([33, A214358])
Growth rate:

4 + 2
√
2 ≈ 6.8284

Forbidden patterns:
2-14-3,3-41-2,2-4-1-3,3-1-4-2

Enumerating sequence:
1,2,6,20,70,254,948,3618, . . .
([33, A078482])
Growth rate:

2

1−
√
8
√
2−11
≈ 4.5465
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A Proof of Proposition 3.12, Paragraph D

We prove that, given a permutation σ, (any) floorplan P obtained by the construction
described in Paragraphs A-B of the proof satisfies S(P ) = σ.
In order to prove this claim, we will show that for all 1 ≤ i < n, the segment Ki+1 is the
immediate successor of Ki in the � order, and that Kσ−1(i+1) is the immediate successor
of Kσ−1(i) in the � order.

Let us first prove that the first statement implies the second. Let σ′ be obtained by
applying a quarter-turn rotation ρ to σ in counterclockwise direction. Let us denote by
K ′i the segment of P ′ = ρ(P ) containing the point (i, σ′(i)). By Observation 3.13, the
floorplan P ′ is associated with σ′ by our construction. That is, ρ(Kσ−1(i)) =K ′n+1−i. By as-
sumption, K ′n+1−i = ρ(Kσ−1(i)) follows K ′n−i = ρ(Kσ−1(i+1)) for the� order in P ′. Applying
the quarter turn clockwise rotation ρ−1 and the second remark following Proposition 2.12,
this means that Kσ−1(i+1) follows Kσ−1(i) for the � order in P .

Thus we only need to prove that Ki+1 is the immediate successor of Ki in the � or-
der. By Observation 2.10, the immediate successor of a horizontal (respectively, vertical)
segment I in the � order is R(I), LVB(I) or LHB(I) (respectively, B(I), UHR(I) or
UVR(I)),9 depending on the existence of these segments and the type of joins between
them. There are 8 cases to consider, depending on whether σ(i) < σ(i+1) or σ(i) > σ(i+1),
and on the directions of Ki and Ki+i.

i+1ij

1

i+1ip

impossible

4

i+1

2

ij i+1

3

i

Figure 24: The first case.

Case 1: σ(i) < σ(i + 1), Ki and Ki+1 are vertical.
Assume that Nj bounds Ki from above. Then, as shown in Paragraph C.1 above, Kj

is horizontal; furthermore, Ki and Kj have a ⊤ join at the point (i, σ(j)). In particular,
the rightmost point of Kj has abscissa at least i + 1.

If σ(j) < σ(i + 1), then Ni+1 bounds Kj from the right. There is a ⊣ join of Kj and
Ki+1 at the point (i + 1, σ(j)) (Fig. 24(1)).

If σ(j) > σ(i + 1), then Nj bounds Ki+1 from above and there is a ⊤ join of Kj and
Ki+1 (Fig. 24(2)).

If Nj does not exist and Ki reaches the upper side of the boundary, then no point can
bound Ki+1 from above, and, thus, Ki+1 reaches the boundary as well (Fig. 24(3)).

In all these cases, it is readily seen that Ki+1 is UVR(Ki).
9This notation is defined before Observation 2.10.
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By Observation 2.10, UVR(Ki) is the successor of Ki, unless UHR(Ki) does not exist,
B(Ki) ∶= Kp exists and its join with UVR(Ki) is of type ⊣ (Fig. 24(4)). But this would
mean that p < i, and the positions of Ni and Np would then contradict Observation 3.14.

Case 2: σ(i) < σ(i + 1), Ki is vertical and Ki+1 is horizontal.
The point Ni bounds Ki+1 from the left. Therefore, there is a ⊢ join of Ki and Ki+1

at the point (i, σ(i + 1)), and Ki+1 is a horizontal right-neighbor of Ki. Moreover, if Kk

is another horizontal right-neighbor of Ki, then σ(k) < σ(i + 1): otherwise Ni cannot be
a SW-neighbor of Nk (Fig. 25, left). Therefore, Ki+1 = UHR(Ki).

By Observation 2.10, UHR(Ki) is the successor of Ki, unless UVR(Ki) ∶= Kp exists
(Fig. 25, right). If this were the case, Kp and Ki+1 would have a ⊥ join, and the position
of Ni+1 and Np would then be incompatible with Observation 3.14.

i+1i k i+1

impossible

i p

Figure 25: The second case.

Case 3: σ(i) < σ(i + 1), Ki is horizontal and Ki+1 is vertical.
We claim that this case follows from the previous one. Let σ′ be obtained by applying

a half-turn rotation ρ to (the graph of) σ. By Observation 3.13, the floorplan P ′ = ρ(P )
is associated with σ′. The points and segments ρ(Ni), ρ(Ni+1), ρ(Ki), ρ(Ki+1) in P ′ are
in the configuration described by Case 2, with ρ(Ni+1) to the left of ρ(Ni). Consequently,
ρ(Ni) is the successor of ρ(Ni+1) in the � order in P ′. By the first remark that follows
Proposition 2.12, Ni+1 is the successor of Ni in the � order in P .

Case 4: σ(i) < σ(i + 1), Ki and Ki+1 are horizontal.
If this case, Ni bounds Ki+1 from the left. Therefore, Ki must be vertical (see Para-

graph C.1 above). Hence, this case is impossible.

Case 5: σ(i) > σ(i + 1), Ki and Ki+1 are vertical.
Since Ki+1 is vertical, Ni+1 has at most one NW-neighbor, which is then Ni. By

Paragraph C.1 above, Ki is then horizontal. Thus this case is impossible.

Case 6: σ(i) > σ(i + 1), Ki is vertical and Ki+1 is horizontal
Since the segment Ki is vertical, the point Ni has at most one SE-neighbor, which is

then Ni+1. Therefore, Ni+1 bounds Ki from below, and there is a ⊥ join of Ki and Ki+1
at the point (i, σ(i + 1)). In particular, Ki+1 = B(Ki).

By Observation 2.10, B(Ki) is the successor of Ki, unless UHR(Ki) ∶=Kk exists (Case
(3.2) in Fig. 7), or UHR(Ki) does not exist, but UVR(Ki) ∶= Kp does and forms with
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B(Ki) a ⊥ join (Case (4.1) in Fig. 7). In the former case, Kk reaches Ki and thus is
bounded by Ni on the left, but then Ni and Ni+1 are two SW-neighbors of Nk, and Kk

cannot be horizontal. In the latter case, Kp and Ki+1 would form a ⊥ join, and the
positions of Np and Ni+1 would contradict Observation 3.14.

Case 7: σ(i) > σ(i + 1), Ki is horizontal and Ki+1 is vertical.
This case follows from Case 6 by the symmetry argument already used in Case 3.

Case 8: σ(i) > σ(i + 1), Ki and Ki+1 are horizontal.
The point that bounds Ki from the right, if it exists, lies to the NE of Ni+1. Thus

the abscissa of the rightmost point of Ki is greater than or equal to the abscissa of the
rightmost point of Ki+1.

We will show that Ki+1 = LHB(Ki). Once this is proved, Observation 2.10 implies
that LHB(Ki) is the successor of Ki, unless LVB(Ki) does not exist, but R(Ki) exists
and forms with Ki+1 a ⊥ join (Case (4.2) in Fig. 7). But this would mean that Ki+1 ends
further to the right than Ki, which we have just proved to be impossible.

So let us prove that Ki+1 = LHB(Ki). We assume that Ki does not reach the left side
of the boundary, and that Ki+1 does not reach the right side of the boundary (the other
cases are proven similarly). Let Nk be the point that bounds Ki from the left, and let
Nm be the point that bounds Ki+1 from the right.

Consider A, the leftmost rectangle whose upper side is contained in Ki. The left side
of A is clearly contained in Kk. We claim that the lower side of A is contained in Ki+1,
and that the right side of A is contained in Km. Note that this implies Ki+1 = LHB(Ki).

Let Kp (respectively, Kq) be the segment that contains the lower (respectively, right)
side of A. Clearly, q > k. If q < i, then Kq is a vertical below-neighbor of Ki, and the
positions of Nq and Ni contradict Observation 3.14. Therefore, q > i + 1.

Consider now the segment Kp. Clearly, σ(p) ≥ σ(i + 1). One cannot have p > i + 1:
otherwise Ni+1 (or a point located to the right of Ni+1) would bound Kp from the left, and
Kp would not reach Kk. One cannot have either p < i: otherwise Ni (or a point located to
the left of Ni) would bound Kp from the right, and Kp would not reach Kq. Since p /= i,
we have proved that p = i + 1, and Kk is bounded by Ni+1 from below.

Finally, Kq coincides with Km: otherwise, q <m, and Kq is a vertical above-neighbor
of Ki+1; however, in this case Nq would bound Ki+1 from the right, and Ki+1 would not
reach Km.

We have thus proved that Ki+1 = LHB(Ki), and this concludes the study of this final
case, and the proof of Proposition 3.12.

B Proof of Lemma 4.5

Let Ni = (i, j) be inside a maximal F-block of R(P ). Assume for the sake of contradiction
that Ni is strong, and for instance, has several NE-neighbors. Let Nk be the leftmost NE-
neighbor ofNi, and letNℓ be the lowest NE-neighbor ofNi. If k > i+1, then σ(k−1) < σ(i),
and, therefore, i, k−1, k, ℓ form a forbidden pattern 2-14-3. Thus k = i+1. Symmetrically,
σ(ℓ) = j + 1 (Fig. 26). Note also that σ(i + 1) > j + 1 and σ−1(j + 1) > i + 1. Since the
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points of S(P ) inside an F-block are either on the diagonal or the anti-diagonal of this
block, Ni is the highest (and rightmost) point of S(P ) inside the maximal F-block that
contains it, and this F-block is of ascending type. In particular, either ρ(i + 1) = j + 1, or
ρ(i) = j + 1 and ρ(i + 1) = j.

Since ρ(i + 1) ≤ j + 1 and σ(i + 1) ≥ j + 2, then ρ(i + 2) ≥ j + 3 (Theorem 4.2).
Symmetrically, ρ−1(j + 2) ≥ i + 3. But then the position of the point (ρ−1(j + 2), j + 2)
is not compatible with the position of Ni+1: by Theorem 4.2, there cannot be a point
of ρ located to the right of ρ(i + 2) and in the rows between those of ρ(i + 1) and Ni+1.
Hence Ni cannot have several NE-neighbors. Symmetric statements hold for the other
directions, and Ni is a weak point.

i+ 1

j + 2
j + 1

j

≥ j + 2

i

i ≥ i+ 2

i+ 1

j + 1

Figure 26: Some points of the combined diagram of ρ and σ. The grey points represent
the two possibilities ρ(i + 1) = j + 1, or ρ(i) = j + 1 and ρ(i + 1) = j.

Now let Ni = (i, j) be a point of the graph of σ, not inside a maximal F-block.
Assume without loss of generality that ρ has an ascent at i: ρ(i) ≤ j < ρ(i + 1) and (by
Theorem 4.2) ρ−1(j) ≤ i < ρ−1(j + 1). We shall show that Ni has several SW-neighbors or
several NE-neighbors. We denote Mi = (i, ρ(i)).

First, if ρ(i) = j and ρ(i+1) = j+1, then Mi and Mi+1 form an F-block, and Ni is inside
this block. Therefore, either ρ(i) /= j or ρ(i+1) /= j+1, and we may assume without loss of
generality that ρ(i) ≠ j; hence ρ(i) < j and ρ−1(j) < i. Then it follows from the definition
of Baxter permutations that ρ(i − 1) ≤ j (otherwise, there is an occurrence of 2-41-3 at
positions ρ−1(j), i−1, i, ρ−1(j +1)). Consequently, we have σ(i−1) ≤ j −1. Symmetrically,
ρ−1(j − 1) ≤ i and σ−1(j − 1) ≤ i − 1. There are two possibilities: either σ(i − 1) < j − 1
and σ−1(j − 1) < i − 1, or σ(i − 1) = j − 1. In the former case, Ni−1 and Nσ−1(j−1) are two
SW-neighbors of Ni, and we have proved that Ni is strong. Let us go on with the latter
case, where ρ(i − 1) = j and ρ(i) = j − 1.

If ρ(i+1) = j +1, then Mi−1, Mi and Mi+1 form an F-block, and Ni is inside this block,
which contradicts our initial assumption. Otherwise, ρ(i + 1) /= j + 1, and an argument
similar to the one developed just above shows that either Ni+1 and Nσ−1(j+1) are two NW-
neighbors of Ni, or ρ(i + 1) = j + 2 and ρ(i + 2) = j + 1. In the latter case, Mi−1, Mi, Mi+1
and Mi+2 form an F-block containing Ni, which contradicts our initial assumption.
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C Proof of Theorem 4.4, the “only if” direction

Let σ be a (2-14-3,3-41-2)-avoiding permutation of size n. Let B be the set of Baxter per-
mutations whose S-permutation (described by Theorem 4.2) is σ. Lemma 4.5 determines
which points of the graph of σ are inside an F-block. These points are organized along
the diagonal or anti-diagonal of their blocks. It follows that the location of all non-trivial
F-blocks in the graph of ρ, for ρ ∈ B, and their type (ascending or descending, for blocks
of size at least 3), are also determined uniquely. It remains to show that the location of
the trivial F-blocks (that is, F-blocks of size 1) is also determined by σ.

Assume for the sake of contradiction that B contains two distinct permutations ρ1 and
ρ2. Let i be the abscissa of the leftmost trivial F-block that is not at the same ordinate
in the graphs of ρ1 and ρ2. Denote j = σ(i). By symmetry, we only have to consider two
cases: (1) ρ1(i) < ρ2(i) ≤ j; (2) ρ1(i) ≤ j < ρ2(i).

In the first case (Fig. 27), denote k = ρ2(i). Consider ρ−11 (k). By assumption, ρ−1
1
(k) ≠

i. Since ρ1(i) < k and σ(i) = j ≥ k, we have ρ−1
1
(k) < i by Theorem 4.2. However, this is

impossible since the F-structures of ρ1 and ρ2 coincide to the left of the ith column.

i

j
j

i

k

1 2
ρ ρ

j

k

j

i
i

Figure 27: Proof of Theorem 4.4: the case ρ1(i) < ρ2(i) ≤ j.
Consider the second case, ρ1(i) ≤ j < ρ2(i) (Fig. 28). Since ρ1(i) ≤ j and σ(i) = j,

the areas [1, i] × {j + 1} and [i + 1, n] × {j} are empty in the graph of ρ1. Similarly, since
ρ2(i) ≥ j+1, the areas [1, i]×{j} and [i+1, n]×{j+1} are empty in the graph of ρ2. Since
the F-structures of ρ1 and ρ2 coincide in [1, i− 1]× [1, n] the areas [1, i− 1]× {j, j + 1} are
empty in the graphs of both permutations. Given that rows cannot be empty, this forces
ρ1(i) = j and ρ2(i) = j + 1 (Fig. 29).

Assume without loss of generality that σ(i + 1) < j. Since ρ1(i) = j and σ(i) = j, we
have, by Theorem 4.2, ρ1(i + 1) ≥ j + 1. In fact ρ1(i + 1) > j + 1 since otherwise the point(i, ρ1(i)) would not form a trivial F-block. Now, since σ(i+1) < j, the area [i+2, n]×{j+1}
is empty in the graph of ρ1. This area is also empty in the graph of ρ2, since ρ2(i) = j +1.
Since the F-structures of ρ1 and ρ2 coincide in [1, i−1]×[1, n], the area [1, i−1]×{j+1} is
also empty in the graph of ρ1. Since ρ1(i) = j and ρ1(i+1) > j+1, we have a contradiction:
the whole row j + 1 is empty in the graph of ρ1.

Thus, we have proved that all ρ ∈ B have the same F-structure.
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Figure 28: Proof of Theorem 4.4: the case ρ1(i) ≤ j < ρ2(i).
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Figure 29: Proof of Theorem 4.4: the case ρ1(i) ≤ j < ρ2(i), continued.
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