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Abstract

A packing of a graph G is a set {G1, G2} such that G1
∼= G, G2

∼= G, and G1

and G2 are edge disjoint subgraphs of Kn. Let F be a family of graphs. A near

packing admitting F of a graph G is a generalization of a packing. In a near packing
admitting F , the two copies of G may overlap so the subgraph defined by the edges
common to both copies is a member of F . In the paper we study three families of
graphs (1) Ek – the family of all graphs with at most k edges, (2) Dk – the family
of all graphs with maximum degree at most k, and (3) Ck – the family of all graphs
that do not contain a subgraph of connectivity greater than or equal to k + 1. By
m(n,F) we denote the maximum number m such that each graph of order n and
size less than or equal to m has a near-packing admitting F . It is well known that
m(n, C0) = m(n,D0) = m(n, E0) = n − 2 because a near packing admitting C0, D0

or E0 is just a packing. We prove some generalization of this result, namely we
prove that m(n, Ck) ≈ (k + 1)n, m(n,D1) ≈ 3

2n, m(n,D2) ≈ 2n. We also present
bounds on m(n, Ek). Finally, we prove that each graph of girth at least five has a
near packing admitting C1 (i.e. a near packing admitting the family of the acyclic
graphs).

1 Introduction

In this paper we use the term graph to refer to simple graphs without loops or multiple
edges. The vertex and edge set of a graph G is denoted by V (G) and E(G), respectively.
The maximum degree of G is denoted by ∆(G). A graph is called k-connected if any two
of its vertices can be joined by k internally vertex disjoint paths. A complete graph K1 is
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0-connected. By NG(x) we denote the set of vertices adjacent with x in G. For a vertex
set X, the set NG(X) denotes the external neighbourhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent with some x ∈ X}.

The degree of a vertex x is the number of vertices adjacent to x and is denoted by dG(x).

Definition 1. Let G1 and G2 be two graphs such that |V (G1)| = |V (G2)| = n. A packing

of G1 and G2 is a pair of edge-disjoint subgraphs {H1, H2} of Kn such that H1
∼= G1 and

H2
∼= G2.

Definition 2. Let F be any family of graphs and let G1, G2 be two graphs such that
|V (G1)| = |V (G2)| = n. A near packing admitting F of G1 and G2 is a pair of subgraphs
{H1, H2} of Kn such that H1

∼= G1 and H2
∼= G2, and the subgraph having edges E(H1)∩

E(H2) is a member of F .

Given a graph G and a permutation σ of V (G), by σ(G) we denote the graph with
V (σ(G)) = V (G) and such that σ(u)σ(v) ∈ E(σ(G)) if and only if uv ∈ E(G) for any
u, v ∈ V (G). The spanning subgraph of G having edges E(G) ∩ E(σ(G)) is denoted by
G∗

σ (abbreviated to G∗ if no confusion arises). Thus, in case when G1
∼= G2

∼= G the
problem of finding a near packing admitting F of G1 and G2 is equivalent to the problem
of finding a permutation σ of V (G) such that G∗

σ ∈ F . Such a permutation σ of V (G) is
called a near packing of G admitting F .

We consider three families of graphs : (1) Ek being the family of all graphs with with
at most k edges, (2) Dk being the family of all graphs with maximum degree at most k,
and (3) Ck being the family of all graphs that do not contain a subgraph of connectivity
greater than or equal to k + 1. Notice that D0 = C0 = E0 is a family of edgeless graphs.
Furthermore C1 is a family of acyclic graphs and C1 ∩ D2 is a family of linear forests (i.e.
disjoint unions of paths).

Let F be any family of graphs. By m(n,F) we denote the maximum number m such
that each graph of order n and size less than or equal to m has a near-packing admitting
F . A classic result in this area, obtained independently in [1, 2, 7], states that

Theorem 3 ([1, 2, 7]). m(n, C0) = m(n,D0) = m(n, E0) = n− 2,

because a near packing admitting C0, D0 or E0 is just a packing. Our aim is to prove
some generalizations of Theorem 3. For every k > 1, we determine m(n, Ck) up to a
constant depending only on k. We find the problem concerning near packings admitting
Dk considerably harder. We determine only m(n,D1) up to a constant, while m(n,D2) is
determined assymptotically. We also give bounds on m(n, Ek).

The notion of a near packing was introduced by Eaton [3] in order to obtain some
investigations concerning the following conjecture of Bollobás and Eldridge:

Conjecture 4 ([1]). If |V (G1)| = |V (G2)| = n and (∆(G1) + 1) · (∆(G2) + 1) 6 n + 1,
then there is a packing of G1 and G2.

The following theorem is a special case of a more general result proved by Eaton.
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Theorem 5 ([3]). If |V (G1)| = |V (G2)| = n and (∆(G1) + 1) · (∆(G2) + 1) 6 n+1, then
there is a near packing admitting D1 of G1 and G2.

We also investigate another conjecture of graph packing by Faudree, Rousseau, Schelp
and Schuster [4]:

Conjecture 6. For every non-star graph G of girth at least 5, there is a packing of two

copies of G.

In particular, Conjecture 6 is true for sufficiently large planar graphs [6]. On the other
hand, the statement from the above conjecture is true if G is a non-star graph of girth
at least six [5]. In this paper we prove that the statement is true if the term ‘packing’
is replaced by the term ‘near packing admitting C1’. This result is in some sense best
possible, since for every permutation σ of V (Kn,n) with n > 3, K∗

n,n contains a cycle C4.

2 Preliminaries

Lemma 7. Let G be a graph and k, l, q > 0 integers. Suppose that G contains an inde-

pendent set U ⊂ V (G) that satisfies the following conditions:

1. dG(u) 6 k for each u ∈ U ,

2. |NG(u) ∩NG(v)| 6 q for every u, v ∈ U .

If |U | > 2(k−q)
l−q+1

, then for every permutation σ′ of V (G) \ U there exists a permutation σ

of V (G) such that σ|G−U = σ′ and dG∗

σ
(u) 6 l for each u ∈ U .

Proof. Let G′ := G−U and σ′ be any permutation of V (G′). Below we show that we can
extend σ′ to a permutation σ as required of G.
For any v ∈ V (G′) let us define σ(v) := σ′(v). Then let us consider a bipartite graph B

with partition sets X := U × {0} and Y := U × {1}. For u, v ∈ U the vertices (u, 0),
(v, 1) are joined by an edge in B if and only if |σ′(NG(u))∩NG(v)| 6 l. So, if (u, 0), (v, 1)
are joined by an edge in B we can put σ(u) = v. In other words, if (u, 0), (v, 1) are not
neighbors in B, then |σ′(N(u)) ∩ N(v)| > l + 1. Therefore, since |NG(u) ∩ NG(v)| 6 q

and dG(u) 6 k for u ∈ U , we have dB((u, 0)) > |U | − k−q
l−q+1

>
k−q

l−q+1
, by the assumption

on |U |. Similarly, dB((v, 1)) >
k−q

l−q+1
.

Let S ⊂ X. If |S| 6 |U | − k−q
l−q+1

then obviously |NB(S)| > |S|. Notice that if

|S| > |U | − k−q
l−q+1

then NB(S) = Y . Indeed, othervise let (v, 1) ∈ Y be a vertex which has
no neighbour in S. Thus,

dB((v, 1)) 6 |A| − |S| = |U | − |S| < |U | − (|U | −
k − q

l − q + 1
) =

k − q

l − q + 1
,

a contradiction. Hence, in any case |S| 6 |N(S)|. Thus, by the Hall’s theorem there is a
matching M in G. Therefore we can define σ(u) = v for u, v ∈ U such that (u, 0), (v, 1)
are incident with the same edge in M . 2
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Figure 1: K+
2,1,1

Proposition 8. Let G be a graph of order n and size m with m 6 an− f(n), where a is

a real number and f(n) is a non-decreasing function. If U ⊂ V (G) and vertices from U

cover at least a|U | edges, then
m′

6 an′ − f(n′),

where n′ and m′ are respectively the order and the size of G− U .

Proof.

m′
6 an− f(n)− a|U | = a(n− |U |)− f(n)

6 a(n− |U |)− f(n− |U |) = an′ − f(n′),

because f(n) > f(n− |U |). 2

3 Near packings admitting Ck

Recall that m(n, C0) = n − 2. We start with the following construction. Let K+
s,k−s,k−s

denote a graph with vertex set V (K+
s,k−s,k−s) = X1 ∪ X2 ∪ Y such that X1, X2, Y are

pairwise disjoint and |X1| = s, |X2| = |Y | = k−s. Furthermore, E(K+
s,k−s,k−s) = E1∪E2,

where E1 = {xy : x ∈ X1 ∪X2, y ∈ Y } and E2 = {xz : x ∈ X1, z ∈ X1 ∪ X2}. In other
words, K+

s,k−s,k−s arises from a tripartite graph (with partition sets X1, X2 and Y ) by
adding all possible edges having two endpoints in X1, see Figure 1. It is easily seen that
any two vertices of K+

s,k−s,k−s are joined by at least k internally vertex disjoint paths, so

K+
s,k−s,k−s is k connected. In what follows Ḡ denotes the complement of a graph G, i.e.

a graph on the same vertex set as G and with the property that e ∈ E(Ḡ) if and only if
e 6∈ E(G).

Lemma 9. m(n, Ck) 6 (k + 1)n− (k + 1)k+2
2

− 1.

Proof. Let G = Kk+1 +Kn−k−1. Clearly, |E(G)| = (k + 1)n − (k + 1)k+2
2
. We will show

that G does not have a near packing admitting Ck. Consider an arbitrary permutation
σ of V (G). Let S ⊂ V (Kk+1) be a maximal set of vertices with the property that
σ(S) ⊂ V (Kk+1). Let |S| = s. Then, G∗

σ contains a K+
s,k+1−s,k+1−s with X1 = S,

Y = V (Kk+1) \ S and X2 ⊂ V (Kn−k−1). 2
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Theorem 10. m(n, Ck) > (k + 1)n− 4k(k + 1)2 − 2.

Proof. For k = 0 the result follows from Theorem 3. Fix k > 1 and let ck = 4k(k+1)2+2.
We will prove that each graph of order n and size at most (k+1)n−ck has a near packing
admitting Ck.

Suppose that G is a counterexample with minimum order n. Let m denote the size of
G, so m 6 (k + 1)n− ck. Note that if n 6 4(k + 1)2, then

m 6 (k + 1)n− ck = kn− ck + n

6 k(4(k + 1)2)− (4k(k + 1)2 + 2) + n = n− 2.

HenceG has a near packing admitting Ck, by Theorem 3, which contradicts our assumption
on G. Thus, we may assume that n > 4(k+1)2 +1. Furthermore, if ∆(G) 6 2(k+1)− 1
then (∆(G) + 1)2 6 4(k + 1)2 < n + 1. Hence, G has a near packing admitting Ck by
Theorem 5 (because D1 ⊂ Ck), a contradiction again. Therefore, we may assume that
∆(G) > 2(k + 1). Let w ∈ V (G) with dG(w) > 2(k + 1).

Suppose first that G contains a vertex u with dG(u) 6 k. By Proposition 8 and by
the minimality assumption, G′ := G − {u, w} has a near packing σ′ admitting Ck. We
claim that σ := (u, w)σ′ is a near packing of G admitting Ck. Indeed, since dG(u) 6 k

then dG∗(u) 6 k as well as dG∗(w) 6 k. Hence, neither u nor w can be in a subgraph of
G∗ of connectivity k + 1 or more. Moreover, since σ|G′ is a near packing of G′ admitting
Ck, then G∗ − {u, w} does not contain a subgraph of connectivity k + 1 or more, neither.
Therefore, σ is a near packing of G admitting Ck.

Thus, we may assume that dG(u) > k + 1 for every u ∈ V (G). Let S be a maximum
set of vertices of G such that S is independent, k + 1 6 dG(u) 6 2k + 1 for each u ∈ S,
and |NG(u) ∩ NG(w)| 6 k for every u, w ∈ S. Since S is independent, by Proposition
8 and by the minimality assumption, G − S has a near packing σ′′ admitting Ck. By
Lemma 7 (with k, l, q replaced by 2k + 1, k, k, respectively), if |S| > 2k + 2 then there is
a permutation σ of G, such that σ|G−S = σ′′ and dG∗(u) 6 k for every u ∈ S. Simirarly
as before, we can see that σ is a near packing of G admitting Ck, a contradiction.

Therefore |S| 6 2k + 1 and so |NG(S)| 6 (2k + 1)2. Let Vj = {v ∈ V (G) \ NG(S) :
dG(v) = j}. Note that by the definition of S, we have |NG(S) ∩NG(u)| > k + 1 for every
u ∈ Vk+1 ∪ · · · ∪ V2k+1. Hence, vertices from NG(S) are incident (in common) to at least
(k + 1)(|Vk+1|+ · · ·+ |V2k+1|) edges. Thus,

(2k + 2)n− 8k(k + 1)2 − 4 > 2m

=
∑

u∈NG(S)

dG(u) +
∑

v∈V (G)\NG(S)

dG(v)

> (k + 1)(|Vk+1|+ · · · |V2k+1|) + (k + 1)|Vk+1|+ · · ·+ (2k + 1)|V2k+1|

+ (2k + 2)(n− |Vk+1|+ · · · |V2k+1| − |NG(S)|)

> (2k + 2)n− (2k + 2)(2k + 1)2,

a contradiction. Hence, we deduce no counterexample to Theorem 10 exists. 2
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Theorem 11. Every graph of girth at least 5 has a near packing admitting C1.

Proof. Let G be a minimum counterexample to Theorem 11. Let u ∈ V (G) with dG(u) =
∆(G). Let G′ = G − u and U = NG(u). By the girth assumption, U is an independent
set in G′ (as well as in G), and NG′(x)∩NG′(y) = ∅ for every x, y ∈ U . By the minimality
assumption G′′ := G′ − U has a near packing σ′′ admitting C1. Moreover, |U | = ∆(G)
and dG′(u) 6 ∆(G) − 1. Hence, by Lemma 7 (with k = ∆(G) − 1, l = 1, q = 0), G′ has
a near packing σ′ such that σ′|G′′ = σ′′ and dG′∗(u) 6 1 for each u ∈ U . Thus, since
G′′∗ is acyclic, G′∗ is also acyclic. Let u be any vertex from U . It is easy to see that the
permutation σ such that σ(u) = x, σ(x) = u and σ(y) = σ′(y) for every y ∈ V (G)\{u, x}
is a near packing of G admitting C1, a contradiction. 2

4 Near packings admitting Dk

Recall that m(n,D0) = n− 2.

Lemma 12. m(n,Dk) 6
⌈

(k+2)(n−1)
2

⌉

− 1.

Proof. Let H be a k-regular graph of order n− 1 provided that k is even or n− 1 is even.
Otherwise, letH be a graph with all but one vertices having degree k and one vertex having
degree k+1. Let G = K1+H and V (K1) = {u}. It is easily seen that for any permutation
σ of V (G), the vertex u (as well as its image) has degree at least k+1 in G∗

σ. Thus, G does

not have a near packing admitting Dk. Furthermore, E(G) = (k+1)(n−1)+n−1
2

= (k+2)(n−1)
2

if k is even or n− 1 is even, or E(G) = (k+1)(n−2)+(k+2)+(n−1)
2

= (k+2)(n−1)+1
2

otherwise. 2

We are tempted to propose the following conjecture

Conjecture 13.
k + 2

2
n− c1(k) 6 m(n,Dk) 6

k + 2

2
n− c2(k),

where ci(k) are constants depending only on k.

The next theorem confirms Conjecture 13 for k = 1.

Theorem 14. m(n,D1) >
3
2
n− 10.

Proof. Let G be a counterexample of minimum order n. Without loss of generality we
assume that m := |E(G)| = 3

2
n − 10. Note that if n 6 16 then 3

2
n − 10 6 n − 2. Thus,

by Theorem 3, G has a packing which contradicts our assumption on G. Hence, we may
assume that n > 17. Furthermore, if ∆(G) 6 3, then (∆(G)+ 1)2 6 16 < n+1, so G has
a near packing admitting D1 by Theorem 5. Thus, we may assume that ∆(G) > 4. Let
w ∈ V (G) with dG(w) > 4.

Suppose first that G has a vertex u with dG(u) = 0. Then, by Proposition 8 and
by the minimality assumption, G1 := G − {u, w} has a a near packing σ1 admitting D1.
Clearly, (u, w)σ1 is a near packing of G admitting D1.
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So we may assume that G has no isolated vertex. Suppose now that G has a vertex
u with dG(u) = 1 and let v be the neighbor of u. If dG(v) > 3 then, by Proposition 8
and by the minimality assumption, G2 := G − {u, v} has a near packing σ2 admitting
D1. Clearly, (u, v)σ2 is a near packing admitting D1 of G. Similarly, if dG(v) = 1 then
(u)(w, v)σ3 is a near packing admitting D1 of G where σ3 is a near packing admitting
D1 of G− {u, v, w} (σ3 exists by the minimality assumption). Thus we may assume that
dG(v) = 2. Let x be the neighbor of v different from u. If x 6= w then (u)(v, w, x)σ4 is a
near packing admitting D1 of G where σ4 is a near packing admitting D1 of G−{u, v, w, x}
(σ4 exists by the minimality assumption). Finally, if x = w then (u)(v, w)σ5 is a near
packing admitting D1 of G where σ5 is a near packing admitting D1 of G− {u, v, w} (σ5

exists by the minimality assumption).
Therefore, we may assume that dG(u) > 2 for each u ∈ V (G). Let S ⊂ V (G)

be a maximal set such that S is independent in G, dG(v) = 2 for every v ∈ S, and
NG(u) ∩ NG(v) = ∅ for every u, v ∈ S. Note that S 6= ∅. By Proposition 8 and by
the minimality assumption, G − S has a near packing σ′ admitting D1. Note that if
|S| > 4, then by Lemma 7 (with k = 2, q = 0 and l = 0), there exists a near packing
of G admitting D1, a contradiction with the assumption on G. Thus, |S| 6 3 and so
|NG(S)| 6 6. Let Vj = {v ∈ V (G) \ NG(S) : dG(v) = j}. Note that by the definition of
S, we have |NG(S) ∩NG(u)| > 1 for every u ∈ V2. Therefore,

3n− 20 = 2m =
∑

u∈NG(S)

dG(u) +
∑

v∈V (G)\NG(S)

dG(v)

> |V2|+ 2|V2|+ 3(n− |V2| − |NG(S)|) > 3n− 18,

a contradiction. Hence, we deduce no counterexample to Theorem 14 exists. 2

The following result provides some evidence for Conjecture 13 in case when k = 2.

Theorem 15 ([8]). m(n,D2) > 2n− 10n2/3 − 7.

5 Near packings admitting Ek

The join G = G1 +G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge
sets E1 and E2 is the graph union G1∪G2 = (V1∪V2, E1∪E2) together with all the edges
joining V1 and V2.

Lemma 16. If n > 2k + 2 then m(n, E2k) 6
⌈

(k+2)(n−1)
2

⌉

− 1.

Proof. Let H be a k-regular graph of order n− 1 provided that k is even or n− 1 is even.
Otherwise, let H be a graph with all but one vertices having degree k and one vertex
having degree k + 1. Let G = K1 + H and V (K1) = {u}. It is easily seen that for any
permutation σ of V (G), the vertex u as well as σ(u) has degree at least k+1 in G∗

σ. Thus,
if u 6= σ(u) then G∗

σ has at least 2k + 1 edges. If u = σ(u) then u has degree n − 1 in
G∗

σ. Since n > 2k + 2, G∗
σ has at least 2k + 1 edges. Therefore, G does not have a near
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packing admitting E2k. Furthermore, E(G) = (k+1)(n−1)+n−1
2

= (k+2)(n−1)
2

if k is even or

n− 1 is even, or E(G) = (k+1)(n−2)+(k+2)+(n−1)
2

= (k+2)(n−1)+1
2

otherwise. 2

Theorem 17. m(n, Ek) >
√

k
2
n(n− 1).

Proof. Let G be a graph of order n and size m. We will prove that if m 6

√

k
2
n(n− 1)

then there is a near-packing of G admitting Ek. Consider the probability space whose n!
points are the permutations of V (G). For any two edges e, f ∈ E(G) let Xef denote the
indicator random variable with value 1 if f is an image of e. Then

E(Xef ) = Prob(Xef = 1) =
2(n− 2)!

n!
=

(

n

2

)−1

.

Let X =
∑

e,f∈E(G) Xef . Thus, by the linearity of expectation, we have

E(X) =
∑

e,f∈E(G)

E(Xef ) 6 m2

(

n

2

)−1

6 k.

This implies that there exists a permutation σ of V (G) such that G∗
σ has at most k edges.

Thus, σ is a near packing of G admitting Ek. 2
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