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In this paper we use the term graph to refer to simple graphs without loops or multiple
edges. The vertex and edge set of a graph G is denoted by V(G) and E(G), respectively.
The maximum degree of G is denoted by A(G). A graph is called k-connected if any two
of its vertices can be joined by k internally vertex disjoint paths. A complete graph K is
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Abstract

A packing of a graph G is a set {G1,G2} such that G; =2 G, G2 = G, and G
and Gg are edge disjoint subgraphs of K,. Let F be a family of graphs. A near
packing admitting F of a graph G is a generalization of a packing. In a near packing
admitting F, the two copies of G may overlap so the subgraph defined by the edges
common to both copies is a member of F. In the paper we study three families of
graphs (1) & — the family of all graphs with at most k edges, (2) Dy — the family
of all graphs with maximum degree at most k, and (3) Ci — the family of all graphs
that do not contain a subgraph of connectivity greater than or equal to k + 1. By
m(n,F) we denote the maximum number m such that each graph of order n and
size less than or equal to m has a near-packing admitting F. It is well known that
m(n,Co) = m(n,Dy) = m(n,&) = n — 2 because a near packing admitting Cp, Dy
or & is just a packing. We prove some generalization of this result, namely we
prove that m(n,Cx) ~ (k + 1)n, m(n,D1) ~ 3n, m(n,Ds) ~ 2n. We also present
bounds on m(n, ). Finally, we prove that each graph of girth at least five has a
near packing admitting C; (i.e. a near packing admitting the family of the acyclic
graphs).
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0-connected. By Ng(z) we denote the set of vertices adjacent with x in G. For a vertex
set X, the set Ng(X) denotes the external neighbourhood of X in G, i.e.

Ne(X) ={y € V(G) \ X : y is adjacent with some = € X}.
The degree of a vertex x is the number of vertices adjacent to x and is denoted by dg(x).

Definition 1. Let G; and G5 be two graphs such that |V(G1)| = [V (G2)| = n. A packing
of G1 and Gy is a pair of edge-disjoint subgraphs {Hy, Hs} of K,, such that H; = G and
H2 = GQ.

Definition 2. Let F be any family of graphs and let GGy, G2 be two graphs such that
[V(G1)| = |V(G2)| = n. A near packing admitting F of G; and G is a pair of subgraphs
{H1, Hy} of K,, such that H; = G and Hy = G, and the subgraph having edges E(H;)N
E(H,) is a member of F.

Given a graph G and a permutation o of V(G), by o(G) we denote the graph with
V(o(G)) = V(G) and such that o(u)o(v) € E(o(G)) if and only if uv € E(G) for any
u,v € V(G). The spanning subgraph of G having edges E(G) N E(o(G)) is denoted by
G% (abbreviated to G* if no confusion arises). Thus, in case when G; = Gy = G the
problem of finding a near packing admitting F of G; and G, is equivalent to the problem
of finding a permutation o of V(G) such that G% € F. Such a permutation o of V(G) is
called a near packing of G admitting F.

We consider three families of graphs : (1) & being the family of all graphs with with
at most k edges, (2) Dy, being the family of all graphs with maximum degree at most k,
and (3) Ci, being the family of all graphs that do not contain a subgraph of connectivity
greater than or equal to k 4+ 1. Notice that Dy = Cy = & is a family of edgeless graphs.
Furthermore C; is a family of acyclic graphs and C; N Dy is a family of linear forests (i.e.
disjoint unions of paths).

Let F be any family of graphs. By m(n, F) we denote the maximum number m such
that each graph of order n and size less than or equal to m has a near-packing admitting
F. A classic result in this area, obtained independently in [1, 2, 7], states that

Theorem 3 ([1, 2, 7]). m(n,Cy) = m(n,Dy) = m(n, &) =n — 2,

because a near packing admitting Cy, Dy or & is just a packing. Our aim is to prove
some generalizations of Theorem 3. For every k > 1, we determine m(n,Cy) up to a
constant depending only on k. We find the problem concerning near packings admitting
Dy considerably harder. We determine only m(n, D;) up to a constant, while m(n, Dy) is
determined assymptotically. We also give bounds on m(n, &).

The notion of a near packing was introduced by Eaton [3] in order to obtain some
investigations concerning the following conjecture of Bollobas and Eldridge:

Conjecture 4 ([1]). If |V(G1)| = [V(Gs)| = n and (A(G1) +1) - (A(Gs) +1) < n+1,
then there is a packing of G1 and G,.

The following theorem is a special case of a more general result proved by Eaton.
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Theorem 5 ([3]). If |[V(G1)| = |V (Ga)| =n and (A(G1)+1) - (A(G2) +1) < n+1, then
there is a near packing admitting D1 of Gy and G.

We also investigate another conjecture of graph packing by Faudree, Rousseau, Schelp
and Schuster [4]:

Conjecture 6. For every non-star graph G of girth at least 5, there is a packing of two
copies of G.

In particular, Conjecture 6 is true for sufficiently large planar graphs [6]. On the other
hand, the statement from the above conjecture is true if G is a non-star graph of girth
at least six [5]. In this paper we prove that the statement is true if the term ‘packing’
is replaced by the term ‘near packing admitting C;’. This result is in some sense best
possible, since for every permutation o of V(K ,) with n > 3, K, contains a cycle Cj.

2 Preliminaries

Lemma 7. Let G be a graph and k,l,q > 0 integers. Suppose that G contains an inde-
pendent set U C V(G) that satisfies the following conditions:

1. dg(u) < k for each u € U,
2. ]Ng(u) N Ng(v)| < q for every u,v € U.

If|U| > +1 , then for every permutation o' of V(G) \ U there exists a permutation o
of V(G) such that o|lg—v = 0’ and dg=(u) <1 for each u € U.

Proof. Let G' := G — U and ¢’ be any permutation of V(G"). Below we show that we can
extend ¢’ to a permutation o as required of G.

For any v € V(G') let us define o(v) := o’(v). Then let us consider a bipartite graph B
with partition sets X := U x {0} and Y := U x {1}. For u,v € U the vertices (u,0),
(v,1) are joined by an edge in B if and only if |o'(Ng(u)) N Ng(v)| < 1. So, if (u,0), (v,1)
are joined by an edge in B we can put o(u) = v. In other words, if (u,0), (v,1) are not
neighbors in B, then |o/(N(u)) N N(v)| > 1 + 1. Therefore since |Ng(u) N Ng(v)| < ¢

and dg(u) < k for u € U, we have dg((u,0)) > |U| — q+1 > qu+1v by the assumption
on |U|. Similarly, dg((v,1)) = = ;+1

Let S ¢ X. If |[S| < |U| — =% then obviously |[Np(S)| = |S|. Notice that if

|S| > |U| — (S) =Y. Indeed, othervise let (v,1) € Y be a vertex which has
no neighbour in S. Thus,

k—q )= k—q

dB((v71))<|A|—|5!=|U|—|5|<|U|—(|U|—l_q+1 BETES

a contradiction. Hence, in any case |S| < |N(S)|. Thus, by the Hall’s theorem there is a
matching M in G. Therefore we can define o(u) = v for u,v € U such that (u,0), (v,1)

are incident with the same edge in M. O
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Figure 1: K;Ll

Proposition 8. Let G be a graph of order n and size m with m < an — f(n), where a is
a real number and f(n) is a non-decreasing function. If U C V(G) and vertices from U
cover at least a|U| edges, then

m' < an' — f(n'),
where n' and m’ are respectively the order and the size of G — U.

Proof.

<an— f(n) —a|lU] =a(n —[U]) — f(n)
<a(n—|U]) = f(n—|U]) = an’ — f(n'),
)

because f(n) = f(n — |U|).

3 Near packings admitting C;

Recall that m(n,Cy) = n — 2. We start with the following construction. Let K:k_&k_s
denote a graph with vertex set V(K:kf&kfs) = X; U X, UY such that X, X5, Y are
pairwise disjoint and |X;| = s, | Xs| = |Y| = k—s. Furthermore, E(K[,_,,_,) = E1UEj,
where By = {zy: v € XyUXs,y € Y} and Ey = {2z : 2z € X1,z € X; U Xy}, In other
words, K, _, . arises from a tripartite graph (with partition sets X;, X, and Y) by
adding all7pos’sible edges having two endpoints in X7, see Figure 1. It is easily seen that
any two vertices of K;,_k—s,k—s are joined by at least k internally vertex disjoint paths, so

K:kfs’kfs is k connected. In what follows G denotes the complement of a graph G, i.e.

a graph on the same vertex set as G and with the property that e € E(G) if and only if
e & E(G).
Lemma 9. m(n,Cy) < (k+ 1)n — (k+ 1)52 — 1.

Proof. Let G = Kji1 + Kn_g—1. Clearly, |[E(G)| = (k+ 1)n — (k + 1)E2. We will show
that G does not have a near packing admitting C;. Consider an arbitrary permutation
o of V(G). Let S C V(Kj41) be a maximal set of vertices with the property that
0(S) C V(Kg1). Let [S| = s. Then, G} contains a K, ., .., , with X; =,

Y = V(Kk+1> \ S and X2 - V(Kn,kfl). O
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Theorem 10. m(n,Cy) > (k + 1)n — 4k(k +1)* — 2.

Proof. For k = 0 the result follows from Theorem 3. Fix k > 1 and let ¢, = 4k(k+1)?+2.
We will prove that each graph of order n and size at most (k+ 1)n — ¢, has a near packing
admitting Cy.

Suppose that G is a counterexample with minimum order n. Let m denote the size of
G, so m < (k+ 1)n — ¢;,. Note that if n < 4(k + 1)2, then

m<(k+1)n—cg=kn—cp+n
< k(A(k+1)%) — (4k(k+1)°+2)+n=n—2.

Hence G has a near packing admitting Cy, by Theorem 3, which contradicts our assumption
on G. Thus, we may assume that n > 4(k+1)% + 1. Furthermore, if A(G) < 2(k+1)—1
then (A(G) +1)? < 4(k +1)> < n+ 1. Hence, G has a near packing admitting C;, by
Theorem 5 (because Dy C Cy), a contradiction again. Therefore, we may assume that
A(G) 2 2(k+1). Let w € V(G) with dg(w) > 2(k + 1).

Suppose first that G' contains a vertex u with dg(u) < k. By Proposition 8 and by
the minimality assumption, G’ := G — {u,w} has a near packing ¢’ admitting C,. We
claim that o := (u,w)o’ is a near packing of G admitting Cy. Indeed, since dg(u) < k
then dg-(u) < k as well as dg«(w) < k. Hence, neither u nor w can be in a subgraph of
G* of connectivity k 4+ 1 or more. Moreover, since | is a near packing of G’ admitting
Ck, then G* — {u, w} does not contain a subgraph of connectivity k + 1 or more, neither.
Therefore, o is a near packing of G admitting C.

Thus, we may assume that dg(u) > k + 1 for every u € V(G). Let S be a maximum
set of vertices of G such that S is independent, k + 1 < dg(u) < 2k + 1 for each u € 5,
and |Ng(u) N Ng(w)| < k for every u,w € S. Since S is independent, by Proposition
8 and by the minimality assumption, G — S has a near packing ¢” admitting C,. By
Lemma 7 (with k,, q replaced by 2k + 1, k, k, respectively), if |S| > 2k + 2 then there is
a permutation o of G, such that o|g_s = ¢” and dg«(u) < k for every u € S. Simirarly
as before, we can see that o is a near packing of G admitting C;, a contradiction.

Therefore |S| < 2k + 1 and so [Ng(S)| < (2k + 1)% Let V; = {v € V(G) \ Ng(5) :
dg(v) = j}. Note that by the definition of S, we have |[Ng(S) N Ng(u)| = k + 1 for every
u € Viyg U+ U Vo1, Hence, vertices from Ng(S) are incident (in common) to at least
(k+ )(|Visa| + -+ - + [Vagsa]) edges. Thus,

(2k 4 2)n — 8k(k +1)* —4 > 2m
= Z de(u) + Z de(v)
uENG(S) vEV(G)\Ng (S)
2 (k+1D([Vesa| + - [Vara]) + (B + DVia [ + -+ - + (26 + 1) |Vap |
+ (2k +2)(n — [Viea| + -+ [Varra | — [ Na(S)])
> (2k +2)n — (2k +2)(2k + 1)%,

a contradiction. Hence, we deduce no counterexample to Theorem 10 exists. a
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Theorem 11. Every graph of girth at least 5 has a near packing admaitting C.

Proof. Let G be a minimum counterexample to Theorem 11. Let v € V(G) with dg(u) =
A(G). Let G’ = G —u and U = Ng(u). By the girth assumption, U is an independent
set in G’ (as well as in G), and Ng/(x) NN (y) = 0 for every z,y € U. By the minimality
assumption G” := G’ — U has a near packing ¢” admitting C;. Moreover, |U| = A(G)
and dg(u) < A(G) — 1. Hence, by Lemma 7 (with £ = A(G) — 1,1 =1,q = 0), G’ has
a near packing o’ such that o'|g» = ¢” and dg~(u) < 1 for each uw € U. Thus, since
G"* is acyclic, G’ is also acyclic. Let u be any vertex from U. It is easy to see that the
permutation o such that o(u) = x, o(x) = v and o(y) = o’(y) for every y € V(G) \ {u, z}
is a near packing of G admitting C;, a contradiction. |

4 Near packings admitting Dy,
Recall that m(n,Dy) =n — 2.

Lemma 12. m(n,Dy) < {M;nfl)-‘ 1

Proof. Let H be a k-regular graph of order n — 1 provided that k is even or n — 1 is even.
Otherwise, let H be a graph with all but one vertices having degree k and one vertex having
degree k+1. Let G = K+ H and V(K) = {u}. It is easily seen that for any permutation

o of V(G), the vertex u (as well as its image) has degree at least k+1 in G%. Thus, G does
(G) = Gzl _ (k42 n=)
2 2

not have a near packing admitting Dy. Furthermore, F

(k+1)(n—2)+2(k+2)+(n—1) _ (k+2)(721—1)+1 otherwise. O

if k is even or n — 1 is even, or E(G) =

We are tempted to propose the following conjecture

Conjecture 13.

k42 k+2
;— n—ci(k) <m(n,Dy) < i

where ¢;(k) are constants depending only on k.

n — ca(k),

The next theorem confirms Conjecture 13 for k£ = 1.
Theorem 14. m(n,D;) > 3n — 10.

Proof. Let G be a counterexample of minimum order n. Without loss of generality we
assume that m := |E(G)| = 2n — 10. Note that if n < 16 then 2n — 10 < n — 2. Thus,
by Theorem 3, G has a packing which contradicts our assumption on G. Hence, we may
assume that n > 17. Furthermore, if A(G) < 3, then (A(G)+1)?> < 16 <n+1, so G has
a near packing admitting D; by Theorem 5. Thus, we may assume that A(G) > 4. Let
w € V(G) with dg(w) > 4.

Suppose first that G has a vertex u with dg(u) = 0. Then, by Proposition 8 and
by the minimality assumption, Gy := G — {u,w} has a a near packing o; admitting D;.
Clearly, (u,w)o; is a near packing of G admitting D .
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So we may assume that G has no isolated vertex. Suppose now that G has a vertex
u with dg(u) = 1 and let v be the neighbor of u. If dg(v) > 3 then, by Proposition 8
and by the minimality assumption, Gy := G — {u,v} has a near packing o, admitting
D,. Clearly, (u,v)oy is a near packing admitting D; of G. Similarly, if dg(v) = 1 then
(u)(w,v)os is a near packing admitting D; of G where o3 is a near packing admitting
D, of G — {u,v,w} (03 exists by the minimality assumption). Thus we may assume that
dg(v) = 2. Let x be the neighbor of v different from w. If z # w then (u)(v,w,z)oy is a
near packing admitting D; of G where o4 is a near packing admitting D; of G—{u, v, w, z}
(04 exists by the minimality assumption). Finally, if = w then (u)(v,w)os is a near
packing admitting D; of G where o5 is a near packing admitting D; of G — {u,v, w} (o3
exists by the minimality assumption).

Therefore, we may assume that dg(u) > 2 for each v € V(G). Let S C V(G)
be a maximal set such that S is independent in G, dg(v) = 2 for every v € S, and
Ng(u) N Ng(v) = 0 for every u,v € S. Note that S # (). By Proposition 8 and by
the minimality assumption, G — S has a near packing ¢’ admitting D;. Note that if
|S| > 4, then by Lemma 7 (with & = 2, ¢ = 0 and | = 0), there exists a near packing
of G admitting Dy, a contradiction with the assumption on G. Thus, |S| < 3 and so
ING(S)| < 6. Let V; = {v € V(G) \ Ne(S) : da(v) = j}. Note that by the definition of
S, we have |Ng(S) N Ng(u)| > 1 for every u € V. Therefore,

3n—20=2m= Y de(u)+ Y da(v)

uGNG(S) UEV(G)\NG(S)
> [Va| 4+ 2[Va| 4+ 3(n — V2| = [Na(S)]) = 3n — 18,

a contradiction. Hence, we deduce no counterexample to Theorem 14 exists. O

The following result provides some evidence for Conjecture 13 in case when k = 2.

Theorem 15 ([8]). m(n, Dy) = 2n — 10n%? — 7.

5 Near packings admitting &,

The join G = G 4+ G5 of graphs GG; and G5 with disjoint vertex sets V; and V5 and edge
sets £ and Ej, is the graph union G1 UGy = (V1 U Vs, E1 U Ey) together with all the edges
joining Vi and V5.

Lemma 16. Ifn > 2k + 2 then m(n, Ey) < {Mé“‘l)w _1.

Proof. Let H be a k-regular graph of order n — 1 provided that k is even or n — 1 is even.
Otherwise, let H be a graph with all but one vertices having degree k£ and one vertex
having degree k + 1. Let G = K; + H and V(K;) = {u}. It is easily seen that for any
permutation o of V(G), the vertex u as well as o(u) has degree at least k+1 in G%. Thus,
if u # o(u) then G has at least 2k 4+ 1 edges. If u = o(u) then u has degree n — 1 in
G:. Since n > 2k + 2, G has at least 2k + 1 edges. Therefore, G does not have a near
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packing admitting Ey. Furthermore, E(G) = (ktD)(n—1)tn=1 _ (k+2)2("_1) if k is even or

2
n—1is even, or B(G) = EHn=2)t (k+2)+( D — E2E-DH otherwise. 0

Theorem 17. m(n, &) > \/En(n —1).

Proof. Let G be a graph of order n and size m. We will prove that if m < y/£n(n — 1)

then there is a near-packing of G admitting &,. Consider the probability space whose n!
points are the permutations of V(G). For any two edges e, f € E(G) let X.; denote the
indicator random variable with value 1 if f is an image of e. Then

E(X.f) = Prob(X.; = 1) = w = (7;)_ .

Let X = Ze’feE(G) Xeg. Thus, by the linearity of expectation, we have

EX)= Y E(X.)<m’ (Z)_l <k

e,fEE(QG)

This implies that there exists a permutation o of V(G) such that G% has at most k edges.
Thus, ¢ is a near packing of G admitting &. |
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