Near packings of graphs

Andrzej Żak*
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland
zakandrz@agh.edu.pl

Submitted: Dec 18, 2012; Accepted: May 16, 2013; Published: May 24, 2013
Mathematics Subject Classifications: 05C70

Abstract

A packing of a graph G is a set $\left\{G_{1}, G_{2}\right\}$ such that $G_{1} \cong G, G_{2} \cong G$, and G_{1} and G_{2} are edge disjoint subgraphs of K_{n}. Let \mathcal{F} be a family of graphs. A near packing admitting \mathcal{F} of a graph G is a generalization of a packing. In a near packing admitting \mathcal{F}, the two copies of G may overlap so the subgraph defined by the edges common to both copies is a member of \mathcal{F}. In the paper we study three families of graphs (1) \mathcal{E}_{k} - the family of all graphs with at most k edges, (2) \mathcal{D}_{k} - the family of all graphs with maximum degree at most k, and (3) \mathcal{C}_{k} - the family of all graphs that do not contain a subgraph of connectivity greater than or equal to $k+1$. By $m(n, \mathcal{F})$ we denote the maximum number m such that each graph of order n and size less than or equal to m has a near-packing admitting \mathcal{F}. It is well known that $m\left(n, \mathcal{C}_{0}\right)=m\left(n, \mathcal{D}_{0}\right)=m\left(n, \mathcal{E}_{0}\right)=n-2$ because a near packing admitting $\mathcal{C}_{0}, \mathcal{D}_{0}$ or \mathcal{E}_{0} is just a packing. We prove some generalization of this result, namely we prove that $m\left(n, \mathcal{C}_{k}\right) \approx(k+1) n, m\left(n, \mathcal{D}_{1}\right) \approx \frac{3}{2} n, m\left(n, \mathcal{D}_{2}\right) \approx 2 n$. We also present bounds on $m\left(n, \mathcal{E}_{k}\right)$. Finally, we prove that each graph of girth at least five has a near packing admitting \mathcal{C}_{1} (i.e. a near packing admitting the family of the acyclic graphs).

1 Introduction

In this paper we use the term graph to refer to simple graphs without loops or multiple edges. The vertex and edge set of a graph G is denoted by $V(G)$ and $E(G)$, respectively. The maximum degree of G is denoted by $\Delta(G)$. A graph is called k-connected if any two of its vertices can be joined by k internally vertex disjoint paths. A complete graph K_{1} is

[^0]0 -connected. By $N_{G}(x)$ we denote the set of vertices adjacent with x in G. For a vertex set X, the set $N_{G}(X)$ denotes the external neighbourhood of X in G, i.e.

$$
N_{G}(X)=\{y \in V(G) \backslash X: y \text { is adjacent with some } x \in X\} .
$$

The degree of a vertex x is the number of vertices adjacent to x and is denoted by $d_{G}(x)$.
Definition 1. Let G_{1} and G_{2} be two graphs such that $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=n$. A packing of G_{1} and G_{2} is a pair of edge-disjoint subgraphs $\left\{H_{1}, H_{2}\right\}$ of K_{n} such that $H_{1} \cong G_{1}$ and $H_{2} \cong G_{2}$.

Definition 2. Let \mathcal{F} be any family of graphs and let G_{1}, G_{2} be two graphs such that $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=n$. A near packing admitting \mathcal{F} of G_{1} and G_{2} is a pair of subgraphs $\left\{H_{1}, H_{2}\right\}$ of K_{n} such that $H_{1} \cong G_{1}$ and $H_{2} \cong G_{2}$, and the subgraph having edges $E\left(H_{1}\right) \cap$ $E\left(H_{2}\right)$ is a member of \mathcal{F}.

Given a graph G and a permutation σ of $V(G)$, by $\sigma(G)$ we denote the graph with $V(\sigma(G))=V(G)$ and such that $\sigma(u) \sigma(v) \in E(\sigma(G))$ if and only if $u v \in E(G)$ for any $u, v \in V(G)$. The spanning subgraph of G having edges $E(G) \cap E(\sigma(G))$ is denoted by G_{σ}^{*} (abbreviated to G^{*} if no confusion arises). Thus, in case when $G_{1} \cong G_{2} \cong G$ the problem of finding a near packing admitting \mathcal{F} of G_{1} and G_{2} is equivalent to the problem of finding a permutation σ of $V(G)$ such that $G_{\sigma}^{*} \in \mathcal{F}$. Such a permutation σ of $V(G)$ is called a near packing of G admitting \mathcal{F}.

We consider three families of graphs: (1) \mathcal{E}_{k} being the family of all graphs with with at most k edges, (2) \mathcal{D}_{k} being the family of all graphs with maximum degree at most k, and (3) \mathcal{C}_{k} being the family of all graphs that do not contain a subgraph of connectivity greater than or equal to $k+1$. Notice that $\mathcal{D}_{0}=\mathcal{C}_{0}=\mathcal{E}_{0}$ is a family of edgeless graphs. Furthermore \mathcal{C}_{1} is a family of acyclic graphs and $\mathcal{C}_{1} \cap \mathcal{D}_{2}$ is a family of linear forests (i.e. disjoint unions of paths).

Let \mathcal{F} be any family of graphs. By $m(n, \mathcal{F})$ we denote the maximum number m such that each graph of order n and size less than or equal to m has a near-packing admitting \mathcal{F}. A classic result in this area, obtained independently in $[1,2,7]$, states that

Theorem $3([1,2,7]) . m\left(n, \mathcal{C}_{0}\right)=m\left(n, \mathcal{D}_{0}\right)=m\left(n, \mathcal{E}_{0}\right)=n-2$,
because a near packing admitting $\mathcal{C}_{0}, \mathcal{D}_{0}$ or \mathcal{E}_{0} is just a packing. Our aim is to prove some generalizations of Theorem 3. For every $k \geqslant 1$, we determine $m\left(n, \mathcal{C}_{k}\right)$ up to a constant depending only on k. We find the problem concerning near packings admitting \mathcal{D}_{k} considerably harder. We determine only $m\left(n, \mathcal{D}_{1}\right)$ up to a constant, while $m\left(n, \mathcal{D}_{2}\right)$ is determined assymptotically. We also give bounds on $m\left(n, \mathcal{E}_{k}\right)$.

The notion of a near packing was introduced by Eaton [3] in order to obtain some investigations concerning the following conjecture of Bollobás and Eldridge:

Conjecture 4 ([1]). If $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=n$ and $\left(\Delta\left(G_{1}\right)+1\right) \cdot\left(\Delta\left(G_{2}\right)+1\right) \leqslant n+1$, then there is a packing of G_{1} and G_{2}.

The following theorem is a special case of a more general result proved by Eaton.

Theorem 5 ([3]). If $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=n$ and $\left(\Delta\left(G_{1}\right)+1\right) \cdot\left(\Delta\left(G_{2}\right)+1\right) \leqslant n+1$, then there is a near packing admitting \mathcal{D}_{1} of G_{1} and G_{2}.

We also investigate another conjecture of graph packing by Faudree, Rousseau, Schelp and Schuster [4]:

Conjecture 6. For every non-star graph G of girth at least 5, there is a packing of two copies of G.

In particular, Conjecture 6 is true for sufficiently large planar graphs [6]. On the other hand, the statement from the above conjecture is true if G is a non-star graph of girth at least six [5]. In this paper we prove that the statement is true if the term 'packing' is replaced by the term 'near packing admitting \mathcal{C}_{1} '. This result is in some sense best possible, since for every permutation σ of $V\left(K_{n, n}\right)$ with $n \geqslant 3, K_{n, n}^{*}$ contains a cycle C_{4}.

2 Preliminaries

Lemma 7. Let G be a graph and $k, l, q \geqslant 0$ integers. Suppose that G contains an independent set $U \subset V(G)$ that satisfies the following conditions:

1. $d_{G}(u) \leqslant k$ for each $u \in U$,
2. $\left|N_{G}(u) \cap N_{G}(v)\right| \leqslant q$ for every $u, v \in U$.

If $|U| \geqslant \frac{2(k-q)}{l-q+1}$, then for every permutation σ^{\prime} of $V(G) \backslash U$ there exists a permutation σ of $V(G)$ such that $\left.\sigma\right|_{G-U}=\sigma^{\prime}$ and $d_{G_{\sigma}^{*}}(u) \leqslant l$ for each $u \in U$.

Proof. Let $G^{\prime}:=G-U$ and σ^{\prime} be any permutation of $V\left(G^{\prime}\right)$. Below we show that we can extend σ^{\prime} to a permutation σ as required of G.
For any $v \in V\left(G^{\prime}\right)$ let us define $\sigma(v):=\sigma^{\prime}(v)$. Then let us consider a bipartite graph B with partition sets $X:=U \times\{0\}$ and $Y:=U \times\{1\}$. For $u, v \in U$ the vertices $(u, 0)$, $(v, 1)$ are joined by an edge in B if and only if $\left|\sigma^{\prime}\left(N_{G}(u)\right) \cap N_{G}(v)\right| \leqslant l$. So, if $(u, 0),(v, 1)$ are joined by an edge in B we can put $\sigma(u)=v$. In other words, if $(u, 0),(v, 1)$ are not neighbors in B, then $\left|\sigma^{\prime}(N(u)) \cap N(v)\right| \geqslant l+1$. Therefore, since $\left|N_{G}(u) \cap N_{G}(v)\right| \leqslant q$ and $d_{G}(u) \leqslant k$ for $u \in U$, we have $d_{B}((u, 0)) \geqslant|U|-\frac{k-q}{l-q+1} \geqslant \frac{k-q}{l-q+1}$, by the assumption on $|U|$. Similarly, $d_{B}((v, 1)) \geqslant \frac{k-q}{l-q+1}$.

Let $S \subset X$. If $|S| \leqslant|U|-\frac{k-q}{l-q+1}$ then obviously $\left|N_{B}(S)\right| \geqslant|S|$. Notice that if $|S|>|U|-\frac{k-q}{l-q+1}$ then $N_{B}(S)=Y$. Indeed, othervise let $(v, 1) \in Y$ be a vertex which has no neighbour in S. Thus,

$$
d_{B}((v, 1)) \leqslant|A|-|S|=|U|-|S|<|U|-\left(|U|-\frac{k-q}{l-q+1}\right)=\frac{k-q}{l-q+1},
$$

a contradiction. Hence, in any case $|S| \leqslant|N(S)|$. Thus, by the Hall's theorem there is a matching M in G. Therefore we can define $\sigma(u)=v$ for $u, v \in U$ such that $(u, 0),(v, 1)$ are incident with the same edge in M.

Figure 1: $K_{2,1,1}^{+}$

Proposition 8. Let G be a graph of order n and size m with $m \leqslant a n-f(n)$, where a is a real number and $f(n)$ is a non-decreasing function. If $U \subset V(G)$ and vertices from U cover at least a $|U|$ edges, then

$$
m^{\prime} \leqslant a n^{\prime}-f\left(n^{\prime}\right)
$$

where n^{\prime} and m^{\prime} are respectively the order and the size of $G-U$.
Proof.

$$
\begin{aligned}
m^{\prime} & \leqslant a n-f(n)-a|U|=a(n-|U|)-f(n) \\
& \leqslant a(n-|U|)-f(n-|U|)=a n^{\prime}-f\left(n^{\prime}\right),
\end{aligned}
$$

because $f(n) \geqslant f(n-|U|)$.

3 Near packings admitting \mathcal{C}_{k}

Recall that $m\left(n, \mathcal{C}_{0}\right)=n-2$. We start with the following construction. Let $K_{s, k-s, k-s}^{+}$ denote a graph with vertex set $V\left(K_{s, k-s, k-s}^{+}\right)=X_{1} \cup X_{2} \cup Y$ such that X_{1}, X_{2}, Y are pairwise disjoint and $\left|X_{1}\right|=s,\left|X_{2}\right|=|Y|=k-s$. Furthermore, $E\left(K_{s, k-s, k-s}^{+}\right)=E_{1} \cup E_{2}$, where $E_{1}=\left\{x y: x \in X_{1} \cup X_{2}, y \in Y\right\}$ and $E_{2}=\left\{x z: x \in X_{1}, z \in X_{1} \cup X_{2}\right\}$. In other words, $K_{s, k-s, k-s}^{+}$arises from a tripartite graph (with partition sets X_{1}, X_{2} and Y) by adding all possible edges having two endpoints in X_{1}, see Figure 1. It is easily seen that any two vertices of $K_{s, k-s, k-s}^{+}$are joined by at least k internally vertex disjoint paths, so $K_{s, k-s, k-s}^{+}$is k connected. In what follows \bar{G} denotes the complement of a graph G, i.e. a graph on the same vertex set as G and with the property that $e \in E(\bar{G})$ if and only if $e \notin E(G)$.

Lemma 9. $m\left(n, \mathcal{C}_{k}\right) \leqslant(k+1) n-(k+1) \frac{k+2}{2}-1$.
Proof. Let $G=\overline{K_{k+1}}+K_{n-k-1}$. Clearly, $|E(G)|=(k+1) n-(k+1) \frac{k+2}{2}$. We will show that G does not have a near packing admitting \mathcal{C}_{k}. Consider an arbitrary permutation σ of $V(G)$. Let $S \subset V\left(K_{k+1}\right)$ be a maximal set of vertices with the property that $\sigma(S) \subset V\left(K_{k+1}\right)$. Let $|S|=s$. Then, G_{σ}^{*} contains a $K_{s, k+1-s, k+1-s}^{+}$with $X_{1}=S$, $Y=V\left(K_{k+1}\right) \backslash S$ and $X_{2} \subset V\left(K_{n-k-1}\right)$.

Theorem 10. $m\left(n, \mathcal{C}_{k}\right) \geqslant(k+1) n-4 k(k+1)^{2}-2$.
Proof. For $k=0$ the result follows from Theorem 3. Fix $k \geqslant 1$ and let $c_{k}=4 k(k+1)^{2}+2$. We will prove that each graph of order n and size at most $(k+1) n-c_{k}$ has a near packing admitting \mathcal{C}_{k}.

Suppose that G is a counterexample with minimum order n. Let m denote the size of G, so $m \leqslant(k+1) n-c_{k}$. Note that if $n \leqslant 4(k+1)^{2}$, then

$$
\begin{aligned}
m & \leqslant(k+1) n-c_{k}=k n-c_{k}+n \\
& \leqslant k\left(4(k+1)^{2}\right)-\left(4 k(k+1)^{2}+2\right)+n=n-2 .
\end{aligned}
$$

Hence G has a near packing admitting \mathcal{C}_{k}, by Theorem 3 , which contradicts our assumption on G. Thus, we may assume that $n \geqslant 4(k+1)^{2}+1$. Furthermore, if $\Delta(G) \leqslant 2(k+1)-1$ then $(\Delta(G)+1)^{2} \leqslant 4(k+1)^{2}<n+1$. Hence, G has a near packing admitting \mathcal{C}_{k} by Theorem 5 (because $\mathcal{D}_{1} \subset \mathcal{C}_{k}$), a contradiction again. Therefore, we may assume that $\Delta(G) \geqslant 2(k+1)$. Let $w \in V(G)$ with $d_{G}(w) \geqslant 2(k+1)$.

Suppose first that G contains a vertex u with $d_{G}(u) \leqslant k$. By Proposition 8 and by the minimality assumption, $G^{\prime}:=G-\{u, w\}$ has a near packing σ^{\prime} admitting \mathcal{C}_{k}. We claim that $\sigma:=(u, w) \sigma^{\prime}$ is a near packing of G admitting \mathcal{C}_{k}. Indeed, since $d_{G}(u) \leqslant k$ then $d_{G^{*}}(u) \leqslant k$ as well as $d_{G^{*}}(w) \leqslant k$. Hence, neither u nor w can be in a subgraph of G^{*} of connectivity $k+1$ or more. Moreover, since $\left.\sigma\right|_{G^{\prime}}$ is a near packing of G^{\prime} admitting \mathcal{C}_{k}, then $G^{*}-\{u, w\}$ does not contain a subgraph of connectivity $k+1$ or more, neither. Therefore, σ is a near packing of G admitting \mathcal{C}_{k}.

Thus, we may assume that $d_{G}(u) \geqslant k+1$ for every $u \in V(G)$. Let S be a maximum set of vertices of G such that S is independent, $k+1 \leqslant d_{G}(u) \leqslant 2 k+1$ for each $u \in S$, and $\left|N_{G}(u) \cap N_{G}(w)\right| \leqslant k$ for every $u, w \in S$. Since S is independent, by Proposition 8 and by the minimality assumption, $G-S$ has a near packing $\sigma^{\prime \prime}$ admitting \mathcal{C}_{k}. By Lemma 7 (with k, l, q replaced by $2 k+1, k, k$, respectively), if $|S| \geqslant 2 k+2$ then there is a permutation σ of G, such that $\left.\sigma\right|_{G-S}=\sigma^{\prime \prime}$ and $d_{G^{*}}(u) \leqslant k$ for every $u \in S$. Simirarly as before, we can see that σ is a near packing of G admitting \mathcal{C}_{k}, a contradiction.

Therefore $|S| \leqslant 2 k+1$ and so $\left|N_{G}(S)\right| \leqslant(2 k+1)^{2}$. Let $V_{j}=\left\{v \in V(G) \backslash N_{G}(S)\right.$: $\left.d_{G}(v)=j\right\}$. Note that by the definition of S, we have $\left|N_{G}(S) \cap N_{G}(u)\right| \geqslant k+1$ for every $u \in V_{k+1} \cup \cdots \cup V_{2 k+1}$. Hence, vertices from $N_{G}(S)$ are incident (in common) to at least $(k+1)\left(\left|V_{k+1}\right|+\cdots+\left|V_{2 k+1}\right|\right)$ edges. Thus,

$$
\begin{aligned}
(2 k+2) n- & 8 k(k+1)^{2}-4 \geqslant 2 m \\
= & \sum_{u \in N_{G}(S)} d_{G}(u)+\sum_{v \in V(G) \backslash N_{G}(S)} d_{G}(v) \\
\geqslant & (k+1)\left(\left|V_{k+1}\right|+\cdots\left|V_{2 k+1}\right|\right)+(k+1)\left|V_{k+1}\right|+\cdots+(2 k+1)\left|V_{2 k+1}\right| \\
& +(2 k+2)\left(n-\left|V_{k+1}\right|+\cdots\left|V_{2 k+1}\right|-\left|N_{G}(S)\right|\right) \\
\geqslant & (2 k+2) n-(2 k+2)(2 k+1)^{2},
\end{aligned}
$$

a contradiction. Hence, we deduce no counterexample to Theorem 10 exists.

Theorem 11. Every graph of girth at least 5 has a near packing admitting \mathcal{C}_{1}.
Proof. Let G be a minimum counterexample to Theorem 11. Let $u \in V(G)$ with $d_{G}(u)=$ $\Delta(G)$. Let $G^{\prime}=G-u$ and $U=N_{G}(u)$. By the girth assumption, U is an independent set in G^{\prime} (as well as in G), and $N_{G^{\prime}}(x) \cap N_{G^{\prime}}(y)=\emptyset$ for every $x, y \in U$. By the minimality assumption $G^{\prime \prime}:=G^{\prime}-U$ has a near packing $\sigma^{\prime \prime}$ admitting \mathcal{C}_{1}. Moreover, $|U|=\Delta(G)$ and $d_{G^{\prime}}(u) \leqslant \Delta(G)-1$. Hence, by Lemma 7 (with $k=\Delta(G)-1, l=1, q=0$), G^{\prime} has a near packing σ^{\prime} such that $\left.\sigma^{\prime}\right|_{G^{\prime \prime}}=\sigma^{\prime \prime}$ and $d_{G^{\prime *}}(u) \leqslant 1$ for each $u \in U$. Thus, since $G^{\prime \prime *}$ is acyclic, $G^{\prime *}$ is also acyclic. Let u be any vertex from U. It is easy to see that the permutation σ such that $\sigma(u)=x, \sigma(x)=u$ and $\sigma(y)=\sigma^{\prime}(y)$ for every $y \in V(G) \backslash\{u, x\}$ is a near packing of G admitting \mathcal{C}_{1}, a contradiction.

4 Near packings admitting \mathcal{D}_{k}

Recall that $m\left(n, \mathcal{D}_{0}\right)=n-2$.
Lemma 12. $m\left(n, \mathcal{D}_{k}\right) \leqslant\left\lceil\frac{(k+2)(n-1)}{2}\right\rceil-1$.
Proof. Let H be a k-regular graph of order $n-1$ provided that k is even or $n-1$ is even. Otherwise, let H be a graph with all but one vertices having degree k and one vertex having degree $k+1$. Let $G=K_{1}+H$ and $V\left(K_{1}\right)=\{u\}$. It is easily seen that for any permutation σ of $V(G)$, the vertex u (as well as its image) has degree at least $k+1$ in G_{σ}^{*}. Thus, G does not have a near packing admitting \mathcal{D}_{k}. Furthermore, $E(G)=\frac{(k+1)(n-1)+n-1}{2}=\frac{(k+2)(n-1)}{2}$ if k is even or $n-1$ is even, or $E(G)=\frac{(k+1)(n-2)+(k+2)+(n-1)}{2}=\frac{(k+2)(n-1)+1}{2}$ otherwise.

We are tempted to propose the following conjecture

Conjecture 13.

$$
\frac{k+2}{2} n-c_{1}(k) \leqslant m\left(n, \mathcal{D}_{k}\right) \leqslant \frac{k+2}{2} n-c_{2}(k),
$$

where $c_{i}(k)$ are constants depending only on k.
The next theorem confirms Conjecture 13 for $k=1$.
Theorem 14. $m\left(n, \mathcal{D}_{1}\right) \geqslant \frac{3}{2} n-10$.
Proof. Let G be a counterexample of minimum order n. Without loss of generality we assume that $m:=|E(G)|=\frac{3}{2} n-10$. Note that if $n \leqslant 16$ then $\frac{3}{2} n-10 \leqslant n-2$. Thus, by Theorem $3, G$ has a packing which contradicts our assumption on G. Hence, we may assume that $n \geqslant 17$. Furthermore, if $\Delta(G) \leqslant 3$, then $(\Delta(G)+1)^{2} \leqslant 16<n+1$, so G has a near packing admitting \mathcal{D}_{1} by Theorem 5 . Thus, we may assume that $\Delta(G) \geqslant 4$. Let $w \in V(G)$ with $d_{G}(w) \geqslant 4$.

Suppose first that G has a vertex u with $d_{G}(u)=0$. Then, by Proposition 8 and by the minimality assumption, $G_{1}:=G-\{u, w\}$ has a a near packing σ_{1} admitting \mathcal{D}_{1}. Clearly, $(u, w) \sigma_{1}$ is a near packing of G admitting \mathcal{D}_{1}.

So we may assume that G has no isolated vertex. Suppose now that G has a vertex u with $d_{G}(u)=1$ and let v be the neighbor of u. If $d_{G}(v) \geqslant 3$ then, by Proposition 8 and by the minimality assumption, $G_{2}:=G-\{u, v\}$ has a near packing σ_{2} admitting \mathcal{D}_{1}. Clearly, $(u, v) \sigma_{2}$ is a near packing admitting \mathcal{D}_{1} of G. Similarly, if $d_{G}(v)=1$ then $(u)(w, v) \sigma_{3}$ is a near packing admitting \mathcal{D}_{1} of G where σ_{3} is a near packing admitting \mathcal{D}_{1} of $G-\{u, v, w\}$ (σ_{3} exists by the minimality assumption). Thus we may assume that $d_{G}(v)=2$. Let x be the neighbor of v different from u. If $x \neq w$ then $(u)(v, w, x) \sigma_{4}$ is a near packing admitting \mathcal{D}_{1} of G where σ_{4} is a near packing admitting \mathcal{D}_{1} of $G-\{u, v, w, x\}$ (σ_{4} exists by the minimality assumption). Finally, if $x=w$ then $(u)(v, w) \sigma_{5}$ is a near packing admitting \mathcal{D}_{1} of G where σ_{5} is a near packing admitting \mathcal{D}_{1} of $G-\{u, v, w\}$ (σ_{5} exists by the minimality assumption).

Therefore, we may assume that $d_{G}(u) \geqslant 2$ for each $u \in V(G)$. Let $S \subset V(G)$ be a maximal set such that S is independent in $G, d_{G}(v)=2$ for every $v \in S$, and $N_{G}(u) \cap N_{G}(v)=\emptyset$ for every $u, v \in S$. Note that $S \neq \emptyset$. By Proposition 8 and by the minimality assumption, $G-S$ has a near packing σ^{\prime} admitting \mathcal{D}_{1}. Note that if $|S| \geqslant 4$, then by Lemma 7 (with $k=2, q=0$ and $l=0$), there exists a near packing of G admitting \mathcal{D}_{1}, a contradiction with the assumption on G. Thus, $|S| \leqslant 3$ and so $\left|N_{G}(S)\right| \leqslant 6$. Let $V_{j}=\left\{v \in V(G) \backslash N_{G}(S): d_{G}(v)=j\right\}$. Note that by the definition of S, we have $\left|N_{G}(S) \cap N_{G}(u)\right| \geqslant 1$ for every $u \in V_{2}$. Therefore,

$$
\begin{aligned}
3 n-20 & =2 m=\sum_{u \in N_{G}(S)} d_{G}(u)+\sum_{v \in V(G) \backslash N_{G}(S)} d_{G}(v) \\
& \geqslant\left|V_{2}\right|+2\left|V_{2}\right|+3\left(n-\left|V_{2}\right|-\left|N_{G}(S)\right|\right) \geqslant 3 n-18,
\end{aligned}
$$

a contradiction. Hence, we deduce no counterexample to Theorem 14 exists.
The following result provides some evidence for Conjecture 13 in case when $k=2$.
Theorem $15([8]) . m\left(n, \mathcal{D}_{2}\right) \geqslant 2 n-10 n^{2 / 3}-7$.

5 Near packings admitting \mathcal{E}_{k}

The join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ together with all the edges joining V_{1} and V_{2}.

Lemma 16. If $n \geqslant 2 k+2$ then $m\left(n, \mathcal{E}_{2 k}\right) \leqslant\left\lceil\frac{(k+2)(n-1)}{2}\right\rceil-1$.
Proof. Let H be a k-regular graph of order $n-1$ provided that k is even or $n-1$ is even. Otherwise, let H be a graph with all but one vertices having degree k and one vertex having degree $k+1$. Let $G=K_{1}+H$ and $V\left(K_{1}\right)=\{u\}$. It is easily seen that for any permutation σ of $V(G)$, the vertex u as well as $\sigma(u)$ has degree at least $k+1$ in G_{σ}^{*}. Thus, if $u \neq \sigma(u)$ then G_{σ}^{*} has at least $2 k+1$ edges. If $u=\sigma(u)$ then u has degree $n-1$ in G_{σ}^{*}. Since $n \geqslant 2 k+2, G_{\sigma}^{*}$ has at least $2 k+1$ edges. Therefore, G does not have a near
packing admitting $\mathcal{E}_{2 k}$. Furthermore, $E(G)=\frac{(k+1)(n-1)+n-1}{2}=\frac{(k+2)(n-1)}{2}$ if k is even or $n-1$ is even, or $E(G)=\frac{(k+1)(n-2)+(k+2)+(n-1)}{2}=\frac{(k+2)(n-1)+1}{2}$ otherwise.

Theorem 17. $m\left(n, \mathcal{E}_{k}\right) \geqslant \sqrt{\frac{k}{2} n(n-1)}$.
Proof. Let G be a graph of order n and size m. We will prove that if $m \leqslant \sqrt{\frac{k}{2} n(n-1)}$ then there is a near-packing of G admitting \mathcal{E}_{k}. Consider the probability space whose n ! points are the permutations of $V(G)$. For any two edges $e, f \in E(G)$ let $X_{e f}$ denote the indicator random variable with value 1 if f is an image of e. Then

$$
E\left(X_{e f}\right)=\operatorname{Prob}\left(X_{e f}=1\right)=\frac{2(n-2)!}{n!}=\binom{n}{2}^{-1} .
$$

Let $X=\sum_{e, f \in E(G)} X_{e f}$. Thus, by the linearity of expectation, we have

$$
E(X)=\sum_{e, f \in E(G)} E\left(X_{e f}\right) \leqslant m^{2}\binom{n}{2}^{-1} \leqslant k .
$$

This implies that there exists a permutation σ of $V(G)$ such that G_{σ}^{*} has at most k edges. Thus, σ is a near packing of G admitting \mathcal{E}_{k}.

References

[1] B. Bollobás and S. E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25:105-124, 1978.
[2] D. Burns and S. Schuster, Every $(p, p-2)$ graph is contained in its complement, J. Graph Theory 1:277-279, 1977.
[3] N. Eaton, A near packing of two graphs, J. Combin. Theory Ser. B, 80:98-103, 2000.
[4] R. J. Faudree, C. C. Rousseau, R. H. Schelp, and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J., 31(106):53-62, 1981.
[5] A. Görlich and A. Żak, A note on packing graphs without cycles of length up to five, Electronic J. Combin., 16:N30, 2009.
[6] A. Görlich and A. Żak, Sparse graphs of girth at least five are packable, Discrete Math., 312:3606-3613, 2012.
[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B, 25:295-302, 1978.
[8] A. Żak, unpublished, 4 pages.

[^0]: *The author was partially supported by the Polish Ministry of Science and Higher Education.

