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Department of Information and
Communications Engineering
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Abstract

The paper proves that there exists an exponential number of nonequivalent pro-
pelinear extended perfect binary codes of length growing to infinity. Specifically, it
is proved that all transitive extended perfect binary codes found by Potapov (2007)
are propelinear. All such codes have small rank, which is one more than the rank of
the extended Hamming code of the same length. We investigate the properties of
these codes and show that any of them has a normalized propelinear representation.

Keywords: binary codes; extended perfect codes; normalized propelinear struc-
tures; propelinear codes

1 Preliminaries

Let Eq be the set {0, 1, . . . , q − 1}, where we distinguish one element as 0. We call words
the elements of the cartesian product En

q . The word (0, . . . , 0) is denoted by 0. Given
two words u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ En

q , the Hamming distance d(u, v)
is the number of positions where they differ. In some cases, when we are interested in
an algebraic structure inside Eq we will take the q-ary finite field Fq instead of Eq, with
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q = pm and p prime. The action of an isometry of En
q can be presented as the action

of a permutation π on the coordinate positions {1, . . . , n} followed by the action of n
permutations σ1, . . . , σn of Eq:

π(x1, . . . , xn) = (xπ−1(1), . . . , xπ−1(n)),

(σ1, . . . , σn)(x1, . . . , xn) = (σ1(x1), . . . , σn(xn)).

The permutation σ = (σ1, . . . , σn) is called a multi-permutation. The composition σ◦σ′
of two multi-permutations σ and σ′ is the following multi-permutation: (σ1 ◦ σ′1, . . . , σn ◦
σ′n), where σi ◦ σ′i is the composition σi ◦ σ′i(xi) = σi(σ

′
i(xi)), for any i ∈ {1, 2, . . . , n}.

By (σ; π)(x) we denote the image of x under an isometry (σ; π) :

(σ; π)(x) = σ(π(x)).

A q-ary code C of length n is a subset of En
q . We denote by Iso(C) the largest subgroup

of isometries of En
q that fix the code C and we call it the isometry group of the code C.

Definition 1. A q-ary code C of length n, 0 ∈ C, is called propelinear if for any codeword
x there exists a coordinate permutation πx and a multi-permutation σx = (σx,1, . . . , σx,n)
satisfying:

(i) for any x ∈ C it holds (σx; πx)(C) = C and (σx; πx)(0) = x,

(ii) if y ∈ C and z = (σx; πx)(y), then:
πz = πx ◦ πy and σz,i = σx,i ◦ σy,π−1

x (i), for any i ∈ {1, . . . , n}; or, equivalently,
(σz; πz) = (σx; πx)(σy; πy).

A q-ary code is called transitive if the isometry group of the code acts transitively on
its codewords, i. e., the code satisfies the property (i) in Definition 1. Transitive codes are
studied in [10, 11].

In the binary case, when q = 2, taking the usual addition on E2 = F2, the above
definition is reduced to the following:

A binary code C is propelinear [8] if for each x ∈ C there exists a coordinate permu-
tation πx such that:

(i) x+ πx(C) = C;

(ii) if x+ πx(y) = z, then πz = πx ◦ πy, for any y ∈ C.

As in the binary case, where we can define a group structure ? on C which is compatible
with the Hamming distance, that is, such that d(x ? u, x ? v) = d(u, v), also in the q-ary
case, given a q-ary propelinear code we define the operation ? as

x ? v = (σx; πx)(v) for any x ∈ C, for any v ∈ En
q . (1)

In [1, 7, 8, 9], properties of binary propelinear codes are deeply studied. Linear codes
and Z2Z4-linear codes are propelinear but, perhaps, one much more interesting example of
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propelinear code is the original Preparata code [9] wich is not a Z4-linear code (although
there is a Z4-linear code with the same parameters [4]). In [2, 3], the relations between
classes of propelinear and transitive codes are investigated. The problem of distinguishing
these classes had been open since 2006. In [3] it was established that these classes are
different. In fact, it was found that the binary Best code of length 10 is transitive, but
not propelinear.

In this paper we establish a new lower bound 1
8n2
√
3
eπ
√

2n/3(1 + o(1)) on the number
of nonequivalent propelinear extended perfect binary codes of length 4n for n going to
infinity. This bound is obtained by showing propelinearity of transitive Potapov codes [6],
the rank of which is one more than the rank of the extended Hamming code of the same
length. The previous lower bound on the number of nonequivalent propelinear extended
perfect binary codes of length n = 2m,m > 4 was blog2(n/2)c2, see [2, 3]. Despite the
fact that the new class of propelinear codes is larger than the old class from [2, 3], it does
not cover the old one (the ranks of codes from [2, 3] and from [6] do not coincide), so the
result [2, 3] keeps current. We investigate in this paper the properties of new propelinear
codes and show that any of them has a normalized propelinear representation.

Now, we give a generalization of the most relevant properties of propelinear codes to
the q-ary case.

Let C be a propelinear code; let Π and Σ be the set of permutations and the set of
multi-permutations, respectively, assigned to the codewords of C (Definition 1) and let ?
be the afore defined operation in C. To emphasize this particular propelinear structure
of C we write (C,Π,Σ, ?) or, simply (C, ?) when we do not require any information about
the set of associated permutations.

The next lemmas are easy to prove from elementary group theory.

Lemma 2. Let (C,Π,Σ, ?) be a q-ary propelinear code of length n.

(i) Let x ∈ C and u, v ∈ En
q . If x ? u = x ? v, then u = v.

(ii) The all-zeroes word 0 is a codeword, 0 ∈ C.

(iii) For any codeword x ∈ C, there exists a unique codeword x′ ∈ C such that x?x′ = 0.

Note: Not always the defined operation ? can be generalized in a proper way over all
En
q . That is, from x, y ∈ C, u ∈ En

q such that x ? u = y ? u, we do not necessarily have
x = y.

Lemma 3. Let (C,Π,Σ, ?) be a q-ary propelinear code. Then C equipped with this oper-
ation ? is a group.

Note that, apart from the group structure on C given by the operation ?, there can
exist a lot of different group structures on a propelinear code, including nonisomorphic
ones (for binary case see [3]).

Clearly, 0 is the identity element in (C, ?) and we denote by x−1 the inverse element of
the codeword x. Denote by Idn the identity permutation over any set of cardinal n. Now,
we can link the coordinate permutations and the multi-permutations of inverse elements.
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Lemma 4. Let (C, ?) be a q-ary propelinear code. Then,

(i) The codeword 0 has the identities as the associated coordinate permutation π0 = Idn
and multi-permutation σ0 = (Idq, Idq, . . . , Idq), respectively.

(ii) We have πx−1 = π−1x and σx−1,i = σ−1x,πx(i), for any codeword x ∈ C and any i ∈
{1, . . . , n}.

Finally, as we said before, the action of ? over En
q is Hamming distance compatible.

Lemma 5. Let (C, ?) be a q-ary propelinear code. Then,

d(x ? u, x ? v) = d(u, v) for any x ∈ C, for any u, v ∈ En
q .

2 Isotopically propelinear MDS codes

A q-ary code of length n, satisfying the property (i) in Definition 1 with πx = Idn for
any x in the code is called an isotopically transitive code. A notion of isotopic transitivity
was introduced by Potapov in [6] and used for constructing an exponential number of
nonequivalent transitive extended binary perfect codes of length n as n goes to infinity.
We call a q-ary propelinear structure on a code C of length n isotopically propelinear, if
for any x ∈ C it holds πx = Idn. If there is an isotopically propelinear structure on a code
C, we call C isotopically propelinear.

A q-ary code C of length m with minimum distance 2 of size qm−1 is a kind of MDS
code. All MDS-codes we use in this paper are of this kind. A quaternary MDS code is a
code with q = 4. A function f : Em−1

q → Eq is called a (m− 1)-ary quasigroup of order q
if f(x1, . . . , xm−1) 6= f(y1, . . . , ym−1) for any words (x1, . . . , xm−1) and (y1, . . . , ym−1) from
Em−1
q that differs in only one position.

It is known that there exists a one-to-one correspondence between (m− 1)-ary quasi-
groups of order q and MDS q-ary codes of length m. Given a (m − 1)-ary quasigroup f
we can construct the code {(x, f(x)) : x ∈ Em−1

q }.
Concerning MDS codes, we mainly consider the quaternary case, i.e., q = 4. We

use two different group operations in E4. First, we use ∗ to refer to the addition when
we see the elements in E4 as elements in Z4. Second, we use ⊕ to refer to the addition
when we see the elements in E4 as elements in Z2 × Z2 through the Gray map given by
0→ (0, 0), 1→ (0, 1), 2→ (1, 1), 3→ (1, 0).

Both next examples were used in [6] to construct extended perfect transitive codes.

Example 1. Let us consider the function x1 ∗x2 from E2
4 to E4. From the correspon-

dence between MDS codes and quasigroups we have that {(x1, x2, x1 ∗x2) : x1, x2 ∈ E4} is
a MDS code. It is straightforward to see that this code is an isotopically propelinear code
with the corresponding permutations σx,1(y) = x1 ∗ y, σx,2(y) = x2 ∗ y, σx,3(y) = x3 ∗ y for
any y ∈ E4, where x3 = x1 ∗ x2.

Example 2. Let x1 ⊕ x2 be the function from E2
4 to E4. The corresponding MDS

code is isotopically propelinear with the following permutations σx,1(y) = x1⊕y, σx,2(y) =
x2 ⊕ y, σx,3(y) = x3 ⊕ y for y ∈ E4, where x3 = x1 ⊕ x2.
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Potapov [6] proved the isotopic transitivity of quaternary MDS codes obtained from
an isotopically transitive MDS code M and the MDS code from Example 2 using the
following concatenated construction:

{(x1, . . . , xi−1, y1, . . . , yr,xi+1, . . . , xm) :

y1 ⊕ y2 ⊕ . . .⊕ yr = xi, x = (x1, . . . , xm) ∈M},
(2)

for some fixed i, 1 6 i 6 m− 1, and for any r = 1, 2, . . .
If the initial code corresponds to a quasigroup f , that is, M = {(x, f(x)) : x ∈ Em−1

4 }
then the constructed code corresponds to the following composition of the quasigroup f
and the quasigroup from Example 2:

g(x1, . . . , xi−1,y1, . . . , yr, xi+1, . . . , xm−1) =

f(x1, . . . , xi−1, y1 ⊕ . . .⊕ yr, xi+1, . . . , xm−1).

The main result of this section is Proposition 8, where we show that the constructed
code is, in fact, isotopically propelinear given that M is isotopically propelinear. Below,
without restricting generality, i is equal to 1.

First of all we recall two technical lemmas.

Lemma 6. [6] Let ϕ be a permutation on the elements of E4. Then ϕ(a ⊕ b) = ϕ(a) ⊕
ϕ(b)⊕ ϕ(0).

Given a permutation σ on the elements of E4 and a word y = (y1, . . . , yr) in Er
4 such

that y1 ⊕ . . . ⊕ yr = σ(0) we define the permutations τy,1, . . . , τy,r in E4 in the following
way:

τy,s(α) = σ(α)⊕ y1 ⊕ . . .⊕ yr ⊕ ys = σ(α)⊕ σ(0)⊕ ys, where s ∈ {1, 2, . . . , r}. (3)

The above defined permutations satisfy the following statement:

Lemma 7. [6, Prop. 7] For any x1, . . . , xr ∈ E4 we have τy,1(x1) ⊕ . . . ⊕ τy,r(xr) =
σ(x1 ⊕ . . .⊕ xr).

Proposition 8. Let M be a quaternary MDS code of length m with an isotopically pro-
pelinear structure (M,Σ, ?) and M ′ = {(y1, . . . , yr, x2, . . . , xm) : (y1, . . . , yr) ∈ Er

4 , y1 ⊕
y2 ⊕ . . .⊕ yr = x1, (x1, . . . , xm) ∈M}.

Then (M ′,∆, ?) is an isotopically propelinear structure on the MDS code M ′ with the
multi-permutation δz=(τy,1, . . . , τy,r, σx,2, . . . , σx,m) assigned to z=(y1, . . . , yr, x2, . . . , xm),
where τy,s is defined in (3) taken σx,1 as the permutation σ, for any s ∈ {1, 2, . . . , r}.

Proof. It is easy to see that the code M ′ has minimum distance 2, length m + r − 1
and size 4r+m−2, i.e., it is an MDS code over E4. Recall that, by definition, σx,1 is the
multi-permutation assigned to a codeword x = (x1, . . . , xm).

By definition of a propelinear structure if a codeword z of M ′ is obtained from a
codeword x of M by replacing the first coordinate x1 with the sequence of elements
y1, . . . , yr from E4, such that y1 ⊕ . . .⊕ yr = x1, then δz = (τy,1, . . . , τy,r, σx,2, . . . , σx,m).
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The code M ′ equipped with the permutations defined above was proved to be iso-
topically transitive, see [6]. Now, we show that this structure is isotopically propelinear.
In order to do so, following Definition 1, we need to show that δδz(z′) = δz ◦ δz′ , where
δz, δz′ , δδz(z′) are the assigned permutations to the elements z, z′, δz(z

′), respectively.
Let z = (y1, . . . , yr, x2, . . . , xm) and z′ = (y′1, . . . , y

′
r, x
′
2, . . . , x

′
m) be two codewords of

M ′, i.e.
y1 ⊕ . . .⊕ yr = x1,

y′1 ⊕ . . .⊕ y′r = x′1, (4)

where x = (x1, . . . , xm), x′ = (x′1, . . . , x
′
m) ∈ M . The permutations assigned to z and z′

are:
δz = (τy,1, . . . , τy,r, σx,2, . . . , σx,m)

δz′ = (τy′,1, . . . , τy′,r, σx′,2, . . . , σx′,m).

We have δz(z
′) = (τy,1(y

′
1), . . . , τy,r(y

′
r), σx,2(x

′
2), . . . , σx,m(x′m)) and, using Lemma 7:

τy,1(y
′
1) ⊕ . . . ⊕ τy,r(y

′
r) = σx,1(y

′
1 ⊕ . . . ⊕ y′r). From this equality and (4) we see that

δz(z
′) is obtained by substituting the first coordinate of σx(x

′) = (σx,1(x
′
1), . . . , σx,m(x′m))

with the sequence of elements τy,1(y
′
1), . . . , τy,r(y

′
r) and τy,1(y

′
1)⊕ . . .⊕ τy,r(y′r) = σx,1(x

′
1).

Therefore, δz(z
′) belongs toM ′. From the isotopic propelinearity of (M,Σ, ?), we have that

the permutation σx◦σx′ is assigned to the codeword σx(x
′) of M , so the multi-permutation

δδz(z′) coincides with δz ◦ δz′ in each one of the jth positions, for r + 1 6 j 6 m+ r − 1.
For the first r positions, by the definition of (M ′,∆, ?), we have

δδz(z′),s(α) = τδz(z′),s(α) = σx,1 ◦ σx′,1(α)⊕ τy,1(y′1)⊕ . . .⊕ τy,r(y′r)⊕ τy,s(y′s) (5)

for s = 1, . . . , r. It remains to prove that the permutation (5) coincides with τz,s ◦ τz′,s
for s = 1, . . . , r. For any s above, using Lemma 6 and Lemma 7, the above equality (5)
comes to:

τδz(z′),s(α) = σx,1(σx′,1(α))⊕ σx,1(y′1 ⊕ . . .⊕ y′r)⊕ σx,1(y′s)⊕ σx,1(0)⊕ ys
= σx,1(σx′,1(α))⊕ σx,1(x′1 ⊕ y′s)⊕ ys
= σx,1

(
σx′,1(α)⊕ x′1 ⊕ y′s

)
⊕ σx,1(0)⊕ ys

= τz,s(σx′,1(α)⊕ σx′,1(0)⊕ y′s) = τz,s(τz′,s(α)).

Potapov [6] considered quasigroups of the following form:

f(x1, . . . , xn−1) = (x1 ⊕ . . .⊕ xi1) ∗ (xi1+1 ⊕ . . .⊕ xi2) ∗ . . . ∗ (xim−2+1 ⊕ . . .⊕ xn−1),

where 1 6 i1 6 . . . 6 im−1 6 n−1 (in throughout what follows, we denote this quasigroup
with fi1,...,im−2), and proved the transitivity property of any MDS code corresponding to a
quasigroup of this type. In this section we show the isotopic propelinearity of these MDS
codes.
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Indeed, let M be the code {(y1, . . . , ym−1, y1∗ . . .∗ym−1) : yj ∈ E4, j = 1, 2, . . . ,m−1}.
This code is isotopically propelinear with the permutation σy = (σy,1, . . . , σy,m−1, σy,m)
assigned to the codeword y = (y1, . . . , ym−1, y1 ∗ . . . ∗ ym−1), where σy,j(α) = α ∗ yj,
for 1 6 j 6 m − 1 and σy,m(α) = α ∗ y1 ∗ . . . ∗ ym−1. In order to obtain the code
M ′ = {(x, fi1,...,im−2(x) : x ∈ En−1

4 } we apply m − 1 times the construction (2) to every
coordinate j, 1 6 j 6 m − 1. By Proposition 8, the code M ′ is isotopically propelinear.
In other words, we obtain the following statement.

Corollary 9. Let M ′ = {(x, fi1,...,im−2(x)) : x ∈ En−1
4 }. Then there exists an isotopically

propelinear structure (M ′,Σ, ?), with the multi-permutation σx assigned to a codeword x
being such that

σx,ij+t(α) = (α ∗ (xij+1 ⊕ . . .⊕ xij+1
))⊕ xij+t, (6)

for 1 6 t 6 ij+1 − ij and 0 6 j 6 m− 2, i0 = 0.

As a consequence of the isotopic propelinearity of these codes we have the same lower
bound for the number of nonequivalent isotopically propelinear codes as the one in [6] for
the isotopically transitive codes.

Corollary 10. There exist at least 1
4(n−1)

√
3
eπ
√

2(n−1)/3(1+o(1)) nonequivalent quaternary

isotopically propelinear MDS codes of length n, for n going to infinity.

3 Propelinear extended perfect codes

In this section we prove that binary extended perfect Phelps codes [5] constructed from
isotopically propelinear MDS codes are propelinear.

First of all, we give some additional notations from [6] and prove some necessary
statements. Let C0 be the binary extended Hamming code of length 4:

C0 = {(0, 0, 0, 0), (1, 1, 1, 1)}.

Bellow, we follow the same notations as in [6]. We identify the elements 0, 1, 2, 3
of E4 with the 4th, 1st, 2nd, 3rd coordinate positions of F4

2, respectively, so we have
e0 = (0, 0, 0, 1), e1 = (1, 0, 0, 0) e2 = (0, 1, 0, 0) e3 = (0, 0, 1, 0). Now, define the codes in
F4
2:

Cr
a = C0 + (1 + r)e0 + ea, for r ∈ {0, 1}, a ∈ E4. (7)

The codes {Cr
a}r=0,1;a∈E4 give a partition of F4

2 into extended perfect codes and the
codes {C0

a}a∈E4 give a partition of the binary full even weight code into extended perfect
codes.

All extended perfect codes of length 4 can be represented as the cosets of C0 and, more
specifically, if b is in Cr′

a′ then:
b+ Cr

a = Cr+r′

a⊕a′ . (8)

Let S4 be the symmetric group of permutations over E4. In [6] it was shown that
the action of a permutation of coordinates (fixing the 4th coordinate) on the partition
{C0

a}a∈E4 can be represented as the action of a permutation of the cosets in this partition.
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Proposition 11. For every σ ∈ S4 the following holds:

Cr
σ(a) + eσ(0) + e0 = π(Cr

a),

for all a ∈ E4 and r ∈ {0, 1}, where π(α) = σ(α)⊕ σ(0) fixes the 4th coordinate.

Proof. Using (7), we get that

Cr
σ(a) + eσ(0) + e0 = C0 + (1 + r)e0 + eσ(a) + eσ(0) + e0.

Since e0 + eσ(a) + eσ(0) + eσ(0)⊕σ(a) is the all-zeros or the all-ones vector, we obtain the
desired property:

Cr
σ(a) + eσ(0) + e0 = C0 + (1 + r)e0 + eπ(a) = π(C0 + (1 + r)e0 + ea) = π(Cr

a).

Proposition 12. The mapping σ → π is a homomorphism from S4 to S3. The kernel of
the homomorphism is the set of permutations of type σ(α) = α⊕ b, for some b ∈ E4 and
for any α.

Proof. Let π(α) = σ(α)⊕ σ(0) and π′(α) = σ′(α)⊕ σ′(0) for any α ∈ E4. Using Lemma
6, we have

π′(π(α)) = σ′(σ(α)⊕ σ(0))⊕ σ′(0) = σ′(σ(α))⊕ σ′(σ(0))

for any α ∈ E4.
The claim about the kernel is trivial.

Now, consider the Phelps concatenation construction [5], see also [12]:

C =
⋃

(h1,...,hn)∈H

⋃
(a1,...,an)∈M

Ch1
a1
× . . .× Chn

an , (9)

where H is an extended Hamming code of length n, M is a quaternary MDS code of length
n and codes Chi

ai
, i = 1, . . . , n, are defined in (7). Using the construction (9), Potapov in

[6] found a large class of transitive codes taking M being isotopically transitive. These
MDS codes correspond to quasigroups

f(x1, . . . , xn−1) = (x1 ⊕ . . .⊕ xi1) ∗ (xi1+1 ⊕ . . .⊕ xi2) ∗ . . . ∗ (xim−2+1 ⊕ . . .⊕ xn−1), (10)

for any i1, . . . , im−2, such that 1 6 i1 < . . . < im−2 < n − 1. In the previous section we
proved that all these isotopically transitive MDS codes are isotopically propelinear. Now,
we show that all Potapov’s transitive extended perfect binary codes are propelinear too.

Theorem 13. Let M be a quaternary isotopically propelinear MDS code of length n, H
be a binary extended Hamming code of length n. Then, the code

C =
⋃

(h1,...,hn)∈H

⋃
(a1,...,an)∈M

Ch1
a1
× . . .× Chn

an

is a binary propelinear extended perfect code of length 4n.
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Proof. Let (M,Σ, ?) be an isotopically propelinear structure on the code M . Let σa =
(σa,1, . . . , σa,n) be the multi-permutation assigned to a codeword a = (a1, . . . , an) of M .
For any i ∈ {1, . . . , n}, let πai be the permutation defined by Proposition 11 when σ is
equal to σa,i:

Cr
σa,i(b)

+ eai + e0 = πai(C
r
b ), for any b ∈ E4, and any r ∈ {0, 1}.

To every codeword c in the class Ch1
a1
× . . . × Chn

an , where (h1, . . . , hn) ∈ H we assign
the permutation πa = (πa1 , . . . , πan) acting on 4n coordinates in the following way: if
x = (x1, . . . , xn) is a word of length 4n such that xi is a word of length 4 for any i, then
πa(x1, . . . , xn) = (πa1(x1), . . . , πan(xn)). In [6] it is proved that the code C with these
permutations is transitive. We now show that it is propelinear too.

Let c ∈ Ch1
a1
× . . .× Chn

an ; c′ ∈ Ch′1
a′1
× . . .× Ch′n

a′n
and let πa and πa′ be the permutations

assigned to the codewords c and c′, respectively. To show that C is propelinear it is

enough to show that the permutation assigned to the class c + πa(C
h′1
a′1
× . . . × C

h′n
a′n

) is
πa ◦ πa′ .

Let us find more convenient representation for the class c + πa(C
h′1
a′1
× . . .× Ch′n

a′n
). By

the definition of πa we have the following equalities:

πa(C
h′1
a′1
× . . .× Ch′n

a′n
) = πa1(C

h′1
a′1

)× . . .× πan(C
h′n
a′n

)

= (C
h′1
σa,1(a′1)

+ ea1 + e0)× . . .× (C
h′n
σa,n(a′n)

+ ean + e0).

Since c ∈ Ch1
a1
× . . .× Chn

an , from the last equality and using (8) we obtain

c+ πa(C
h′1
a′1
× . . .× Ch′n

a′n
) = C

h′1+h1
σa,1(a′1)

× . . .× Ch′n+hn
σa,n(a′n)

.

Thus, we have to find the permutation corresponding to the codewords of the class

C
h′1+h1
σa,1(a′1)

× . . . × C
h′n+hn
σa,n(a′n)

. By propelinearity of M , the multi-permutation assigned to

(σa,1(a
′
1), . . . , σa,n(a′n)) ∈ M is σa ◦ σa′ = (σa,1 ◦ σa′,1, . . . , σa,n ◦ σa′,n). Finally, from

Proposition 12 and the definitions of permutations on C, we obtain that πa ◦ πa′ is the

permutation assigned to the codewords of the class C
h′1+h1
σa,1(a′1)

× . . .×Ch′n+hn
σa,n(a′n)

= c+πa(C
h′1
a′1
×

. . .× Ch′n
a′n

).

And, finally, considering MDS codes corresponding to quasigroups of type

fi1...im−2(a1 . . . an−1)=(a1 ⊕ . . .⊕ ai1) ∗ (ai1+1 ⊕ . . .⊕ ai2) ∗ . . . ∗ (aim−2+1 ⊕ . . .⊕ an−1),

applying the results of the previous section, and using the same considerations as in [6]
we obtain:

Corollary 14. There exist at least 1
8n2
√
3
eπ
√

2n/3(1 + o(1)) nonequivalent propelinear ex-
tended perfect binary codes of length 4n, for n going to infinity.
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4 Normality

The concept of binary normalized propelinear codes was introduced in [3]. A propelinear
structure on a binary code C is called normalized if the codewords of the same coset of
the code C by the kernel have the same assigned permutation.

In this section we analyze the propelinear structure defined in Theorem 13, when MDS
code corresponds to the quasigroup

fi1...im−2(a1 . . . an−1)=(a1 ⊕ . . .⊕ ai1) ∗ (ai1+1 ⊕ . . .⊕ ai2) ∗ . . . ∗ (aim−2+1 ⊕ . . .⊕ an−1).

We show that the structure is normalized if and only if m is odd. For even m it is not
normalized, however we can find an exponential number of propelinear representations of
the Phelps codes, which are normalized propelinear.

By Ker(M), the kernel of an arbitrary MDS code M over E4 we mean the collection
of all its codewords a such that

a⊕M = M.

We begin with describing the kernel of the MDS and Phelps codes.

Proposition 15. Let M be a MDS code of length n, H be an extended Hamming code of
length n,

C =
⋃
h∈H

⋃
a∈M

Ch1
a1
× . . .× Chn

an .

Then a codeword c from the code C
h′1
a′1
× . . . × C

h′n
a′n

belongs to Ker(C) if and only if the

word a′ = (a′1, . . . , a
′
n) belongs to Ker(M).

Proof. Let c be a codeword in C
h′1
a′1
× . . .× Ch′n

a′n
. We know that (h′1, h

′
2, . . . , h

′
n) +H = H,

so
C =

⋃
h∈H

⋃
a∈M

Ch1+h′1
a1

× . . .× Chn+h′n
an .

From (8) we have:

c+ C = c+
⋃
h∈H

⋃
a∈M

Ch1+h′1
a1

× . . .× Chn+h′n
an =

⋃
h∈H

⋃
a∈M

Ch1
a1⊕a′1

× . . .× Chn
an⊕a′n .

Therefore, c is in Ker(C) if and only if a′ is in Ker(M).

From this point and further on we represent a codeword of a MDS code corresponding
to a quasigroup f as (a, f(a)).

Proposition 16. Let f be a (n-1)-quasigroup of order 4 and M the MDS code M =
{(a, f(a)) : a ∈ En−1

4 }. The codeword (a′, f(a′)) belongs to Ker(M) if and only if f(a ⊕
a′) = f(a)⊕ f(a′), for all a ∈ En−1

4 .

Proof. If (a′, f(a′)) ∈ Ker(M) then (a′, f(a′)) ⊕M = M , so, for all a ∈ En−1
4 we have

(a′⊕ a, f(a′)⊕ f(a)) ∈M . So (a′⊕ a, f(a′)⊕ f(a)) and (a⊕ a′, f(a⊕ a′)) both belong to
M , therefore, f(a)⊕ f(a′) = f(a⊕ a′) and vice versa.
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Now, we focus on the case when MDS code corresponds to the quasigroup

fi1...im−2(a1 . . . an−1)=(a1 ⊕ . . .⊕ ai1) ∗ (ai1+1 ⊕ . . .⊕ ai2) ∗ . . . ∗ (aim−2+1 ⊕ . . .⊕ an−1).

We need a technical lemma. In through out what follows, u−1 denotes the inverse
element of u in the group (E4, ∗).

Lemma 17.

(i) For all u ∈ E4 it is true u′ ⊕ u =

{
u′ ∗ u for u′ ∈ {0, 2};
u′ ∗ u−1 for u′ ∈ {1, 3}.

(ii) There is no u′ ∈ E4 such that the equality

u′ ⊕ (u ∗ v) = u′ ∗ u−1 ∗ v

holds for any u and v from E4.

Proof. The first statement follows directly from the definitions of operations ⊕ and ∗.
Let us prove the second statement. If u′ belongs to {0, 2}, then by the first statement

we have u′ ⊕ (u ∗ v) = u′ ∗ u ∗ v for any u and v in E4, but for u ∈ {1, 3} we have:
u′ ∗ u ∗ v 6= u′ ∗ u−1 ∗ v.

If u′ belongs to {1, 3}, then by the first statement we obtain u′⊕ (u∗v) = u′ ∗u−1 ∗v−1
for any u and v in E4, but for v ∈ {1, 3} we have u′ ∗ u−1 ∗ v−1 6= u′ ∗ u−1 ∗ v.

We now describe the kernel of a particular MDS code.

Proposition 18. Let M = {(a, a1 ∗ . . . ∗ am−1) : a = (a1, . . . , am−1) ∈ Em−1
4 }. Then

Ker(M)=

{
{(a′, a′1 ∗ . . . ∗ a′m−1) |a′ ∈ {0, 2}m−1}, if m is odd,
{(a′, a′1 ∗ . . . ∗ a′m−1) |a′ ∈ {0, 2}m−1 ∪ {1, 3}m−1}, if m is even.

Proof. By Proposition 16 it is true that (a′, a′1 . . . a
′
m−1) ∈ Ker(M) if and only if for any

a ∈ Em−1
4 :

(a′1 ⊕ a1) ∗ . . . ∗ (a′m−1 ⊕ am−1) = (a′1 ∗ . . . ∗ a′m−1)⊕ (a1 ∗ . . . ∗ am−1). (11)

Let the first k coordinates of a′ be from {0, 2} and the last m− 1− k coordinates be from
{1, 3}. Now, from Lemma 17 we can express the operation ⊕ in (11) by the operation ∗:
(a′1 ⊕ a1) ∗ . . . ∗ (a′m−1 ⊕ am−1) = a′1 ∗ a1 ∗ . . . ∗ a′k ∗ ak ∗ a′k+1 ∗ a−1k+1 ∗ . . . ∗ a′m−1 ∗ a

−1
m−1, so

the condition (11) of belonging to the kernel of M can be rewritten as:

(a′1 ∗ . . . ∗ a′m−1)⊕ (a1 ∗ . . . ∗ am−1) = a′1 ∗ . . . ∗ a′m−1 ∗ a1 ∗ . . . ∗ ak ∗ a−1k+1 ∗ . . . ∗ a
−1
m−1,

for any a ∈ Em−1
4 .

Let u′ be equal to a′1 ∗ . . . ∗ a′m−1; u be equal to a1 ∗ . . . ∗ ak and v be equal to
ak+1∗. . .∗am−1. Using these notations, the property of belonging to the kernel is equivalent
to:

the electronic journal of combinatorics 20(2) (2013), #P37 11



(i) If k = 0, then a′ ∈ {1, 3}m−1 and u′ ⊕ v = u′ ∗ v−1 implying, by Lemma 17, that
u′ ∈ {1, 3}. Therefore m is even.

(ii) If k = m− 1, then a′ ∈ {0, 2}m−1 and u′ ⊕ u = u′ ∗ u implying, by Lemma 17, that
u′ ∈ {0, 2}, which is true for any m.

(iii) If 0 < k < m−1, then u′⊕ (u∗v) = u′ ∗u∗v−1, which is impossible, again according
to Lemma 17.

For the general case we have the following description for the kernels:

Theorem 19. Let M = {(a, fi1,...,im−2(a)) : a ∈ En−1
4 } be a MDS code.

Then, (a, fi1,...,im−2(a)) belongs to Ker(M) if and only if the word of partial sums

(⊕i1j=1aj,⊕
i2
j=i1+1aj, . . . ,⊕n−1j=im−2+1aj)

belongs to {0, 2}m−1 for odd m and to {0, 2}m−1 ∪ {1, 3}m−1 for even m.

Proof. Directly from Proposition 18.

From Theorem 19 and Proposition 15 we obtain:

Corollary 20. Let C be the code obtained by Phelps construction

C =
⋃
h∈H

⋃
(a,fi1,...,im−2

(a))∈M

Ch1
a1
× . . .× Chn−1

an−1
× Chn

fi1,...,im−2
(a1,...,an−1)

.

If m is odd then |Ker(C)| = 23n−2−log2(n) and if m is even |Ker(C)| = 23n−1−log2(n).

Theorem 21. Let

C =
⋃
h∈H

⋃
(a,fi1,...,im−2

(a))∈M

Ch1
a1
× . . .× Chn−1

an−1
× Chn

fi1,...,im−2
(a1,...,an−1)

,

and let (C,Π, ?) be the propelinear structure on C, defined in Theorem 13. Then
(i) (C,Π, ?) is normalized, if m is odd;
(ii) (C,Π, ?) is not normalized and there exist at least 2n−2 different normalized pro-

pelinear structures on C, if m is even.

Proof. Let M ′ be the MDS code {(a, fi1,...,im−2(a)) : a ∈ En−1
4 } and (a′, fi1,...,im−2(a

′)) ∈
Ker(M ′). Let the multi-permutation (σa′,1, . . . , σa′,n−1, σa′,n) be assigned to the word
(a′, fi1,...,im−2(a

′)) of M ′. Let t be such that is + 1 6 t 6 is+1, for s = 0, . . . ,m, i0 =
0, im−1 = n− 1. Then, by the definition of the propelinear structure on M ′, see Corollary
9, we have

σa′,t(α) = ((ais+1 ⊕ . . .⊕ ais+1) ∗ α)⊕ at ⊕ ais+1 ⊕ . . .⊕ ais+1 ,
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σa′,n(α) = (a1 ⊕ . . .⊕ ai1) ∗ (ai1+1 ⊕ . . .⊕ ai2) ∗ . . . ∗ (aim−2+1 ⊕ . . .⊕ an−1) ∗ α.

By Theorem 19, ais+1 ⊕ . . . ⊕ ais+1 belongs to {0, 2} or {1, 3} simultaneously for any
s = 0, . . . ,m− 2.

Let ais+1 ⊕ . . . ⊕ ais+1 be from {0, 2}. Then, by Lemma 17, σa′,t(α) = (ais+1 ⊕ . . . ⊕
ais+1) ⊕ α ⊕ at ⊕ ais+1 ⊕ . . . ⊕ ais+1 = α ⊕ at. Therefore, according to the assignment
of permutations to the codewords of C (see Theorem 13) and by Proposition 12 (ii),
the permutation π(a′,fi1,...,im−2

(a′)) = (π(a′,fi1,...,im−2
(a′)),1, . . . , π(a′,fi1,...,im−2

(a′)),n) assigned to

a codeword c in the class C
h′1
a′1
× . . . × Ch′n−1

a′n−1
× Ch′n

fi1,...,im−2
(a′) is the identity. Taking into

account the description of kernel given in Theorem 19, the structure is normalized for odd
m.

Let ais+1⊕ . . .⊕ ais+1 be from the set {1, 3}. Then, by Lemma 17, σa′,t(α) = ((ais+1⊕
. . .⊕ais+1)⊕α−1⊕at⊕ais+1⊕ . . .⊕ais+1 = α−1⊕at. It is easy to see that the permutation
σa′,t(α) = α−1 ⊕ at is not a permutation of “linear type”, i.e. cannot be expressed as
α ⊕ u for some fixed u from E4. So, according to the assignment of permutations to
the codewords of C (see Theorem 13), and again by Proposition 12(ii), the permutation
π(a′,fi1,...,im−2

(a′)) = (π(a′,fi1,...,im−2
(a′)),1, . . . , πa′,fi1,...,im−2

(a′),n) assigned to the codeword c in

C
h′1
a′1
× . . .× Ch′n−1

a′n−1
× Ch′n

fi1,...,im−2
(a′) is not the identity.

Hence, for even m, one half of the codewords of the kernel have assigned the identity
permutation, and the second half have assigned the same non-identity permutation.

Note that in case of even m, there exist several normalized propelinear structures.
According to the proof of the Theorem 13, every codeword is assigned a permutation of
the form πa = (πa1 , . . . , πan), where πai ∈ S4 fixes one coordinate (see Proposition 11), for
any i = 1, . . . , n. Hence, πai could only have order 2 or 3, for all i = 1, . . . , n, so πa has
order 2, 3 or 6. However, orders 3 and 6 can not occur. Given a propelinear code (D,Π, ?)
with |D| being a power of 2, we have that |Π = {πx : x ∈ C}| is also a power of 2. Indeed,
the map x 7→ πx is group homomorphism from the group D onto the permutation group
Π. Therefore, for any codeword x, the order of πx is a power of 2 as well. We conclude
that all permutations assigned to the codewords of C are involutions and, in this case,
C has |{πx : x ∈ Ker(C)}|log(|C|)−dim(Ker(C)) different normalized propelinear structures (a
proof of this fact is given in [3]). Substituting the value of dim(Ker(C)) obtained from
Corollary 20, we obtain 2n−2 different structures.
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