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Abstract

In this paper, we investigate semisymmetric graphs which arise from affine prim-
itive permutation groups. We give a characterization of such graphs, and then con-
struct an infinite family of semisymmetric graphs which contains the Gray graph
as the third smallest member. Then, as a consequence, we obtain a factorization of
the complete bipartite graph Kpspt povt into connected semisymmetric graphs, where
p is an prime, 1 <t < s with s > 2 while p = 2.
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1 Introduction

All graphs considered in this paper are assumed to be finite and simple with non-empty
edge sets.

For a graph I', denote by VI', EI" and Aut!’ the vertex set, edge set and automorphism
group, respectively. A graph I' is said to be vertez-transitive or edge-transitive if Autl’
acts transitively on VI or ET', respectively. A regular graph is called semisymmetric if
it is edge-transitive but not vertex-transitive. For a graph I', an arc of I' is an ordered
pair («, ) of two adjacency vertices. A graph I' is called symmetric if it has no isolated
vertices and Autl’ acts transitively on the set of arcs of I'.

The class of semisymmetric graphs was first studied by Folkman [9], who possed
several open problem. Afterwards, many authors have done much work on this topic, see
[1,2,3,7,8, 10, 11, 12, 15, 16, 17, 18, 19] for references. In particular, lots of interesting
examples of such graphs were found. For example, the Folkman graph on 20 vertices,
the smallest semisymmetric graph, was constructed by Folkman [9]; the Gray graph, a
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cubic graph of order 54, was first observed to be semisymmetric by Bouwer [1]. In 1985,
lofinova and Ivanov [11] classified all bi-primitive cubic semisymmetric graphs and they
proved that there are only five such graphs.

In this paper, we consider the semisymmetric graphs whose automorphism group con-
tains a subgroup inducing an affine primitive permutation group. For more information
about groups of this kind, see [5, 6]. To state our result, we need to introduce several
concepts and some notation.

Let p be a prime and F, the field of order p. Then, for an integer [ > 1 and an
irreducible subgroup H of the general linear group GL(/, p), all affine transformations 7,
form a primitive subgroup X of AGL((,p) (acting on the vectors of IF;), where h € H,
v € Fl, and 7, is defined as F}, — F},, u — u” +v. The above group is a split extension
of a regular normal subgroup {r, | v € IFfD} by the subgroup H. For convenience, for a
subspace V of Fl,, we set T(V) = {71, | v € V} and denote by Ny (V') the subgroup of H
fixing V' set-wise. Then X = T(F},):H, and Ny(V) = Ng(T(V)), the normalizer of T(V')
in H.

For a graph I' and a subgroup G < Autl’, I' is said to be G-vertex-transitive or
G-edge-transitive if G is transitive on VI' or EI', respectively. The graph [ is called
G-semisymmetric graphs if it is regular, G-edge-transitive but not G-vertex-transitive.

Let I' be a connected G-edge-transitive graph, where G < Autl’. Assume that G is
not transitive on V' I'. Then I' is a bipartite graph with two parts, say U and W, which
are the G-orbits on VI'. Denote respectively by GY and G" the permutation groups
induced by G on U and on W. Our main result deals with the case where one of GV and
G" is an affine primitive permutation group.

Theorem 1.1. Let X = T(F,):H, where p is a prime, | > 1 and H is an irreducible
subgroup of the general linear group GL(l,p). Then the following two statements are
equivalent.

(1) FL has an s-dimensional subspace V' for some integer 1 < s < I such that |H :
Ny (V)| = p' for some integer 1 <t < s.

(2) There ezists a semisymmetric graph I' with bipartition VI = U U W with one of
GY and GY is permutation isomorphic to X for some edge-transitive subgroup G of

Autl.

Remark. Theorem 1.1 suggests the following interesting problem.

Problem 1. Characterize irreducible subgroups of the general linear group GL(I, p)
satisfying Theorem 1.1 (1).

It is well-known that there are no semisymmetric graph of orders 16, 2p and 2p?, see
[9]. Thus, for Theorem 1.1 (1), we have [ > 3 and (p,[) # (2, 3).

2 Proof of Theorem 1.1

Assume that I" is a G-edge-transitive but not G-vertex-transitive graph, where G < Aut!".
Then [ is a bipartite graph with two parts, say U and W, which are the G-orbits on V' I'.
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It follows that I' is semiregular, that is, the vertices in a same bipartition subset have the
same valency. For a given vertex a € VI, the stabilizer acts transitively on I'(a). Thus, if
I is vertex-transitive then it must be symmetric. Take 8 € I'(«). Then each vertex of I
can be written as o or 39 for some g € G. Then, for two arbitrary vertices o and 3", they
are adjacent in I if and only if & and """ are adjacent, i.e., hg™! € G3G,. Moreover,
it is well-known and easily shown that I" is connected if and only if (G,,Gs) = G.

Let I' be a G-semisymmetric graph with two bipartition subsets U and W. Suppose
that G has a subgroup R which is regular on both U and W. Take an edge {«, 5} € ET.
Then each vertex in U (W, resp.) can be written uniquely as o® (5%, resp.) for some
z € R Set S={seR| S €'(x)}. Then o and (Y are adjacent if and only if
yr~! € S. If R is abelian, then it is easily shown that a® — 87, 8% — a® ', Yz € R is
an automorphism of ', which leads to the vertex-transitivity of I, refer to [8, 14].

Lemma 2.1. Let I' be a G-semisymmetric graph. Assume that G has an abelian subgroup
which 1s reqular on both parts of I'. Then I' is symmetric.

Let I' be a G-semisymmetric graph. Suppose that G' has a normal subgroup N which
acts intransitively on at least one of the bipartition subsets of I'. Then we define the
quotient graph 'y to have vertices the N-orbits on VI, and two N-orbits A and A’ are
adjacent in Iy if and only if some o € A and some 8 € A’ are adjacent in I'. It is easy
to see that the quotient ['y is a regular graph if and only if all N-orbits have the same
length.

Let I' be a finite connected G-semisymmetric graph with G < Autl'. Take an edge
{a,8} € EI and let U = a“ and W = 8% be the two G-orbits on VI'. Assume that
G is unfaithful on U, and let K be the kernel of G acting on U. Then K is faithful on
W, and each K-orbits on W contains at least two vertices. It follows that there are two
distinct vertices in W which have the same neighborhood in I'. Thus, as observed in [8],
if any two distinct vertices in U have different neighborhoods in the quotient 'y then I
is semisymmetric and can be reconstructed from [y as follows.

Construction 2.2. Let & be a bipartite graph with two bipartition subset U and W
such that m|W| = |U| for integer m > 1. Define a bipartite graph 3™ with vertex

set U U (W xZ,,) such that o and (3,i) are adjacent if and only if {a, 3} € EI'. For
convenience, we set Y11 = 3.

For a group X, the socle of X, denoted by soc(X), is generated by all minimal normal
subgroups of X. A permutation group is called quasiprimitive if each of its minimal
normal subgroups is transitive.

Lemma 2.3. Let I' be a finite connected G-semisymmetric graph with G < Autl'. Take
an edge {o, 8} € ET" and set U = a% and W = 3Y. Assume that GY is quasiprimitive.
Then either G is faithful on both U and W, or one of the following statements hold.

(1) I' is isomorphic to the complete bipartite graph Ky u|;
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(2) G is faithful on W but not faithful on U, GY = GW, and T is semisymmetric if
further GY is primitive, where K is the kernel of G on U and W is the set of
K-orbits on W.

Proof. To prove this lemma, we assume next that G is unfaithful on at least one of U and
W and that I" 2 K|U|,\U|-

Since G < Autl’, the kernel of G on one bipartition subset must be faithful on the
other one. Then the above assumption implies that G is faithful on W. Thus G is
unfaithful on U. Let K and W be as in the lemma. Then GY = G/K and G induces
a subgroup G = G/K of Autl'x. Suppose that G is unfaithful on W. Then it follows
that I'x = Ky, and so I' = K| by noting that % C I'(a) if 8 € I'(a), a
contradiction. Thus G is faithful on W, so K is the kernel of GG acting on W, and hence
GVU>G/K=2GW.

Note that each K-orbit on W has size at least 2, and that two vertices in a same
K-orbit have the same neighborhood in I'. Assume that GU is primitive. Then, since
I' 22 Kiyy, ), any two distinct vertices in U have different neighborhood. Thus there is no
r € Autl’ with U®” = W, so I' must be semisymmetric. |

Corollary 2.4. Let G a finite group which acts faithfully and transitively on both nonempty
sets U and W with |U| = m|W| for an integer m > 1. For a € U and a Gy-orbit © on
W, define a bipartite graph ¥ on UUW such that o9 € U and B € W are adjacent if and
only if f € ©9. If GU is primitive, then XY™ is a semisymmetric graph unless © = W.

Proof. Assume that GU is primitive and © # W. By Lemma 2.3, it suffices to show that
AutX!™ has an edge-transitive subgroup which fixes U and induces a permutation group
on U permutation isomorphic to GY. Let Y = G'xZ,,. Define an action of ¥ on Vx1™
as follows:

(@)= = 9% (B, ) = (8*,i+j), V9,2 € G, i,j € L, B € W.

Then, under the above action, Y is a subgroup of AutXb™ as desired. |

Remark. A graph is called edge-primitive if its automorphism group is primitive on its
edge set. Using Corollary 2.4, we can construct examples of semisymmetric graphs from
an edge-primitive graph of even valency, such as the complete graph Ky, 1, the Perkel
graph and etc., by taking U, W and © respectively the edge set, vertex set and an orbit
on W of some edge-stabilizer of the edge-primitive graph.

Here we pose the next interesting problem.

Problem 2. Characterize or classify the primitive subgroups of S,, which have transi-
tive permutation representations of degree properly dividing n.

Lemma 2.5. Let I' be a connected G-semisymmetric graph with G < Autl’. Take an
edge {a, B} € ET and set U = a% and W = Y. Assume that G is faithful on both U and
W. Assume that GY is an affine primitive permutation group and I' is not a complete
bipartite graph. Then either G is primitive on W, or I' is semisymmetric.
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Proof. Set N = soc(G). Then N = Zé for a prime p and integer [ > 1. It is easily shown
that G is primitive on W if and only if N is transitive on W. To finish the proof, in the
following, we prove that I' is semisymmetric if N is intransitive on W.

Suppose that NV is intransitive on W and I" is symmetric. Then IV, # 1 for any v € W.
Let X be the set-wise stabilizer of U in Aut/". Then G < X and |Autl" : X| = 2. Note
that XYV is a primitive permutation group. By Lemma 2.3, since I" is not a complete
bipartite graph, we may assume that X is faithful on both U and W. Let M = soc(X).
Take x € Autl” with o = § and % = . Then U* = W and W?* = U. Note that X is a
primitive permutation group (on U) of degree p'. Then M is the unique minimal normal
subgroup of X by the O’Nan-Scott Theorem, refer to [4, Theorem 4.1A]. Thus M* = M,
it follows that M is transitive on both U and W. If X is of affine type then M = N
by [20, Proposition 5.1], so N is transitive on U, a contradiction. Then, by [13] and [20,
Proposition 5.1], N < M and M is listed as follows:

(i) M =T where (p,T) is one of (11, PSL(2,11)), (11, My;), (23, Ma3) and
(4= PSL(d.q)); or

(ii) M =Ty x---xTyand N = (NNT1)x - - x(NNT}), where T; = Aps and NNT; =2 Z;
for1 <i<t, p’>>5andst=1L

For (i) and (ii) with s = 1, the stabilizer M, has order coprime to p, and so does for
MZ = Mg, hence NN Mg = 1, which contradicts that Ng # 1. Thus (ii) occurs and s > 2,
so p® > 5. It is easily shown that (T;), = Ay and M, = (T1)aX - - X(1})o. Then Mz =
M2 = ((Th)ax -+ x(T1)a)® = (TiNMy) x - - - X (TyNMy))* = (Th)% - - - X(T1)5. It implies
that {(71)a, -, (T2)a}® = {(T1)p, - - - , (T})5} as all (T}), are simple and nonabelian. In
particular, (7;)s = Aps_1, so (1;) and (7;)s are conjugate in T; for 1 < i < ¢t. Thus M,
and Mg are conjugate in M. Since M is transitive on W, there is v € W with M, = M,.
Then Ny, = NNM, = NN M, =1 as N is regular on U, again a contradiction. This
completes the proof. |

Remark It is well-known that there are no symmetric graphs of order 2p and 2p?. Thus,
for Lemma 2.5, if N is intransitive on W then N = Zé for [ > 3, which also follows from
checking the irreducible subgroups of GL(2,p).
Proof of Theorem 1.1. Let I' be a semisymmetric graph with bipartition VI' = UUW
satisfying Theorem 1.1 (2). Then I' must be connected. Without loss of generality, we
assume that GV is permutation isomorphic to X. By Lemma 2.3, G is faithful on W. Let
K be the kernel of G acting on U and W be the set of K-orbits on W, while K = 1 and
W = W if G is faithful on U. Then, by Lemmas 2.3 and 2.5, I is edge-transitive but
not vertex-transitive. Let G be the subgroup of Autl’x induced by G. Then G = G/K,
and GV is permutation isomorphic to X.

Set N = soc(G). Suppose that N is transitive on W. Then, since N is faithful
on W, we have |W| = |[N| = |U|. Thus K = 1 and I' = [k, I' is symmetric by
Lemma 2.1, a contradiction. Then N is intransitive on W. Take an edge {a, 8} of Ik

with @ € U and 3 € W. Then each N-orbit on W has size [N:N3| # 1, and N has
W

INN‘—pT. Then 1 < r < s < (. Since

exactly |]\|, - orbits on W. Set |N3| = p* and
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G is transitive on W, we know that G, is transitive on the set of N-orbits. Let B be
an N-orbit containing 3. Then |G, : (G4)p| = p". Since G, is maximal in G, we have
Go € Ng(Nj). So |Ga : Ng, (Ng)| > 1. Consider the set-wise stabilizer (Go)p. For
g € (Gqo)p, noting that Nz is the kernel of NV acting on B, we have 3% = 39 for x € Np,
so grg~' € NN Gz = Nj. Thus (Ga)p < Ng,(N3). Set |G, : N (Ng)| = p'. Then
t > 1, and p' divides |G, : (Ga)p| = p", so t < r < s. Noting that GV is permutation
isomorphic to X, (1) of Theorem 1.1 follows.

Now we assume that Theorem 1.1 (1) holds. To show (2), it suffices to construct a
suitable semisymmetric graph. Set R = T(V)Ny(V). Let W be the set of right cosets
of R in X, and let U be the set of vectors in FL. Then |[W| = p'~**". Extend X to
a permutation group on U U W such that XY = X and X acts on W by the right
multiplication on the right cosets of R in X. It is easily shown that X is faithful on both
Uand W. Let © = {Rh | h € H}. Then |6] = Ll = |H : Ny(V)| = p < [W].
Define a bipartite graph ¥ on U U W such that w € U and 8 € W are adjacent if and
only if 3 € ©™«. Then ¥ is X-edge-transitive. Let m = p**. If m = 1 then, by
Lemma 2.5, Y is a semisymmetric graph as desired. If m > 1 then, by Corollary 2.4, X5™
is a semisymmetric graph as desired. This completes the proof. 1

3 Some examples

Let X = T(]Fé):H be a primitive permutation group satisfying Theorem 1.1 (1). Then,
up to isomorphism, each graph satisfying Theorem 1.1 (2) can be constructed from an
X-edge-transitive graph which is not a complete bipartite graph and has one bipartition
subset coinciding with the underlaying set of Fé). Let X be such an X-edge-transitive graph
with two bipartition subsets U = IF; and W. Then, for each 8 € W, the stabilizer Xz
normalizes (T(F}))s = T(V), where V is an s-dimensional subspace of U and XsNT(F.) =
T(V). Thus X3 < Nx(T(V)) = T(F,)Ng (V). Assume that T(F,) has p” orbits on W,
and set |[H : Ny (V)| =p'. Then1 <t <r < s <, and |Xs| = p*"|H|. We next consider
one extreme case.

Assume that Xz = T(V):Ng (V). Then r = ¢, and W may be identified with Upep{u+
V| u e F} with the action of X on W as follows:

(u+ VM = (u+ )" + V" Vu, i € FL, bW € H.

For each u € U = FL, set O(u) = {u" + V" | h € H}. Then {O(u) | u € F.} is the set
of H-orbits on W. Moreover, |O(0)| = p' < [W| = p!=**' and so |©(u)| < |W] for each
u € U. Thus ¥ is isomorphic to one of the graphs constructed as follows.
Construction 3.1. Let p, I, H and V' be as in Theorem 1.1 (1). Let U = IFL and
W = Unep{u+ V" | u e FL}. For each uy € U, define a bipartite graph I'(p, 1, s, t; H, uo)
on U UW such that u € U and o/ + V" € W are adjacent if and only if

u + VY = w4 ult + V" for some h € H,
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ie.,

up+ (u—u)"" €V and Wh' € Ny(V) for some h € H.

The next result follows from Lemmas 2.3 and 2.5, Corollary 2.4 and the above argu-
ment.

Corollary 3.2. If there is a graph ¥ = I'(p,l,s,t; H,ug) as in Construction 3.1, then
S s semisymmetric.

Now we construct an infinite family of semisymmetric graphs.

Example 3.3. Let p be a prime, and let s and ¢t be two integers with 1 < ¢ < s such that
s > 2 if further p = 2. Let [ = spt. Write IF; in a direct sum

pt
= EB U,
=1

of s-dimensional subspaces. Without loss of generality, for each i, we take {e;; | 1 < j < s}
as a basis of U, where e;; is the column vector with the ((7 — 1)3 + j)-th entry equal to 1
and the other entries equal to zero.

Let H be the subgroup of GL(I, p) fixes the above decomposition. Then H = GL(s, p)?
Spt. Let V.=U; and ¥ = I'(p, 1, s,t; H,u). Set

G(p, s,t;u) = XY™, where m = p**

with 2™ = 1 while m = 1. Then we get a family

G ={G(p,s,t;u) | 1 <t <s,pisaprime, (p,s) # (2,1),u € F;pt}
of semisymmetric graphs, and the following statements hold:

(i) G(p,s,t;0) has valency p* = p'p*~*

G(p, s, t;u) = G(p, s, t;u') if u—u' € U; for some 1 < i < pt;
G(p, s, t;ein) = G(p, s, t;ex) for i,i" > 2;
G(p, s,t; e91) has valency p*(p* — 1)(p' — 1);
G(p, s, t; Z _ui,) = G(p, s, t; Zazl ei,1) for 2 < iy < ipg < ---ip < pfand u; €
Ui\ {0};

(vi) G(p,s,t; Zf:z ei1) has valency p°(p® — l)kfl(g:ll), where 2 < k < pt.

Therefore the complete graph K .t .+ can be factorized into p! connected semisym-
metric graphs. In particular, Ko7 o7 is the edge-disjoint union of three semisymmetric
graphs of valency 3, 12 and 12, say, G(3,1,1;0), G(3,1,1;e2) and G(3,1, 1;ea1 + €31).

By [3], there is a unique cubic semisymmetric graph of order 54. Thus G(3,1,1;0) is
in fact the Gray graph. The smallest members of G have order 32, which are G(2,2,1;0)
and G(2,2,1;e9;) and have valency 4 and 12, respectively.
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It is easily shown that, for s > 2, we can get the same graphs as in Example 3.3 if
replace H by H N SL(I,p). This is also true for s = 1 unless p = 3.

Example 3.4. Let p be an odd prime. Write L in a direct sum Ff = P U of 1-
dimensional subspaces. Assume that e; € U; for each i, where e; is the column vector
with the i-th entry equal to 1 and the other entries equal to zero. Let H be the subgroup
of SL(p, p) fixes the above decomposition. Then H = Zgj:Ap. Let V = U; and

S(p,p;u) =I'(p.p,1,1; H,u).
Then each S(p, p;u) is semisymmetric graph, and the following statements hold:
(i) S(p,p;0) = G(p,1,1;0) has valency p;
(i) S(p,p;e;) = G(p,1,1;¢;) has valency p(p — 1)?, for p > 5 and 2 < i < p;

(iii) S(3,3;e2) and S(3,3; e3) have valency 6, and G(3,1, 1, e5) is the edge-disjoint union
of these two graphs;

(iv) S(p,p; Zf:g e;) =G(p, 1,1, Z?:Q ¢;) has valency p(p — 1)¥1(?_}) for k > 3.
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