Affine primitive groups and Semisymmetric graphs

Hua Han

Center for Combinatorics LPMC, Nankai University Tianjin 300071, P. R. China Zai Ping Lu*

Center for Combinatorics LPMC, Nankai University Tianjin 300071, P. R. China

hh1204@mail.nankai.edu.cn

lu@nankai.edu.cn

Submitted: Jul 14, 2012; Accepted: May 21, 2013; Published: May 31, 2013 Mathematics Subject Classifications: 05C25, 20B25

Abstract

In this paper, we investigate semisymmetric graphs which arise from affine primitive permutation groups. We give a characterization of such graphs, and then construct an infinite family of semisymmetric graphs which contains the Gray graph as the third smallest member. Then, as a consequence, we obtain a factorization of the complete bipartite graph $\mathsf{K}_{p^{sp^t},p^{sp^t}}$ into connected semisymmetric graphs, where p is an prime, $1 \leq t \leq s$ with $s \geq 2$ while p = 2.

Keywords: semisymmetric graph; normal quotient; primitive permutation group

1 Introduction

All graphs considered in this paper are assumed to be finite and simple with non-empty edge sets.

For a graph Γ , denote by $V\Gamma$, $E\Gamma$ and $\operatorname{Aut}\Gamma$ the vertex set, edge set and automorphism group, respectively. A graph Γ is said to be *vertex-transitive* or *edge-transitive* if $\operatorname{Aut}\Gamma$ acts transitively on $V\Gamma$ or $E\Gamma$, respectively. A regular graph is called *semisymmetric* if it is edge-transitive but not vertex-transitive. For a graph Γ , an arc of Γ is an ordered pair (α, β) of two adjacency vertices. A graph Γ is called *symmetric* if it has no isolated vertices and $\operatorname{Aut}\Gamma$ acts transitively on the set of arcs of Γ .

The class of semisymmetric graphs was first studied by Folkman [9], who possed several open problem. Afterwards, many authors have done much work on this topic, see [1, 2, 3, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19] for references. In particular, lots of interesting examples of such graphs were found. For example, the Folkman graph on 20 vertices, the smallest semisymmetric graph, was constructed by Folkman [9]; the Gray graph, a

^{*}Supported in part by the NSF of China.

cubic graph of order 54, was first observed to be semisymmetric by Bouwer [1]. In 1985, Iofinova and Ivanov [11] classified all bi-primitive cubic semisymmetric graphs and they proved that there are only five such graphs.

In this paper, we consider the semisymmetric graphs whose automorphism group contains a subgroup inducing an affine primitive permutation group. For more information about groups of this kind, see [5, 6]. To state our result, we need to introduce several concepts and some notation.

Let p be a prime and \mathbb{F}_p the field of order p. Then, for an integer $l \ge 1$ and an irreducible subgroup H of the general linear group $\operatorname{GL}(l, p)$, all affine transformations $\tau_{h,v}$ form a primitive subgroup X of $\operatorname{AGL}(l, p)$ (acting on the vectors of \mathbb{F}_p^l), where $h \in H$, $v \in \mathbb{F}_p^l$ and $\tau_{h,v}$ is defined as $\mathbb{F}_p^l \to \mathbb{F}_p^l$, $u \mapsto u^h + v$. The above group is a split extension of a regular normal subgroup $\{\tau_{1,v} \mid v \in \mathbb{F}_p^l\}$ by the subgroup H. For convenience, for a subspace V of \mathbb{F}_p^l , we set $\operatorname{T}(V) = \{\tau_{1,v} \mid v \in V\}$ and denote by $N_H(V)$ the subgroup of Hfixing V set-wise. Then $X = \operatorname{T}(\mathbb{F}_p^l)$:H, and $N_H(V) = \operatorname{N}_H(\operatorname{T}(V))$, the normalizer of $\operatorname{T}(V)$ in H.

For a graph Γ and a subgroup $G \leq \operatorname{Aut}\Gamma$, Γ is said to be *G*-vertex-transitive or *G*-edge-transitive if *G* is transitive on $V\Gamma$ or $E\Gamma$, respectively. The graph Γ is called *G*-semisymmetric graphs if it is regular, *G*-edge-transitive but not *G*-vertex-transitive.

Let Γ be a connected G-edge-transitive graph, where $G \leq \operatorname{Aut}\Gamma$. Assume that G is not transitive on $V\Gamma$. Then Γ is a bipartite graph with two parts, say U and W, which are the G-orbits on $V\Gamma$. Denote respectively by G^U and G^W the permutation groups induced by G on U and on W. Our main result deals with the case where one of G^U and G^W is an affine primitive permutation group.

Theorem 1.1. Let $X = T(\mathbb{F}_p^l)$: *H*, where *p* is a prime, $l \ge 1$ and *H* is an irreducible subgroup of the general linear group GL(l,p). Then the following two statements are equivalent.

- (1) \mathbb{F}_p^l has an s-dimensional subspace V for some integer $1 \leq s < l$ such that $|H : N_H(V)| = p^t$ for some integer $1 \leq t \leq s$.
- (2) There exists a semisymmetric graph Γ with bipartition $V\Gamma = U \cup W$ with one of G^U and G^W is permutation isomorphic to X for some edge-transitive subgroup G of Aut Γ .

Remark. Theorem 1.1 suggests the following interesting problem.

Problem 1. Characterize irreducible subgroups of the general linear group GL(l, p) satisfying Theorem 1.1 (1).

It is well-known that there are no semisymmetric graph of orders 16, 2p and $2p^2$, see [9]. Thus, for Theorem 1.1 (1), we have $l \ge 3$ and $(p, l) \ne (2, 3)$.

2 Proof of Theorem 1.1

Assume that Γ is a *G*-edge-transitive but not *G*-vertex-transitive graph, where $G \leq \operatorname{Aut}\Gamma$. Then Γ is a bipartite graph with two parts, say U and W, which are the *G*-orbits on $V\Gamma$. It follows that Γ is semiregular, that is, the vertices in a same bipartition subset have the same valency. For a given vertex $\alpha \in V\Gamma$, the stabilizer acts transitively on $\Gamma(\alpha)$. Thus, if Γ is vertex-transitive then it must be symmetric. Take $\beta \in \Gamma(\alpha)$. Then each vertex of Γ can be written as α^g or β^g for some $g \in G$. Then, for two arbitrary vertices α^g and β^h , they are adjacent in Γ if and only if α and $\beta^{hg^{-1}}$ are adjacent, i.e., $hg^{-1} \in G_{\beta}G_{\alpha}$. Moreover, it is well-known and easily shown that Γ is connected if and only if $\langle G_{\alpha}, G_{\beta} \rangle = G$.

Let Γ be a *G*-semisymmetric graph with two bipartition subsets *U* and *W*. Suppose that *G* has a subgroup *R* which is regular on both *U* and *W*. Take an edge $\{\alpha, \beta\} \in E\Gamma$. Then each vertex in *U* (*W*, resp.) can be written uniquely as α^x (β^x , resp.) for some $x \in R$. Set $S = \{s \in R \mid \beta^s \in \Gamma(\alpha)\}$. Then α^x and β^y are adjacent if and only if $yx^{-1} \in S$. If *R* is abelian, then it is easily shown that $\alpha^x \mapsto \beta^{x^{-1}}, \beta^x \mapsto \alpha^{x^{-1}}, \forall x \in R$ is an automorphism of Γ , which leads to the vertex-transitivity of Γ , refer to [8, 14].

Lemma 2.1. Let Γ be a *G*-semisymmetric graph. Assume that *G* has an abelian subgroup which is regular on both parts of Γ . Then Γ is symmetric.

Let Γ be a *G*-semisymmetric graph. Suppose that *G* has a normal subgroup *N* which acts intransitively on at least one of the bipartition subsets of Γ . Then we define the *quotient graph* Γ_N to have vertices the *N*-orbits on $V\Gamma$, and two *N*-orbits Δ and Δ' are adjacent in Γ_N if and only if some $\alpha \in \Delta$ and some $\beta \in \Delta'$ are adjacent in Γ . It is easy to see that the quotient Γ_N is a regular graph if and only if all *N*-orbits have the same length.

Let Γ be a finite connected G-semisymmetric graph with $G \leq \operatorname{Aut}\Gamma$. Take an edge $\{\alpha, \beta\} \in E\Gamma$ and let $U = \alpha^G$ and $W = \beta^G$ be the two G-orbits on $V\Gamma$. Assume that G is unfaithful on U, and let K be the kernel of G acting on U. Then K is faithful on W, and each K-orbits on W contains at least two vertices. It follows that there are two distinct vertices in W which have the same neighborhood in Γ . Thus, as observed in [8], if any two distinct vertices in U have different neighborhoods in the quotient Γ_K then Γ is semisymmetric and can be reconstructed from Γ_K as follows.

Construction 2.2. Let Σ be a bipartite graph with two bipartition subset U and \overline{W} such that $m|\overline{W}| = |U|$ for integer m > 1. Define a bipartite graph $\Sigma^{1,m}$ with vertex set $U \cup (\overline{W} \times \mathbb{Z}_m)$ such that α and (β, i) are adjacent if and only if $\{\alpha, \beta\} \in E\Gamma$. For convenience, we set $\Sigma^{1,1} = \Sigma$.

For a group X, the socle of X, denoted by soc(X), is generated by all minimal normal subgroups of X. A permutation group is called *quasiprimitive* if each of its minimal normal subgroups is transitive.

Lemma 2.3. Let Γ be a finite connected G-semisymmetric graph with $G \leq \operatorname{Aut}\Gamma$. Take an edge $\{\alpha, \beta\} \in E\Gamma$ and set $U = \alpha^G$ and $W = \beta^G$. Assume that G^U is quasiprimitive. Then either G is faithful on both U and W, or one of the following statements hold.

(1) Γ is isomorphic to the complete bipartite graph $\mathsf{K}_{|U|,|U|}$;

(2) G is faithful on W but not faithful on U, $G^U \cong G^{\overline{W}}$, and Γ is semisymmetric if further G^U is primitive, where K is the kernel of G on U and \overline{W} is the set of K-orbits on W.

Proof. To prove this lemma, we assume next that G is unfaithful on at least one of U and W and that $\Gamma \ncong \mathsf{K}_{|U|,|U|}$.

Since $G \leq \operatorname{Aut}\Gamma$, the kernel of G on one bipartition subset must be faithful on the other one. Then the above assumption implies that G is faithful on W. Thus G is unfaithful on U. Let K and \overline{W} be as in the lemma. Then $G^U \cong G/K$ and G induces a subgroup $\overline{G} \cong G/K$ of $\operatorname{Aut}\Gamma_K$. Suppose that \overline{G} is unfaithful on \overline{W} . Then it follows that $\Gamma_K \cong \mathsf{K}_{|U|,|\overline{W}|}$, and so $\Gamma \cong \mathsf{K}_{|U|,|U|}$ by noting that $\beta^K \subseteq \Gamma(\alpha)$ if $\beta \in \Gamma(\alpha)$, a contradiction. Thus \overline{G} is faithful on \overline{W} , so K is the kernel of G acting on \overline{W} , and hence $G^U \cong G/K \cong G^{\overline{W}}$.

Note that each K-orbit on W has size at least 2, and that two vertices in a same K-orbit have the same neighborhood in Γ . Assume that G^U is primitive. Then, since $\Gamma \ncong \mathsf{K}_{|U|,|U|}$, any two distinct vertices in U have different neighborhood. Thus there is no $x \in \operatorname{Aut}\Gamma$ with $U^x = W$, so Γ must be semisymmetric.

Corollary 2.4. Let G a finite group which acts faithfully and transitively on both nonempty sets U and \overline{W} with $|U| = m|\overline{W}|$ for an integer m > 1. For $\alpha \in U$ and a G_{α} -orbit Θ on \overline{W} , define a bipartite graph Σ on $U \cup \overline{W}$ such that $\alpha^g \in U$ and $\overline{\beta} \in \overline{W}$ are adjacent if and only if $\overline{\beta} \in \Theta^g$. If G^U is primitive, then $\Sigma^{1,m}$ is a semisymmetric graph unless $\Theta = \overline{W}$.

Proof. Assume that G^U is primitive and $\Theta \neq \overline{W}$. By Lemma 2.3, it suffices to show that $\operatorname{Aut}\Sigma^{1,m}$ has an edge-transitive subgroup which fixes U and induces a permutation group on U permutation isomorphic to G^U . Let $Y = G \times \mathbb{Z}_m$. Define an action of Y on $V\Sigma^{1,m}$ as follows:

$$(\alpha^g)^{(x,i)} = \alpha^{gx}, \ (\bar{\beta}, j)^{(x,i)} = (\bar{\beta}^x, i+j), \ \forall g, x \in G, \ i, j \in \mathbb{Z}_m, \bar{\beta} \in \bar{W}.$$

Then, under the above action, Y is a subgroup of $\mathsf{Aut}\Sigma^{1,m}$ as desired.

Remark. A graph is called *edge-primitive* if its automorphism group is primitive on its edge set. Using Corollary 2.4, we can construct examples of semisymmetric graphs from an edge-primitive graph of even valency, such as the complete graph K_{2l+1} , the Perkel graph and etc., by taking U, \bar{W} and Θ respectively the edge set, vertex set and an orbit on \bar{W} of some edge-stabilizer of the edge-primitive graph.

Here we pose the next interesting problem.

Problem 2. Characterize or classify the primitive subgroups of S_n which have transitive permutation representations of degree properly dividing n.

Lemma 2.5. Let Γ be a connected G-semisymmetric graph with $G \leq \operatorname{Aut}\Gamma$. Take an edge $\{\alpha, \beta\} \in E\Gamma$ and set $U = \alpha^G$ and $W = \beta^G$. Assume that G is faithful on both U and W. Assume that G^U is an affine primitive permutation group and Γ is not a complete bipartite graph. Then either G is primitive on W, or Γ is semisymmetric.

Proof. Set N = soc(G). Then $N \cong \mathbb{Z}_p^l$ for a prime p and integer $l \ge 1$. It is easily shown that G is primitive on W if and only if N is transitive on W. To finish the proof, in the following, we prove that Γ is semisymmetric if N is intransitive on W.

Suppose that N is intransitive on W and Γ is symmetric. Then $N_{\gamma} \neq 1$ for any $\gamma \in W$. Let X be the set-wise stabilizer of U in Aut Γ . Then $G \leq X$ and $|\text{Aut}\Gamma : X| = 2$. Note that X^U is a primitive permutation group. By Lemma 2.3, since Γ is not a complete bipartite graph, we may assume that X is faithful on both U and W. Let M = soc(X). Take $x \in \text{Aut}\Gamma$ with $\alpha^x = \beta$ and $\beta^x = \alpha$. Then $U^x = W$ and $W^x = U$. Note that X is a primitive permutation group (on U) of degree p^l . Then M is the unique minimal normal subgroup of X by the O'Nan-Scott Theorem, refer to [4, Theorem 4.1A]. Thus $M^x = M$, it follows that M is transitive on both U and W. If X is of affine type then M = N by [20, Proposition 5.1], so N is transitive on U, a contradiction. Then, by [13] and [20, Proposition 5.1], N < M and M is listed as follows:

- (i) $M \cong T^l$, where (p, T) is one of (11, PSL(2, 11)), $(11, M_{11})$, $(23, M_{23})$ and $(\frac{q^d-1}{q-1}, \text{PSL}(d, q))$; or
- (ii) $M = T_1 \times \cdots \times T_t$ and $N = (N \cap T_1) \times \cdots \times (N \cap T_t)$, where $T_i = A_{p^s}$ and $N \cap T_i \cong \mathbb{Z}_p^s$ for $1 \leq i \leq t, p^s \geq 5$ and st = l.

For (i) and (ii) with s = 1, the stabilizer M_{α} has order coprime to p, and so does for $M_{\alpha}^{x} = M_{\beta}$, hence $N \cap M_{\beta} = 1$, which contradicts that $N_{\beta} \neq 1$. Thus (ii) occurs and $s \ge 2$, so $p^{s} > 5$. It is easily shown that $(T_{i})_{\alpha} \cong A_{p^{s}-1}$ and $M_{\alpha} = (T_{1})_{\alpha} \times \cdots \times (T_{t})_{\alpha}$. Then $M_{\beta} = M_{\alpha}^{x} = ((T_{1})_{\alpha} \times \cdots \times (T_{t})_{\alpha})^{x} = ((T_{1} \cap M_{\alpha}) \times \cdots \times (T_{t} \cap M_{\alpha}))^{x} = (T_{1})_{\beta} \times \cdots \times (T_{t})_{\beta}$. It implies that $\{(T_{1})_{\alpha}, \cdots, (T_{t})_{\alpha}\}^{x} = \{(T_{1})_{\beta}, \cdots, (T_{t})_{\beta}\}$ as all $(T_{i})_{\alpha}$ are simple and nonabelian. In particular, $(T_{i})_{\beta} \cong A_{p^{s}-1}$, so $(T_{i})_{\alpha}$ and $(T_{i})_{\beta}$ are conjugate in T_{i} for $1 \le i \le t$. Thus M_{α} and M_{β} are conjugate in M. Since M is transitive on W, there is $\gamma \in W$ with $M_{\alpha} = M_{\gamma}$. Then $N_{\gamma} = N \cap M_{\gamma} = N \cap M_{\alpha} = 1$ as N is regular on U, again a contradiction. This completes the proof.

Remark It is well-known that there are no symmetric graphs of order 2p and $2p^2$. Thus, for Lemma 2.5, if N is intransitive on W then $N \cong \mathbb{Z}_p^l$ for $l \ge 3$, which also follows from checking the irreducible subgroups of GL(2, p).

Proof of Theorem 1.1. Let Γ be a semisymmetric graph with bipartition $V\Gamma = U \cup W$ satisfying Theorem 1.1 (2). Then Γ must be connected. Without loss of generality, we assume that G^U is permutation isomorphic to X. By Lemma 2.3, G is faithful on W. Let K be the kernel of G acting on U and \overline{W} be the set of K-orbits on W, while K = 1 and $\overline{W} = W$ if G is faithful on U. Then, by Lemmas 2.3 and 2.5, Γ_K is edge-transitive but not vertex-transitive. Let \overline{G} be the subgroup of $\operatorname{Aut}\Gamma_K$ induced by G. Then $\overline{G} \cong G/K$, and \overline{G}^U is permutation isomorphic to X.

Set $N = \operatorname{soc}(\bar{G})$. Suppose that N is transitive on \bar{W} . Then, since N is faithful on \bar{W} , we have $|\bar{W}| = |N| = |U|$. Thus K = 1 and $\Gamma = \Gamma_K$, Γ is symmetric by Lemma 2.1, a contradiction. Then N is intransitive on \bar{W} . Take an edge $\{\alpha, \bar{\beta}\}$ of Γ_K with $\alpha \in U$ and $\bar{\beta} \in \bar{W}$. Then each N-orbit on \bar{W} has size $|N:N_{\bar{\beta}}| \neq 1$, and N has exactly $\frac{|\bar{W}|}{|N:N_{\bar{\beta}}|}$ orbits on \bar{W} . Set $|N_{\bar{\beta}}| = p^s$ and $\frac{|\bar{W}|}{|N:N_{\bar{\beta}}|} = p^r$. Then $1 \leq r \leq s < l$. Since \bar{G} is transitive on \bar{W} , we know that \bar{G}_{α} is transitive on the set of *N*-orbits. Let *B* be an *N*-orbit containing $\bar{\beta}$. Then $|\bar{G}_{\alpha} : (\bar{G}_{\alpha})_B| = p^r$. Since \bar{G}_{α} is maximal in \bar{G} , we have $\bar{G}_{\alpha} \leq N_{\bar{G}}(N_{\bar{\beta}})$. So $|\bar{G}_{\alpha} : N_{\bar{G}_{\alpha}}(N_{\bar{\beta}})| > 1$. Consider the set-wise stabilizer $(\bar{G}_{\alpha})_B$. For $g \in (\bar{G}_{\alpha})_B$, noting that $N_{\bar{\beta}}$ is the kernel of *N* acting on *B*, we have $\bar{\beta}^{gx} = \bar{\beta}^g$ for $x \in N_{\bar{\beta}}$, so $gxg^{-1} \in N \cap \bar{G}_{\bar{\beta}} = N_{\bar{\beta}}$. Thus $(\bar{G}_{\alpha})_B \leq N_{\bar{G}_{\alpha}}(N_{\bar{\beta}})$. Set $|\bar{G}_{\alpha} : N_{\bar{G}_{\alpha}}(N_{\bar{\beta}})| = p^t$. Then $t \geq 1$, and p^t divides $|\bar{G}_{\alpha} : (\bar{G}_{\alpha})_B| = p^r$, so $t \leq r \leq s$. Noting that \bar{G}^U is permutation isomorphic to X, (1) of Theorem 1.1 follows.

Now we assume that Theorem 1.1 (1) holds. To show (2), it suffices to construct a suitable semisymmetric graph. Set $R = T(V)N_H(V)$. Let \overline{W} be the set of right cosets of R in X, and let U be the set of vectors in \mathbb{F}_p^l . Then $|\overline{W}| = p^{l-s+t}$. Extend X to a permutation group on $U \cup \overline{W}$ such that $X^U = X$ and X acts on \overline{W} by the right multiplication on the right cosets of R in X. It is easily shown that X is faithful on both U and \overline{W} . Let $\Theta = \{Rh \mid h \in H\}$. Then $|\Theta| = \frac{|V||H|}{|R|} = |H : N_H(V)| = p^t < |\overline{W}|$. Define a bipartite graph Σ on $U \cup \overline{W}$ such that $u \in U$ and $\overline{\beta} \in \overline{W}$ are adjacent if and only if $\overline{\beta} \in \Theta^{\tau_{1,u}}$. Then Σ is X-edge-transitive. Let $m = p^{s-t}$. If m = 1 then, by Lemma 2.5, Σ is a semisymmetric graph as desired. If m > 1 then, by Corollary 2.4, $\Sigma^{1,m}$ is a semisymmetric graph as desired. This completes the proof.

3 Some examples

Let $X = T(\mathbb{F}_p^l)$: H be a primitive permutation group satisfying Theorem 1.1 (1). Then, up to isomorphism, each graph satisfying Theorem 1.1 (2) can be constructed from an X-edge-transitive graph which is not a complete bipartite graph and has one bipartition subset coinciding with the underlaying set of \mathbb{F}_p^l . Let Σ be such an X-edge-transitive graph with two bipartition subsets $U = \mathbb{F}_p^l$ and W. Then, for each $\beta \in W$, the stabilizer X_β normalizes $(T(\mathbb{F}_p^l))_{\beta} = T(V)$, where V is an s-dimensional subspace of U and $X_{\beta} \cap T(\mathbb{F}_p^l) =$ T(V). Thus $X_{\beta} \leq N_X(T(V)) = T(\mathbb{F}_p^l)N_H(V)$. Assume that $T(\mathbb{F}_p^l)$ has p^r orbits on W, and set $|H: N_H(V)| = p^t$. Then $1 \leq t \leq r \leq s < l$, and $|X_{\beta}| = p^{s-r}|H|$. We next consider one extreme case.

Assume that $X_{\beta} = T(V):N_H(V)$. Then r = t, and W may be identified with $\bigcup_{h \in H} \{u + V^h \mid u \in \mathbb{F}_p^l\}$ with the action of X on W as follows:

$$(u+V^{h})^{\tau_{1,u'}h'} = (u+u')^{h'} + V^{hh'} \ \forall u, u' \in \mathbb{F}_{p}^{l}, \ h, h' \in H.$$

For each $u \in U = \mathbb{F}_p^l$, set $\Theta(u) = \{u^h + V^h \mid h \in H\}$. Then $\{\Theta(u) \mid u \in \mathbb{F}_p^l\}$ is the set of *H*-orbits on *W*. Moreover, $|\Theta(0)| = p^t < |W| = p^{l-s+t}$, and so $|\Theta(u)| < |W|$ for each $u \in U$. Thus Σ is isomorphic to one of the graphs constructed as follows.

Construction 3.1. Let p, l, H and V be as in Theorem 1.1 (1). Let $U = \mathbb{F}_p^l$ and $W = \bigcup_{h \in H} \{u + V^h \mid u \in \mathbb{F}_p^l\}$. For each $u_0 \in U$, define a bipartite graph $\Gamma(p, l, s, t; H, u_0)$ on $U \cup W$ such that $u \in U$ and $u' + V^{h'} \in W$ are adjacent if and only if

$$u' + V^{h'} = u + u_0^h + V^h$$
 for some $h \in H$,

i.e.,

$$u_0 + (u - u')^{h^{-1}} \in V$$
 and $h'h^{-1} \in N_H(V)$ for some $h \in H$.

The next result follows from Lemmas 2.3 and 2.5, Corollary 2.4 and the above argument.

Corollary 3.2. If there is a graph $\Sigma = \Gamma(p, l, s, t; H, u_0)$ as in Construction 3.1, then $\Sigma^{1, p^{s-t}}$ is semisymmetric.

Now we construct an infinite family of semisymmetric graphs.

Example 3.3. Let p be a prime, and let s and t be two integers with $1 \le t \le s$ such that $s \ge 2$ if further p = 2. Let $l = sp^t$. Write \mathbb{F}_p^l in a direct sum

$$\mathbb{F}_p^l = \bigoplus_{i=1}^{p^t} U_i$$

of s-dimensional subspaces. Without loss of generality, for each i, we take $\{e_{ij} \mid 1 \leq j \leq s\}$ as a basis of U, where e_{ij} is the column vector with the ((i-1)s+j)-th entry equal to 1 and the other entries equal to zero.

Let *H* be the subgroup of $\operatorname{GL}(l, p)$ fixes the above decomposition. Then $H \cong \operatorname{GL}(s, p) \wr$ S_{p^t} . Let $V = U_1$ and $\Sigma = \Gamma(p, l, s, t; H, u)$. Set

$$G(p, s, t; u) = \Sigma^{1,m}$$
, where $m = p^{s-t}$

with $\Sigma^{1,m} = 1$ while m = 1. Then we get a family

$$\mathcal{G} = \{ G(p, s, t; u) \mid 1 \leq t \leq s, p \text{ is a prime}, (p, s) \neq (2, 1), u \in \mathbb{F}_p^{sp^t} \}$$

of semisymmetric graphs, and the following statements hold:

(i) G(p, s, t; 0) has valency $p^s = p^t p^{s-t}$;

(ii)
$$G(p, s, t; u) = G(p, s, t; u')$$
 if $u - u' \in U_i$ for some $1 \leq i \leq p^t$;

(iii)
$$G(p, s, t; e_{i1}) = G(p, s, t; e_{i'1})$$
 for $i, i' \ge 2$;

(iv)
$$G(p, s, t; e_{21})$$
 has valency $p^s(p^s - 1)(p^t - 1);$

(v) $G(p, s, t; \sum_{a=1}^{k} u_{i_a}) = G(p, s, t; \sum_{a=1}^{k} e_{i_a 1})$ for $2 \leq i_1 < i_2 < \cdots i_k \leq p^t$ and $u_i \in U_i \setminus \{0\};$

(vi)
$$G(p, s, t; \sum_{i=2}^{k} e_{i1})$$
 has valency $p^{s}(p^{s}-1)^{k-1} {p^{t}-1 \choose k-1}$, where $2 \leq k \leq p^{t}$.

Therefore the complete graph $K_{p^{sp^t},p^{sp^t}}$ can be factorized into p^t connected semisymmetric graphs. In particular, $K_{27,27}$ is the edge-disjoint union of three semisymmetric graphs of valency 3, 12 and 12, say, G(3, 1, 1; 0), $G(3, 1, 1; e_{21})$ and $G(3, 1, 1; e_{21} + e_{31})$.

By [3], there is a unique cubic semisymmetric graph of order 54. Thus G(3, 1, 1; 0) is in fact the Gray graph. The smallest members of \mathcal{G} have order 32, which are G(2, 2, 1; 0)and $G(2, 2, 1; e_{21})$ and have valency 4 and 12, respectively. It is easily shown that, for $s \ge 2$, we can get the same graphs as in Example 3.3 if replace H by $H \cap SL(l, p)$. This is also true for s = 1 unless p = 3.

Example 3.4. Let p be an odd prime. Write \mathbb{F}_p^p in a direct sum $\mathbb{F}_p^p = \bigoplus_{i=1}^p U_i$ of 1dimensional subspaces. Assume that $e_i \in U_i$ for each i, where e_i is the column vector with the *i*-th entry equal to 1 and the other entries equal to zero. Let H be the subgroup of $\mathrm{SL}(p,p)$ fixes the above decomposition. Then $H \cong \mathbb{Z}_{p-1}^{p-1}$: A_p . Let $V = U_1$ and

$$S(p, p; u) = \Gamma(p, p, 1, 1; H, u).$$

Then each S(p, p; u) is semisymmetric graph, and the following statements hold:

- (i) S(p, p; 0) = G(p, 1, 1; 0) has valency p;
- (ii) $S(p, p; e_i) = G(p, 1, 1; e_i)$ has valency $p(p-1)^2$, for $p \ge 5$ and $2 \le i \le p$;
- (iii) $S(3,3;e_2)$ and $S(3,3;e_3)$ have valency 6, and $G(3,1,1,e_2)$ is the edge-disjoint union of these two graphs;

(iv)
$$S(p,p;\sum_{i=2}^{k} e_i) = G(p,1,1;\sum_{i=2}^{k} e_i)$$
 has valency $p(p-1)^{k-1} {p-1 \choose k-1}$ for $k \ge 3$

References

- [1] I. Z. Bouwer. An edge but not vertex transitive cubic graphs. *Canad Math. Bull.*, 11:533–535, 1968.
- [2] I. Z. Bouwer. On edge but not vertex transitive graphs. J. Combin. Theory Ser. B, 12:32–40, 1972.
- [3] M. Conder, A. Malnič, D. Marušič and P. Potočnik. A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Comb., 23:255–294, 2006.
- [4] J. D. Dixon and B. Mortimer. *Permutation Groups*. Springer-Verlag New York Berlin Heidelberg, 1996.
- [5] R. Lyndon. *Groups and Geometry*. Cambridge University Press, Cambridge, 1985.
- [6] R. Artzy. *Linear Geometry*. Addison–Wesley, 1965.
- [7] S. F. Du and D. Marušič. Biprimitive Graphs of Smallest Order. J Algebr. Comb., 9:151–156, 1999.
- [8] S. F. Du and M. Y. Xu. A classification of semisymmetric graphs of order 2pq. Comm. Algebra, 28(6):2685–2714, 2000.
- [9] J. Folkman. Regular line-symmetric graphs. J. Combin. Theory Ser. B, 3:215–232, 1967.
- [10] H. Han and Z. P. Lu. Semisymmetric graphs of order $6p^2$ and prime valency. *Sci. China Math.*, 55:2579–2592, 2012.

- [11] M. E. Iofinova and A. A. Ivanov. Biprimitive cubic graphs (Russian), in: Investigation in Algebraic Theory of Combinatorial Objects, Proc. of the Seminar, Institute for System Studies, Moscow, pp.124–134, 1985.
- [12] A. V. Ivanov. On edge but not vertex transitive regular graphs. Ann. Discrete Math., 34:273–286, 1987.
- [13] C. H. Li. The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc., 87(3):725–747, 2003.
- [14] Z. P. Lu. On the automorphism groups of bi-Cayley graphs. Beijing Daxue Xuebao 39:1–5, 2003.
- [15] Z. P. Lu, C. Q. Wang and M. Y. Xu. On Semisymmetric Cubic Graphs of Order 6p². Sci. China Ser.A, 47:1–17, 2004.
- [16] A. Malnič, D. Marušič and C. Q. Wang. Cubic edge-transitive graphs of order 2p³. Discrete Math., 274:187–198, 2004.
- [17] D. Marušič and P. Potočnik. Semisymmetry of generalized Folkman graphs. European J. Combin., 22:333–349, 2001.
- [18] B. Monson, T. Pisanski, E. Schulte and A. I. Weiss. Semisymmetric graphs from polytopes. J. Combin. Theory Ser. A, 114:421–435, 2007.
- [19] C. W. Parker. Semisymmetric cubic graphs of twice odd order. European J. Combin., 28:572–591, 2007.
- [20] C. E. Praeger. The inclusion problem for finite primitive permutation groups. Proc. London Math. Soc., 60(3):68–88, 1990.