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Abstract

In this paper, we investigate semisymmetric graphs which arise from affine prim-
itive permutation groups. We give a characterization of such graphs, and then con-
struct an infinite family of semisymmetric graphs which contains the Gray graph
as the third smallest member. Then, as a consequence, we obtain a factorization of
the complete bipartite graph Kpspt ,pspt into connected semisymmetric graphs, where
p is an prime, 1 6 t 6 s with s > 2 while p = 2.
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1 Introduction

All graphs considered in this paper are assumed to be finite and simple with non-empty
edge sets.

For a graph Γ , denote by V Γ , EΓ and AutΓ the vertex set, edge set and automorphism
group, respectively. A graph Γ is said to be vertex-transitive or edge-transitive if AutΓ
acts transitively on V Γ or EΓ , respectively. A regular graph is called semisymmetric if
it is edge-transitive but not vertex-transitive. For a graph Γ , an arc of Γ is an ordered
pair (α, β) of two adjacency vertices. A graph Γ is called symmetric if it has no isolated
vertices and AutΓ acts transitively on the set of arcs of Γ .

The class of semisymmetric graphs was first studied by Folkman [9], who possed
several open problem. Afterwards, many authors have done much work on this topic, see
[1, 2, 3, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19] for references. In particular, lots of interesting
examples of such graphs were found. For example, the Folkman graph on 20 vertices,
the smallest semisymmetric graph, was constructed by Folkman [9]; the Gray graph, a
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cubic graph of order 54, was first observed to be semisymmetric by Bouwer [1]. In 1985,
Iofinova and Ivanov [11] classified all bi-primitive cubic semisymmetric graphs and they
proved that there are only five such graphs.

In this paper, we consider the semisymmetric graphs whose automorphism group con-
tains a subgroup inducing an affine primitive permutation group. For more information
about groups of this kind, see [5, 6]. To state our result, we need to introduce several
concepts and some notation.

Let p be a prime and Fp the field of order p. Then, for an integer l > 1 and an
irreducible subgroup H of the general linear group GL(l, p), all affine transformations τh,v
form a primitive subgroup X of AGL(l, p) (acting on the vectors of Flp), where h ∈ H,
v ∈ Flp and τh,v is defined as Flp → Flp, u 7→ uh + v. The above group is a split extension
of a regular normal subgroup {τ1,v | v ∈ Flp} by the subgroup H. For convenience, for a
subspace V of Flp, we set T(V ) = {τ1,v | v ∈ V } and denote by NH(V ) the subgroup of H
fixing V set-wise. Then X = T(Flp):H, and NH(V ) = NH(T(V )), the normalizer of T(V )
in H.

For a graph Γ and a subgroup G 6 AutΓ , Γ is said to be G-vertex-transitive or
G-edge-transitive if G is transitive on V Γ or EΓ , respectively. The graph Γ is called
G-semisymmetric graphs if it is regular, G-edge-transitive but not G-vertex-transitive.

Let Γ be a connected G-edge-transitive graph, where G 6 AutΓ . Assume that G is
not transitive on V Γ . Then Γ is a bipartite graph with two parts, say U and W , which
are the G-orbits on V Γ . Denote respectively by GU and GW the permutation groups
induced by G on U and on W . Our main result deals with the case where one of GU and
GW is an affine primitive permutation group.

Theorem 1.1. Let X = T(Flp):H, where p is a prime, l > 1 and H is an irreducible
subgroup of the general linear group GL(l, p). Then the following two statements are
equivalent.

(1) Flp has an s-dimensional subspace V for some integer 1 6 s < l such that |H :
NH(V )| = pt for some integer 1 6 t 6 s.

(2) There exists a semisymmetric graph Γ with bipartition V Γ = U ∪W with one of
GU and GW is permutation isomorphic to X for some edge-transitive subgroup G of
AutΓ .

Remark. Theorem 1.1 suggests the following interesting problem.
Problem 1. Characterize irreducible subgroups of the general linear group GL(l, p)

satisfying Theorem 1.1 (1).
It is well-known that there are no semisymmetric graph of orders 16, 2p and 2p2, see

[9]. Thus, for Theorem 1.1 (1), we have l > 3 and (p, l) 6= (2, 3).

2 Proof of Theorem 1.1

Assume that Γ is a G-edge-transitive but not G-vertex-transitive graph, where G 6 AutΓ .
Then Γ is a bipartite graph with two parts, say U and W , which are the G-orbits on V Γ .
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It follows that Γ is semiregular, that is, the vertices in a same bipartition subset have the
same valency. For a given vertex α ∈ V Γ , the stabilizer acts transitively on Γ (α). Thus, if
Γ is vertex-transitive then it must be symmetric. Take β ∈ Γ (α). Then each vertex of Γ
can be written as αg or βg for some g ∈ G. Then, for two arbitrary vertices αg and βh, they
are adjacent in Γ if and only if α and βhg

−1
are adjacent, i.e., hg−1 ∈ GβGα. Moreover,

it is well-known and easily shown that Γ is connected if and only if 〈Gα, Gβ〉 = G.
Let Γ be a G-semisymmetric graph with two bipartition subsets U and W . Suppose

that G has a subgroup R which is regular on both U and W . Take an edge {α, β} ∈ EΓ .
Then each vertex in U (W , resp.) can be written uniquely as αx (βx, resp.) for some
x ∈ R. Set S = {s ∈ R | βs ∈ Γ (α)}. Then αx and βy are adjacent if and only if
yx−1 ∈ S. If R is abelian, then it is easily shown that αx 7→ βx

−1
, βx 7→ αx

−1
, ∀x ∈ R is

an automorphism of Γ , which leads to the vertex-transitivity of Γ , refer to [8, 14].

Lemma 2.1. Let Γ be a G-semisymmetric graph. Assume that G has an abelian subgroup
which is regular on both parts of Γ . Then Γ is symmetric.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N which
acts intransitively on at least one of the bipartition subsets of Γ . Then we define the
quotient graph ΓN to have vertices the N -orbits on V Γ , and two N -orbits ∆ and ∆′ are
adjacent in ΓN if and only if some α ∈ ∆ and some β ∈ ∆′ are adjacent in Γ . It is easy
to see that the quotient ΓN is a regular graph if and only if all N -orbits have the same
length.

Let Γ be a finite connected G-semisymmetric graph with G 6 AutΓ . Take an edge
{α, β} ∈ EΓ and let U = αG and W = βG be the two G-orbits on V Γ . Assume that
G is unfaithful on U , and let K be the kernel of G acting on U . Then K is faithful on
W , and each K-orbits on W contains at least two vertices. It follows that there are two
distinct vertices in W which have the same neighborhood in Γ . Thus, as observed in [8],
if any two distinct vertices in U have different neighborhoods in the quotient ΓK then Γ
is semisymmetric and can be reconstructed from ΓK as follows.

Construction 2.2. Let Σ be a bipartite graph with two bipartition subset U and W̄
such that m|W̄ | = |U | for integer m > 1. Define a bipartite graph Σ1,m with vertex
set U ∪ (W̄×Zm) such that α and (β, i) are adjacent if and only if {α, β} ∈ EΓ . For
convenience, we set Σ1,1 = Σ.

For a group X, the socle of X, denoted by soc(X), is generated by all minimal normal
subgroups of X. A permutation group is called quasiprimitive if each of its minimal
normal subgroups is transitive.

Lemma 2.3. Let Γ be a finite connected G-semisymmetric graph with G 6 AutΓ . Take
an edge {α, β} ∈ EΓ and set U = αG and W = βG. Assume that GU is quasiprimitive.
Then either G is faithful on both U and W , or one of the following statements hold.

(1) Γ is isomorphic to the complete bipartite graph K|U |,|U |;
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(2) G is faithful on W but not faithful on U , GU ∼= GW̄ , and Γ is semisymmetric if
further GU is primitive, where K is the kernel of G on U and W̄ is the set of
K-orbits on W .

Proof. To prove this lemma, we assume next that G is unfaithful on at least one of U and
W and that Γ 6∼= K|U |,|U |.

Since G 6 AutΓ , the kernel of G on one bipartition subset must be faithful on the
other one. Then the above assumption implies that G is faithful on W . Thus G is
unfaithful on U . Let K and W̄ be as in the lemma. Then GU ∼= G/K and G induces
a subgroup Ḡ ∼= G/K of AutΓK . Suppose that Ḡ is unfaithful on W̄ . Then it follows
that ΓK ∼= K|U |,|W̄ |, and so Γ ∼= K|U |,|U | by noting that βK ⊆ Γ (α) if β ∈ Γ (α), a
contradiction. Thus Ḡ is faithful on W̄ , so K is the kernel of G acting on W̄ , and hence
GU ∼= G/K ∼= GW̄ .

Note that each K-orbit on W has size at least 2, and that two vertices in a same
K-orbit have the same neighborhood in Γ . Assume that GU is primitive. Then, since
Γ 6∼= K|U |,|U |, any two distinct vertices in U have different neighborhood. Thus there is no
x ∈ AutΓ with Ux = W , so Γ must be semisymmetric.

Corollary 2.4. Let G a finite group which acts faithfully and transitively on both nonempty
sets U and W̄ with |U | = m|W̄ | for an integer m > 1. For α ∈ U and a Gα-orbit Θ on
W̄ , define a bipartite graph Σ on U ∪ W̄ such that αg ∈ U and β̄ ∈ W̄ are adjacent if and
only if β̄ ∈ Θg. If GU is primitive, then Σ1,m is a semisymmetric graph unless Θ = W̄ .

Proof. Assume that GU is primitive and Θ 6= W̄ . By Lemma 2.3, it suffices to show that
AutΣ1,m has an edge-transitive subgroup which fixes U and induces a permutation group
on U permutation isomorphic to GU . Let Y = G×Zm. Define an action of Y on V Σ1,m

as follows:

(αg)(x,i) = αgx, (β̄, j)(x,i) = (β̄x, i+ j), ∀g, x ∈ G, i, j ∈ Zm, β̄ ∈ W̄ .

Then, under the above action, Y is a subgroup of AutΣ1,m as desired.

Remark. A graph is called edge-primitive if its automorphism group is primitive on its
edge set. Using Corollary 2.4, we can construct examples of semisymmetric graphs from
an edge-primitive graph of even valency, such as the complete graph K2l+1, the Perkel
graph and etc., by taking U , W̄ and Θ respectively the edge set, vertex set and an orbit
on W̄ of some edge-stabilizer of the edge-primitive graph.

Here we pose the next interesting problem.
Problem 2. Characterize or classify the primitive subgroups of Sn which have transi-

tive permutation representations of degree properly dividing n.

Lemma 2.5. Let Γ be a connected G-semisymmetric graph with G 6 AutΓ . Take an
edge {α, β} ∈ EΓ and set U = αG and W = βG. Assume that G is faithful on both U and
W . Assume that GU is an affine primitive permutation group and Γ is not a complete
bipartite graph. Then either G is primitive on W , or Γ is semisymmetric.

the electronic journal of combinatorics 20(2) (2013), #P39 4



Proof. Set N = soc(G). Then N ∼= Zlp for a prime p and integer l > 1. It is easily shown
that G is primitive on W if and only if N is transitive on W . To finish the proof, in the
following, we prove that Γ is semisymmetric if N is intransitive on W .

Suppose that N is intransitive on W and Γ is symmetric. Then Nγ 6= 1 for any γ ∈ W .
Let X be the set-wise stabilizer of U in AutΓ . Then G 6 X and |AutΓ : X| = 2. Note
that XU is a primitive permutation group. By Lemma 2.3, since Γ is not a complete
bipartite graph, we may assume that X is faithful on both U and W . Let M = soc(X).
Take x ∈ AutΓ with αx = β and βx = α. Then Ux = W and W x = U . Note that X is a
primitive permutation group (on U) of degree pl. Then M is the unique minimal normal
subgroup of X by the O’Nan-Scott Theorem, refer to [4, Theorem 4.1A]. Thus Mx = M ,
it follows that M is transitive on both U and W . If X is of affine type then M = N
by [20, Proposition 5.1], so N is transitive on U , a contradiction. Then, by [13] and [20,
Proposition 5.1], N < M and M is listed as follows:

(i) M ∼= T l, where (p, T ) is one of (11,PSL(2, 11)), (11,M11), (23,M23) and

( q
d−1
q−1

,PSL(d, q)); or

(ii) M = T1× · · ·×Tt and N = (N∩T1)× · · ·×(N∩Tt), where Ti = Aps and N∩Ti ∼= Zsp
for 1 6 i 6 t, ps > 5 and st = l.

For (i) and (ii) with s = 1, the stabilizer Mα has order coprime to p, and so does for
Mx

α = Mβ, hence N ∩Mβ = 1, which contradicts that Nβ 6= 1. Thus (ii) occurs and s > 2,
so ps > 5. It is easily shown that (Ti)α ∼= Aps−1 and Mα = (T1)α× · · ·×(Tt)α. Then Mβ =
Mx

α = ((T1)α× · · ·×(Tt)α)x = ((T1∩Mα)× · · ·×(Tt∩Mα))x = (T1)β× · · ·×(Tt)β. It implies
that {(T1)α, · · · , (Tt)α}x = {(T1)β, · · · , (Tt)β} as all (Ti)α are simple and nonabelian. In
particular, (Ti)β ∼= Aps−1, so (Ti)α and (Ti)β are conjugate in Ti for 1 6 i 6 t. Thus Mα

and Mβ are conjugate in M . Since M is transitive on W , there is γ ∈ W with Mα = Mγ.
Then Nγ = N ∩Mγ = N ∩Mα = 1 as N is regular on U , again a contradiction. This
completes the proof.

Remark It is well-known that there are no symmetric graphs of order 2p and 2p2. Thus,
for Lemma 2.5, if N is intransitive on W then N ∼= Zlp for l > 3, which also follows from
checking the irreducible subgroups of GL(2, p).
Proof of Theorem 1.1. Let Γ be a semisymmetric graph with bipartition V Γ = U ∪W
satisfying Theorem 1.1 (2). Then Γ must be connected. Without loss of generality, we
assume that GU is permutation isomorphic to X. By Lemma 2.3, G is faithful on W . Let
K be the kernel of G acting on U and W̄ be the set of K-orbits on W , while K = 1 and
W̄ = W if G is faithful on U . Then, by Lemmas 2.3 and 2.5, ΓK is edge-transitive but
not vertex-transitive. Let Ḡ be the subgroup of AutΓK induced by G. Then Ḡ ∼= G/K,
and ḠU is permutation isomorphic to X.

Set N = soc(Ḡ). Suppose that N is transitive on W̄ . Then, since N is faithful
on W̄ , we have |W̄ | = |N | = |U |. Thus K = 1 and Γ = ΓK , Γ is symmetric by
Lemma 2.1, a contradiction. Then N is intransitive on W̄ . Take an edge {α, β̄} of ΓK
with α ∈ U and β̄ ∈ W̄ . Then each N -orbit on W̄ has size |N :Nβ̄| 6= 1, and N has

exactly |W̄ |
|N :Nβ̄ |

orbits on W̄ . Set |Nβ̄| = ps and |W̄ |
|N :Nβ̄ |

= pr. Then 1 6 r 6 s < l. Since
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Ḡ is transitive on W̄ , we know that Ḡα is transitive on the set of N -orbits. Let B be
an N -orbit containing β̄. Then |Ḡα : (Ḡα)B| = pr. Since Ḡα is maximal in Ḡ, we have
Ḡα 66 NḠ(Nβ̄). So |Ḡα : NḠα(Nβ̄)| > 1. Consider the set-wise stabilizer (Ḡα)B. For
g ∈ (Ḡα)B, noting that Nβ̄ is the kernel of N acting on B, we have β̄gx = β̄g for x ∈ Nβ̄,
so gxg−1 ∈ N ∩ Ḡβ̄ = Nβ̄. Thus (Ḡα)B 6 NḠα(Nβ̄). Set |Ḡα : NḠα(Nβ̄)| = pt. Then
t > 1, and pt divides |Ḡα : (Ḡα)B| = pr, so t 6 r 6 s. Noting that ḠU is permutation
isomorphic to X, (1) of Theorem 1.1 follows.

Now we assume that Theorem 1.1 (1) holds. To show (2), it suffices to construct a
suitable semisymmetric graph. Set R = T(V )NH(V ). Let W̄ be the set of right cosets
of R in X, and let U be the set of vectors in Flp. Then |W̄ | = pl−s+t. Extend X to
a permutation group on U ∪ W̄ such that XU = X and X acts on W̄ by the right
multiplication on the right cosets of R in X. It is easily shown that X is faithful on both
U and W̄ . Let Θ = {Rh | h ∈ H}. Then |Θ| = |V ||H|

|R| = |H : NH(V )| = pt < |W̄ |.
Define a bipartite graph Σ on U ∪ W̄ such that u ∈ U and β̄ ∈ W̄ are adjacent if and
only if β̄ ∈ Θτ1,u . Then Σ is X-edge-transitive. Let m = ps−t. If m = 1 then, by
Lemma 2.5, Σ is a semisymmetric graph as desired. If m > 1 then, by Corollary 2.4, Σ1,m

is a semisymmetric graph as desired. This completes the proof.

3 Some examples

Let X = T(Flp):H be a primitive permutation group satisfying Theorem 1.1 (1). Then,
up to isomorphism, each graph satisfying Theorem 1.1 (2) can be constructed from an
X-edge-transitive graph which is not a complete bipartite graph and has one bipartition
subset coinciding with the underlaying set of Flp. Let Σ be such an X-edge-transitive graph
with two bipartition subsets U = Flp and W . Then, for each β ∈ W , the stabilizer Xβ

normalizes (T(Flp))β = T(V ), where V is an s-dimensional subspace of U and Xβ∩T(Flp) =
T(V ). Thus Xβ 6 NX(T(V )) = T(Flp)NH(V ). Assume that T(Flp) has pr orbits on W ,
and set |H : NH(V )| = pt. Then 1 6 t 6 r 6 s < l, and |Xβ| = ps−r|H|. We next consider
one extreme case.

Assume that Xβ = T(V ):NH(V ). Then r = t, and W may be identified with ∪h∈H{u+
V h | u ∈ Flp} with the action of X on W as follows:

(u+ V h)τ1,u′h
′
= (u+ u′)h

′
+ V hh′ ∀u, u′ ∈ Flp, h, h′ ∈ H.

For each u ∈ U = Flp, set Θ(u) = {uh + V h | h ∈ H}. Then {Θ(u) | u ∈ Flp} is the set
of H-orbits on W . Moreover, |Θ(0)| = pt < |W | = pl−s+t, and so |Θ(u)| < |W | for each
u ∈ U . Thus Σ is isomorphic to one of the graphs constructed as follows.

Construction 3.1. Let p, l, H and V be as in Theorem 1.1 (1). Let U = Flp and
W = ∪h∈H{u+ V h | u ∈ Flp}. For each u0 ∈ U , define a bipartite graph Γ (p, l, s, t;H, u0)

on U ∪W such that u ∈ U and u′ + V h′ ∈ W are adjacent if and only if

u′ + V h′ = u+ uh0 + V h for some h ∈ H,
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i.e.,
u0 + (u− u′)h−1 ∈ V and h′h−1 ∈ NH(V ) for some h ∈ H.

The next result follows from Lemmas 2.3 and 2.5, Corollary 2.4 and the above argu-
ment.

Corollary 3.2. If there is a graph Σ = Γ (p, l, s, t;H, u0) as in Construction 3.1, then
Σ1,ps−t is semisymmetric.

Now we construct an infinite family of semisymmetric graphs.

Example 3.3. Let p be a prime, and let s and t be two integers with 1 6 t 6 s such that
s > 2 if further p = 2. Let l = spt. Write Flp in a direct sum

Flp =

pt⊕
i=1

Ui

of s-dimensional subspaces. Without loss of generality, for each i, we take {eij | 1 6 j 6 s}
as a basis of U , where eij is the column vector with the ((i− 1)s+ j)-th entry equal to 1
and the other entries equal to zero.

Let H be the subgroup of GL(l, p) fixes the above decomposition. Then H ∼= GL(s, p) o
Spt . Let V = U1 and Σ = Γ (p, l, s, t;H, u). Set

G(p, s, t;u) = Σ1,m, where m = ps−t

with Σ1,m = 1 while m = 1. Then we get a family

G = {G(p, s, t;u) | 1 6 t 6 s, p is a prime, (p, s) 6= (2, 1), u ∈ Fsptp }

of semisymmetric graphs, and the following statements hold:

(i) G(p, s, t; 0) has valency ps = ptps−t;

(ii) G(p, s, t;u) = G(p, s, t;u′) if u− u′ ∈ Ui for some 1 6 i 6 pt;

(iii) G(p, s, t; ei1) = G(p, s, t; ei′1) for i, i′ > 2;

(iv) G(p, s, t; e21) has valency ps(ps − 1)(pt − 1);

(v) G(p, s, t;
∑k

a=1 uia) = G(p, s, t;
∑k

a=1 eia1) for 2 6 i1 < i2 < · · · ik 6 pt and ui ∈
Ui \ {0};

(vi) G(p, s, t;
∑k

i=2 ei1) has valency ps(ps − 1)k−1(p
t−1
k−1 ), where 2 6 k 6 pt.

Therefore the complete graph Kpspt ,pspt can be factorized into pt connected semisym-
metric graphs. In particular, K27,27 is the edge-disjoint union of three semisymmetric
graphs of valency 3, 12 and 12, say, G(3, 1, 1; 0), G(3, 1, 1; e21) and G(3, 1, 1; e21 + e31).

By [3], there is a unique cubic semisymmetric graph of order 54. Thus G(3, 1, 1; 0) is
in fact the Gray graph. The smallest members of G have order 32, which are G(2, 2, 1; 0)
and G(2, 2, 1; e21) and have valency 4 and 12, respectively.
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It is easily shown that, for s > 2, we can get the same graphs as in Example 3.3 if
replace H by H ∩ SL(l, p). This is also true for s = 1 unless p = 3.

Example 3.4. Let p be an odd prime. Write Fpp in a direct sum Fpp =
⊕p

i=1 Ui of 1-
dimensional subspaces. Assume that ei ∈ Ui for each i, where ei is the column vector
with the i-th entry equal to 1 and the other entries equal to zero. Let H be the subgroup
of SL(p, p) fixes the above decomposition. Then H ∼= Zp−1

p−1:Ap. Let V = U1 and

S(p, p;u) = Γ (p, p, 1, 1;H, u).

Then each S(p, p;u) is semisymmetric graph, and the following statements hold:

(i) S(p, p; 0) = G(p, 1, 1; 0) has valency p;

(ii) S(p, p; ei) = G(p, 1, 1; ei) has valency p(p− 1)2, for p > 5 and 2 6 i 6 p;

(iii) S(3, 3; e2) and S(3, 3; e3) have valency 6, and G(3, 1, 1, e2) is the edge-disjoint union
of these two graphs;

(iv) S(p, p;
∑k

i=2 ei) = G(p, 1, 1;
∑k

i=2 ei) has valency p(p− 1)k−1(p−1
k−1) for k > 3.
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