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Abstract

The simple permutations in two permutation classes — the 321-avoiding per-
mutations and the skew-merged permutations — are enumerated using a uniform
method. In both cases, these enumerations were known implicitly, by working back-
wards from the enumeration of the class, but the simple permutations had not been
enumerated explicitly. In particular, the enumeration of the simple skew-merged
permutations leads to the first truly structural enumeration of this class as a whole.
The extension of this method to a wider collection of classes namely grid classes of
infinite paths is discussed.

1 Introduction

Given permutations π and σ, thought of as sequences of positive integers, we say that π
contains σ, and write σ 6 π, if π has a subsequence π(i1) · · · π(ik) of the same length as
σ which is order isomorphic to σ, i.e. π(is) < π(it) if and only if σ(s) < σ(t); otherwise,
we say that π avoids σ. Containment is a partial order on permutations, and is the only
such order considered in this paper. For example, π = 391867452 contains σ = 51342, as
can be seen by considering the subsequence π(2)π(3)π(5)π(6)π(9) = 91672.
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If X is a collection of permutations, we denote by Xn the set of permutations in X of
length n. The generating function of X is then

∑

π∈X

x|π| =
∑

n

|Xn|xn,

where |π| denotes the length of π. As a matter of convention, except when explicitly stated
otherwise, we do not include the empty permutation in our generating functions. We are
particularly interested in collections of permutations C which are downward closed in the
containment order, i.e. π ∈ C and σ 6 π, then σ ∈ C; we call such collections permutation

classes.
The two permutation classes we consider in this paper are the 321-avoiding permuta-

tions and the skew-merged permutations. This latter class is defined as the set of permu-
tations which can be written as the union of an increasing and a decreasing subsequence.
Stankova [8] proved that the skew-merged permutations can also be characterized as the
permutations that avoid both 2143 and 3412. This class was enumerated by Atkinson [5]
via a rather intricate argument.

Our interest is with the simple permutations in these classes, and to discuss these we
need a few preliminary definitions. An interval in the permutation π is a set of contiguous
indices I = {a, a + 1, . . . , b} such that the set {π(i) : i ∈ I} is also contiguous. Every
permutation π of length n has trivial intervals of lengths 0, 1, and n, and other intervals
are called proper. A permutation is called simple if it does not have any proper intervals.

Simple permutations are precisely those that do not arise from a non-trivial inflation,
in the following sense. Given a permutation σ of length m and nonempty permutations
α1, . . . , αm, the inflation of σ by α1, . . . , αm, denoted σ[α1, . . . , αm], is the permutation of
length |α1|+ · · ·+ |αm| obtained by replacing each entry σ(i) by an interval that is order
isomorphic to αi in such a way that the intervals are order isomorphic to σ. For example,

2413[1, 132, 321, 12] = 4 798 321 56.

It can be established (see Albert and Atkinson [1]) that every permutation is the inflation
of a unique simple permutation, called its simple quotient and, moreover, that the intervals
in such an inflation are unique unless the simple quotient is 12 or 21. Permutations whose
simple quotient is 12 are called sum decomposable and those whose simple quotient is 21 are
called skew decomposable. For enumerative purposes we specify a unique representation
of sum decomposable permutations, expressing the sum decomposable π as π = 12[α, β]
where α is sum indecomposable. We represent skew decomposable permutations uniquely
in an analogous way as 21[α, β] where α is skew indecomposable. Inflations of these two
permutations occur frequently enough that we give them special notation, writing α⊕ β
for 12[α, β] and α⊖ β for 21[α, β].

2 Implicit Derivation

Before introducing our method of counting simple 321-avoiding permutations directly, we
show how this enumeration can be obtained through an implicit relation between it and
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the enumeration of the full class. The nonempty 321-avoiding permutations have the
generating function

c(x) =
1− 2x−

√
1− 4x

2x
= x+2x2 +5x3 +14x4 +42x5 +132x6 +429x7 +1430x8 + · · · .

We aim to relate the generating function for simple 321-avoiding permutations of length
at least 4, which we label s(x), to c(x), and then solve for s(x).

The 321-avoiding permutations can be divided into four categories:

• the permutation 1,

• the skew decomposable permutations,

• the sum decomposable permutations, and

• the inflations of simple permutations of length at least 4.

Obviously the first category of permutations is counted by the generating function x.
The skew decomposable 321-avoiding permutations are all skew sums of two nonempty
increasing permutations, and thus are counted by x2/(1−x)2. Let f⊕ denote the generating
function for the sum decomposable 321-avoiding permutations. Because the 321-avoiding
permutations form a sum closed class (π ⊕ σ avoids 321 whenever π and σ both do), we
can decompose every sum decomposable 321-avoiding permutation as the sum of a sum
indecomposable permutation and another 321-avoiding permutation, so f⊕ = (c − f⊕)c,
which shows that

f⊕ =
c2

1 + c
.

Finally, every entry of a simple permutation of length at least 4 must be involved in
an inversion (as otherwise the permutation would be sum decomposable), so to form a
321-avoiding permutation by inflating such a simple permutation we can only inflate
by increasing subsequences. Thus we see that the contribution of these inflations is
s(x/(1− x)). Putting this together shows that

c(x) = x+
x2

(1− x)2
+

c2

1 + c
+ s

(

x

1− x

)

,

so we get that

s

(

x

1− x

)

=
(1− 3x+ 2x2 − x3)c− x+ x2 − x3

(1− x)2(1 + c)
,

from which it follows that

s(x) =
1− x− 2x2 − 2x3 −

√
1− 2x− 3x2

2 + 2x
.

The power series expansion of s(x) begins

2x4 + 2x5 + 7x6 + 14x7 + 37x8 + · · · ,
sequence A187306 in the OEIS [9].
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Figure 1: The development of the simple permutation 2 4 7 1 8 3 5 9 6. In this devel-
opment, hollow dots might split into groups of entries. In the first step this occurs, as
the original single dot splits in three. That imposes two mandatory interpositions (the
second and third dots in the second cell). There is one optional addition below it (this
addition is, in fact, compulsory in the first step, but optional thereafter). In the next
stage of the development only the last dot splits into two, resulting in a single mandatory
interposition. One optional addition is also chosen.

3 An Iterated System for 321-Avoiding Simples

Every 321-avoiding permutation π has a staircase decomposition, as illustrated in the final
pane of Figure 1. The square regions of this drawing are called its cells. For definiteness
we take the elements in the first cell to be the maximum increasing prefix τ of π, those in
the second cell to be the maximum increasing sequence of values in π \ τ , and thereafter
continue according to the same rules. One may also define this decomposition pictorially
by considering the plot of π (the points {(i, π(i)} in the plane). From this perspective,
the first cell contains the longest increasing sequence, τ , reading from left to right, the
second cell contains the longest increasing sequence of π \ τ reading from bottom to top,
and then this pattern is continued. We refer the reader to [3] for more a more detailed
treatment of staircase decompositions.

We view simple 321-avoiding permutations as developing one cell at a time, from an
initial seed which is a single point. At an intermediate step of this development, the
elements in the final cell will represent either single elements of the final permutation, or
groups of such elements which are only separated from one another by elements of the
next cell. The development of a particular simple permutation is illustrated in Figure 1.

The discussion above suggests an iterated system which describes the development
of 321-avoiding simple permutations. Specifically, suppose that we have a generating
function sn(x, y) which enumerates all possible developments through n cells, where the
elements of the first n − 1 cells are weighted by x and those of the last cell by y. In
the next step of the development, each “hollow dot” (i.e. each y) can be replaced by a
sequence of one or more “filled dots” (elements). In the next cell, we may put a hollow
dot beneath the first of these, and must put one between every pair of them. That is, y
is replaced by

x+ xy + x2y + x2y2 + · · · = x(y + 1)

1− xy
.
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This gives us the system

s1(x, y) = y,

sn+1(x, y) = sn

(

x,
x(y + 1)

1− xy

)

, for n > 1.

We are interested in the limit as n → ∞ of this system. If we set

y =
x(y + 1)

1− xy
(†)

and apply the iteration then we are at a fixed point, and so have produced the desired
solution. This yields

s(x) =
1− x−

√
1− 2x− 3x2

2x
,

the power series for the Motzkin numbers,

x+ x2 + 2x3 + 4x4 + 9x5 + 21x6 + 51x7 + 127x8 + · · · .

However, the 321-avoiding simple permutations are not enumerated by the Motzkin num-
bers. What has gone wrong?

4 Restricting to Simples

The development procedure described above fails to generate the simple 321-avoiding
permutations correctly for two reasons.

• The addition of an element below the first dot is optional in this system, but a
simple permutation cannot begin with its minimum element, so in the first step this
addition should be compulsory.

• The addition of an element in the third cell to the left of the absolute minimum
element (which is in the second cell) is allowed by this system, but this element (if
added) precedes the first descent and thus should be in the first cell.

It might seem that these problems would recur in later cells but they do not. In a later
horizontal step there is no need to add an element below the smallest element of the
preceding cell, since such elements already exist in earlier cells. Similarly, in a vertical
step there is no need to forbid the addition of an element to the left of the minimum
element, since it is already separated horizontally from the previous top step by at least
one element of the previous bottom step. For example, the least element of the fifth cell is
separated from the greatest element in the third cell by at least one element of the second
cell.
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Figure 2: The basic structure of a skew-merged permutation as described in [5]. Area I
consists of all the elements that play the role of 1 in some 132, area II those that play
the role of 1 in some 231, area III those that play the role of 3 in some 213 and area
IV those that play the role of 3 in some 312. In general, any or all of these areas might
be empty, and each is monotone of the type indicated by the line segments. The central
region consists of all the remaining elements and could be either increasing or decreasing.

We can correct both these problems by adjusting the initial conditions. One way to do
this is to start with a two cell system, and use a new variable z to code the least element.
This gives

s2(x, y, z) =
xz

1− xy
.

We then obtain s3 by the substitutions

z → x

1− xy
and y → x(y + 1)

1− xy
.

This eliminates z and thereafter we use the original iteration. It follows that we should
obtain the generating function for simple 321-avoiding permutations by substituting (†)
into s3. Doing so yields

s(x) =
1− x−

√
1− 2x− 3x2

2 + 2x

whose power series expansion begins

x2 + 2x4 + 2x5 + 7x6 + 14x7 + 37x8 + · · · ,

which (once the term corresponding to the permutation 21 is removed) agrees with the
result obtained in Section 2.

5 Skew-Merged Permutations

Recall that a skew-merged permutation is one that can be written as the union of an
increasing and a decreasing sequence. The basic structure of such a permutation is shown
in Figure 2. We intend to apply an analogous technique to that of the previous sections to
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Figure 3: The decomposition of a simple skew-merged permutation whose inner non-
central elements cadb have pattern 3142 into monotone cells, each interacting with only
its immediate predecessor and successor.

enumerate the simple skew-merged permutations. In order to do so, we must refine that
basic structure somewhat. The first thing to note is that the central area is an interval,
and hence in a simple permutation can contain at most one point.

The {2413, 3142}-avoiding permutations are known as separable, and the class of these
permutations is the largest permutation class which contains no simple permutations of
length greater than 2 (the earliest references for this class are [6, 7], in which these facts
are verified). Thus every simple permutation of length at least four contains either 2413
or 3142 as a subpermutation, so if π is a simple skew-merged permutation, then all four
areas are occupied by at least one point. Further, it is easy to check that if π has a central
element, c, and is simple, then π − c (the permutation obtained by π by removing c and
relabeling the remaining entries) is also simple. We call the four elements (one from each
area) closest to the centre of π its inner elements.

To continue we assume that π has no central element and further divide into two
(symmetric) cases depending on the pattern of the four inner elements. There are only
two possible patterns of this type, and the following discussion assumes that we are
considering a simple skew-merged permutation π whose inner elements have the pattern
3142 (the other possibility is its inverse, 2413). Denote the inner elements specifically as
cadb from left to right.

Now we describe a partition of π into a sequence of monotone cells (akin to the
staircase decomposition of 321-avoiding permutations) where each cell in the sequence
interacts only with its immediate predecessor and successor. These cells are arranged
in a counterclockwise spiral pattern, moving outwards. Their description is most easily
understood by referring to Figure 3. The first four of these cells are defined specifically
as follows.

• C1 consists of all the elements in area I lying to the right of c. In particular a ∈ C1.
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• C2 consists of all the elements in area II which lie above some element of C1. In
particular, b ∈ C2.

• C3 consists of all the elements in area III which lie to the left of some element of
C2. In particular, d ∈ C3.

• C4 consists of all the elements in area IV which lie below some element of C3. In
particular, c ∈ C4. Note also that C4 lies entirely to the left of C1 by the initial
choice of C1.

Now for k > 1 the cells are defined inductively as follows.

• C4k+1 consists of all the elements in area I which lie to the right of some element of
C4k but do not belong to some previous cell.

• C4k+2 consists of all the elements in area II which lie above some element C4k+1 but
do not belong to some previous cell.

• C4k+3 consists of all the elements in area III which lie to the left of some element of
C4k+2 but do not belong to some previous cell.

• C4k+4 consists of all the elements in area IV which lie below some element of C4k+3

but do not belong to some previous cell.

If Cn is empty for some n then the elements of π that belong to the union of the Ck

for k < n form an interval. Since π is assumed to be simple, this must be the entire
permutation.

Now we reverse the perspective above, which deconstructs a simple skew-merged per-
mutation π into a sequence of cells and view it as a constructive recipe for building these
permutations. As before we think of the cells C1 through Ck−1 as having been constructed
for some k, along with some elements of Ck represented by hollow dots. In extending the
construction, these hollow dots can split into sequences which then impose mandatory
insertions in the next cell, while the spaces between hollow dots (or before the first one in
a cell) represent optional insertions. Note that the precise meaning of “before” depends
on the area in which we are constructing the next cell, for example, in area II such an
element would be the leftmost and greatest element of Ck+1. We code the generating
function for the result of applying this iteration through cell n by un(x, y) where y labels
the hollow dots. Because of the necessity of including the four extreme points in the
first four cells, the first three optional insertions at the beginning of a cell are in fact
compulsory. The fourth one is actually forbidden (it would violate the “inner” property
of c). We account for these variations to the general rule by adjusting the substitutions
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corresponding to these steps:

u1(x, y) = y,

u2(x, y) = u1

(

x,
x(1 + y)

1− xy

)

· y

y + 1
,

u3(x, y) = u2

(

x,
x(1 + y)

1− xy

)

· y

y + 1
,

u4(x, y) = u3

(

x,
x(1 + y)

1− xy

)

· y

y + 1
,

u5(x, y) = u4

(

x,
x(1 + y)

1− xy

)

· 1

y + 1
,

un+1(x, y) = un

(

x,
x(1 + y)

1− xy

)

, for n > 5.

By computing u5 and then substituting from (†) as before, we obtain the generating
function for the simple skew-merged permutations of this type:

u =
1− 2x− x2 + (x− 1)

√
1− 2x− 3x2

2(x+ 1)2
.

The generating function for all simple permutations of length at least 4 in this class is
then s = 2(x+ 1)u. Here the 2 accounts for the two types of inner pattern and the x+ 1
for the possible addition of a central element. The power series expansion of s(x) begins

2x4 + 2x5 + 8x6 + 16x7 + 44x8 + · · · ,

sequence A220589 in the OEIS [9].
Finally, we can recover the generating function, f , for the class of skew-merged per-

mutations from its simple elements by the usual techniques. Skew-merged permutations
are either sum or skew decomposable or have a simple quotient of length at least 4. Every
sum decomposable permutation in this class is of the form 1⊕π or π⊕1 for a skew-merged
permutation π, and the skew decomposable permutation can be analogously described.
Correcting for the over-counting of elements of the form 1⊕π⊕ 1 or 1⊖π⊖ 1 we see that
the sum or skew decomposable elements of S are enumerated by

4xf − 2x2(f + 1).

In an element with a simple quotient of length at least 4, if there is no central element
in the quotient then the quotient can only be inflated by monotone sequences at each
point. If a central element is present then it can be inflated by an arbitrary skew-merged
permutation. Combining this with our previous observations gives

f = x+ 4xf − 2x2(f + 1) + 2u

(

x

1− x

)

(f + 1).
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And, although it is hardly evident at a glance, this gives a new derivation of Atkinson’s
enumeration [5]:

f =
1− 3x

(1− 2x)
√
1− 4x

= 1+x+2x2+6x3+22x4+86x5+340x6+1340x7+5254x8+ · · · .

(Sequence A029759 in the OEIS [9].) To confirm this, we suggest that the reader do
as we did and leave the details to a computer algebra system, but the main reason that
things simplify so nicely is that the substitution of x/(1−x) for x in

√
1− 2x− 3x2 yields√

1− 4x/(1− x).

6 Extensions

It has not escaped our notice that the specific techniques we have detailed suggest possible
extensions. In the language of “geometric grid classes” studied in [2, 4], the 321-avoiding
permutations can be described as

Geom















...
...

1 1
1 1

1 1
1 1

1 1















,

and we have shown that the skew-merged permutations can be expressed built via “central
inflation” from the classes

Geom

















. . .
...

−1 1
−1 1

1 −1
1 −1

...
. . .

















and Geom



















. . .
...

−1 1
−1 1
1

1 −1
1 −1

...
. . .



















It should be possible to use our techniques to enumerate the simple permutations for
all infinite geometric grid classes which consist of a single “path”, so long as this path
satisfies some suitable regularity condition. Of course, the analysis of which hollow dots
are mandatory and which are optional will depend on the specific grid class studied.
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