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Abstract

For an arbitrary Coxeter group W , Reading and Speyer defined Cambrian semi-
lattices Cγ as sub-semilattices of the weak order onW induced by so-called γ-sortable
elements. In this article, we define an edge-labeling of Cγ , and show that this is an
EL-labeling for every closed interval of Cγ . In addition, we use our labeling to
show that every finite open interval in a Cambrian semilattice is either contractible
or spherical, and we characterize the spherical intervals, generalizing a result by
Reading.

1 Introduction

In [6, Theorem 9.6], Björner and Wachs observed that the Tamari lattice Tn, introduced in
[27], can be regarded as the subposet of the weak-order lattice on the symmetric group Sn,
consisting of 312-avoiding permutations. More precisely, there exists an order-preserving
surjection σ : Sn → Tn such that Tn is isomorphic to the subposet of the weak-order
lattice on Sn consisting of the bottom elements in the fibers of σ. In [19], the map σ
was realized as a map from Sn to the triangulations of an (n+ 2)-gon, where the partial
order on the latter is given by diagonal flips. It was shown that the fibers of σ induce
a congruence relation on the weak-order lattice on Sn, and that the Tamari lattice is
isomorphic to the lattice quotient induced by this congruence. Moreover, it was observed
that different embeddings of the (n+2)-gon in the plane yield different lattice quotients of
the weak-order lattice on Sn. The realization of Sn as the Coxeter group An−1 was then
used to connect the embedding of the (n + 2)-gon in the plane with a Coxeter element
of An−1. This connection eventually led to the definition of Cambrian lattices, which
can analogously be defined for an arbitrary finite Coxeter group W as lattice quotients
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of the weak-order lattice on W with respect to certain lattice congruences induced by
orientations of the Coxeter diagram of W , see [21].

As suggested in [26, Appendix B], and later in [15, Theorem 1], the Hasse diagram
of the Tamari lattice corresponds to the 1-skeleton of the classical associahedron. (Due
to the connection to the symmetric group, which was elaborated in [15], the classical
associahedron is also referred to as type A-associahedron.) In [7, 8, 10, 24], generalized
associahedra were defined for all crystallographic Coxeter groups which generalize the type
A-associahedron. The Cambrian lattices provide another viewpoint for the generalized
associahedra, namely that the fan associated to a Cambrian lattice of crystallographic
type is the normal fan of the generalized associahedron of the same type, see [22] for
the details of this construction. Moreover, since the Cambrian lattices are defined for
all finite Coxeter groups, this connection defines a generalized associahedron for the non-
crystallographic types as well, see [22, Corollary 8.1].

In [23], Reading and Speyer generalized the construction of Cambrian lattices to infi-
nite Coxeter groups. Since there exists no longest element in an infinite Coxeter group,
the weak order constitutes only a meet-semilattice. Using the realization of the Cambrian
lattices in terms of Coxeter-sortable elements, which was first described in [21] and later
extended in [23], the analogous construction as in the finite case yields a sub-semilattice
of the weak-order semilattice, the so-called Cambrian semilattice.

This article is dedicated to the investigation of the topological properties of the order
complex of the proper part of closed intervals in a Cambrian semilattice. One (order-
theoretic) tool to investigate these properties is EL-shellability, which was introduced in
[1], and further developed in [4–6]. The fact that a poset is EL-shellable implies a number
of properties of the associated order complex: this order complex is Cohen-Macaulay, it
is homotopy equivalent to a wedge of spheres and the dimensions of its homology groups
can be computed from the labeling. The first main result of the present article is the
following.

Theorem 1.1. Every closed interval in Cγ is EL-shellable for every (possibly infinite)
Coxeter group W and every Coxeter element γ ∈ W .

We prove this result uniformly using the realization of Cγ in terms of Coxeter-sortable
elements, and thus our proof does not require W to be finite or even crystallographic.
For finite crystallographic Coxeter groups, Theorem 1.1 is implied by [12, Theorem 4.17].
Ingalls and Thomas considered in [12] the category of finite dimensional representations
of an orientation of the Coxeter diagram of a finite crystallographic Coxeter group W ,
and considered the corresponding Cambrian lattices as a poset of torsion classes of this
category. However, their approach cannot be applied directly to non-crystallographic or to
infinite Coxeter groups. Moreover, we remark that the labeling from Ingalls’ and Thomas’
approach is different from our labeling.

Finally, using the fact that every closed interval of Cγ is EL-shellable, we are able
to determine the homotopy type of the proper parts of these intervals by counting the
number of falling chains with respect to our labeling. It turns out that every open interval
is either contractible or spherical, i.e. homotopy equivalent to a sphere. We can further
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characterize which intervals of Cγ are contractible and which are spherical, as our second
main result shows. Recall that a closed interval [x, y] in a lattice is called nuclear if y is
the join of atoms of [x, y].

Theorem 1.2. Let W be a (possibly infinite) Coxeter group and let γ ∈ W be a Coxeter
element. Every finite open interval in the Cambrian semilattice Cγ is either contractible
or spherical. Furthermore, a finite open interval (x, y)γ is spherical if and only if the
corresponding closed interval [x, y]γ is nuclear.

For finite Coxeter groups, Theorem 1.2 is implied by concatenating [18, Theorem 1.1]
and [18, Propositions 5.6 and 5.7]. Reading’s approach in the cited article was to investi-
gate fan posets of central hyperplane arrangements. He showed that for a finite Coxeter
group W the Cambrian lattices can be viewed as fan posets of a fan induced by regions
of the Coxeter arrangement of W which are determined by orientations of the Coxeter
diagram of W . The tools Reading developed in [18] apply to a much larger class of fan
posets, but cannot be applied directly to infinite Coxeter groups.

The proofs of Theorems 1.1 and 1.2 are obtained completely within the framework of
Coxeter-sortable elements and thus have the advantage that they are uniform and direct.

This article is organized as follows. In Section 2, we recall the necessary order-theoretic
concepts, as well as the definition of EL-shellability. Furthermore, we recall the definition
of Coxeter groups, and the construction of the Cambrian semilattices. In Section 3,
we define a labeling of the Hasse diagram of a Cambrian semilattice and give a case-
free proof that this labeling is indeed an EL-labeling for every closed interval of this
semilattice, thus proving Theorem 1.1. In Section 4, we prove Theorem 1.2, by counting
the falling maximal chains with respect to our labeling and by applying [5, Theorem 5.9]
which relates the number of falling maximal chains in a poset to the homotopy type of
the corresponding order complex. The characterization of the spherical intervals of Cγ
follows from Theorem 4.3.

2 Preliminaries

In this section, we recall the necessary definitions, which are used throughout the article.
For further background on posets, we refer to [9] or to [25], where in addition some
background on lattices and lattice congruences is provided. An introduction to poset
topology can be found in either [2] or [28]. For more background on Coxeter groups, we
refer to [3] and [11].

2.1 Posets and EL-Shellability

Let (P,6P ) be a finite partially ordered set (poset for short). We say that P is bounded
if it has a unique minimal and a unique maximal element, which we usually denote by 0̂
and 1̂, respectively. For x, y ∈ P , we say that y covers x (and write x lP y) if x 6P y
and there is no z ∈ P such that x <P z <P y. We denote the set of all covering relations
of P by E(P ).
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For x, y ∈ P with x 6P y, we define the closed interval [x, y] to be the set {z ∈ P | x 6P

z 6P y}. Similarly, we define the open interval (x, y) to be the set {z ∈ P | x <P z <P y}.
A chain c : x = p0 6P p1 6P · · · 6P ps = y is called maximal if (pi, pi+1) ∈ E(P ) for every
0 6 i 6 s− 1.

Let (P,6P ) be a bounded poset and let c : 0̂ = p0 lP p1 lP · · · lP ps = 1̂ be a
maximal chain of P . Given another poset (Λ,6Λ), a map λ : E(P ) → Λ is called an
edge-labeling of P . We denote the sequence

(
λ(p0, p1), λ(p1, p2), . . . , λ(ps−1, ps)

)
of edge-

labels of c by λ(c). The chain c is called rising (respectively falling) if λ(c) is a strictly
increasing (respectively weakly decreasing) sequence. For two words (p1, p2, . . . , ps) and
(q1, q2, . . . , qt) in the alphabet Λ, we write (p1, p2, . . . , ps) 6Λ∗ (q1, q2, . . . , qt) if and only if
either

pi = qi, for 1 6 i 6 s and s 6 t, or

pi <Λ qi, for the least i such that pi 6= qi.

A maximal chain c of P is called lexicographically first among the maximal chains of
P if for every other maximal chain c′ of P we have λ(c) 6Λ∗ λ(c′). An edge-labeling
of P is called EL-labeling if for every closed interval [x, y] in P there exists a unique
rising maximal chain which is lexicographically first among all maximal chains in [x, y].
A bounded poset that admits an EL-labeling is called EL-shellable.

Let us further recall that the Möbius function µ of P is the map µ : P × P → Z
defined recursively by

µ(x, y) =


1, x = y

−
∑

x6P z<P y
µ(x, z), x <P y

0, otherwise.

A remarkable property of EL-shellable posets is that we can compute the value of
the Möbius function for every closed interval of P from the labeling, as is stated in the
following proposition1.

Proposition 2.1 ([5, Proposition 5.7]). Let (P,6P ) be an EL-shellable poset, and let
x, y ∈ P with x 6P y. Then,

µ(x, y) = number of even length falling maximal chains in [x, y]

− number of odd length falling maximal chains in [x, y].

2.2 Coxeter Groups and Weak Order

Let W be a (possibly infinite) group being generated by the finite set S = {s1, s2, . . . , sn}.
Let m = (mi,j)16i,j6n be a symmetric (n×n)-matrix, where the entries are either positive

1Actually, Proposition 5.7 in [5] is stated for posets admitting a so-called CR-labeling. EL-shellable
posets are a particular instance of this class of posets, and for the scope of this article it is sufficient to
restrict our attention to these.
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integers or the formal symbol ∞, and which satisfies mi,i = 1 for all 1 6 i 6 n, and
mi,j > 2 otherwise. (We use the convention that ∞ is formally larger than any natural
number.) We call W a Coxeter group if it has the presentation

W =
〈
S | (sisj)mi,j = ε for 1 6 i, j 6 n

〉
,

where ε ∈ W denotes the identity, and we call S the set of simple generators of W . We
interpret the case mi,j =∞ as stating that there is no relation between the generators si
and sj, and call the matrix m the Coxeter matrix of W .

Since S is a generating set of W , we can write every element w ∈ W as a product of
the elements in S, and we call such a word a reduced word for w if it has minimal length.
More precisely, define the word length on W (with respect to S) as

`S : W → N, w 7→ min{k | w = si1si2 · · · sik and sij ∈ S for all 1 6 j 6 k}.

If `S(w) = k, then every product of k generators which yields w is a reduced word for w.
Define the (right) weak order of W by

u 6S v if and only if `S(v) = `S(u) + `S(u−1v).

The poset (W,6S) is a ranked meet-semilattice, the so-called weak-order semilattice of
W , and `S is its rank function. Moreover, (W,6S) is finitary meaning that every principal
order ideal of (W,6S) is finite. In the case where W is finite, there exists a unique longest
word wo of W , and (W,6S) is thus a lattice.

It is often convenient to have the following alternative characterization of the (right)
weak order on W . Let T = {wsw−1 | w ∈ W, s ∈ S}, and define for w ∈ W , the (left)
inversion set of w as

inv(w) = {t ∈ T | `S(tw) 6 `S(w)}.

It is the statement of [3, Proposition 3.1.3] that u 6S v if and only if inv(u) ⊆ inv(v),
and [3, Corollary 1.4.5] states that `S(w) = |inv(w)| for all w ∈ W . Thus, every w ∈ W
is uniquely determined by its (left) inversion set.

2.3 Coxeter-Sortable Elements

Let γ = s1s2 · · · sn ∈ W be a Coxeter element, and define the half-infinite word

γ∞ = s1s2 · · · sn|s1s2 · · · sn| · · · .

The vertical bars in the representation of γ∞ are “dividers”, which have no influence on
the structure of the word, but shall serve for a better readability. Clearly, every reduced
word for w ∈ W can be considered as a subword of γ∞. Among all reduced words for w,
there is a unique reduced word, which is lexicographically first considered as a subword
of γ∞. This reduced word is called the γ-sorting word of w.
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Example 2.2. Consider the Coxeter group W = S5, generated by S = {s1, s2, s3, s4},
where si corresponds to the transposition (i, i + 1) for all i ∈ {1, 2, 3, 4} and let γ =
s1s2s3s4. Clearly, s1 and s4 commute. Hence, w1 = s1s2|s1s4 and w2 = s1s2s4|s1 are
reduced words for the same element w ∈ W . Considering w1 and w2 as subwords of γ∞,
we find that w2 is a lexicographically smaller subword of γ∞ than w1 is. There are six
other reduced words for w, namely

w3 = s1s4|s2|s1, w4 = s4|s1s2|s1, w5 = s4|s2|s1s2,

w6 = s2s4|s1s2, w7 = s2|s1s4|s2, w8 = s2|s1s2s4.

It is easy to see that among these w2 is the lexicographically first subword of γ∞, and
hence w2 is the γ-sorting word of w.

In the following, we consider only γ-sorting words, and we write

w = s
δ1,1
1 s

δ1,2
2 · · · sδ1,nn | sδ2,11 s

δ2,2
2 · · · sδ2,nn | · · · | sδl,11 s

δl,2
2 · · · s

δl,n
n , (1)

where δi,j ∈ {0, 1} for 1 6 i 6 l and 1 6 j 6 n. For each i ∈ {1, 2, . . . , l}, we say that

bi = {sj | δi,j = 1} ⊆ S

is the i-th block of w. We consider the blocks of w sometimes as sets and sometimes as
subwords of γ, depending on how much structure we need. We say that w is γ-sortable if
and only if b1 ⊇ b2 ⊇ · · · ⊇ bl, and we denote the set of γ-sortable elements of W by Cγ.

Example 2.3. Let us continue the previous example. We have seen that w2 = s1s2s4|s1

is a γ-sorting word in W , and b1 = {s1, s2, s4}, and b2 = {s1}. Since b2 ⊆ b1, we see that
w2 is indeed γ-sortable.

The γ-sortable elements of W are characterized by a recursive property which we will
describe next. A generator s ∈ S is called initial in γ if it is the first letter in some
reduced word for γ. For some subset J ⊆ S, let WJ denote the parabolic subgroup of
W generated by the set J , and let W J = {w ∈ W | w <S ws for all s ∈ J}. It is the
statement of [3, Proposition 2.4.4 (i)] that w can be written uniquely as w = wJ · wJ for
wJ ∈ W J and wJ ∈ WJ . It is straightforward to verify that the map w 7→ wJ is defined
by the property that inv(wJ) = inv(w) ∩WJ , see for instance [23, p. 10] for a proof. For
s ∈ S we abbreviate 〈s〉 = S \ {s}.

Proposition 2.4 ([23, Proposition 2.29]). Let W be a Coxeter group, let γ ∈ W be a
Coxeter element and let s be initial in γ. Then, an element w ∈ W is γ-sortable if and
only if

(i) s 6S w and sw is sγs-sortable, or

(ii) s 66S w and w is an sγ-sortable element of W〈s〉.
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Remark 2.5. The property of being γ-sortable does not depend on the choice of a reduced
word for γ, see [23, Section 2.7]. For w ∈ W , let w1 and w2 be the γ-sorting words of w
with respect to two different reduced words γ1 and γ2 for γ. Since γ1 and γ2 differ only
in commutations of letters, it is clear that w1 and w2 differ also only in commutations
of letters, with no commutations across dividers. Hence, the i-th block of w1, considered
as a subset of S, is equal to the i-th block of w2, considered as a subset of S. However,
the i-th block of w1, considered as a subword of γ1, is different from the i-th block of w2,
considered as a subword of γ2.

2.4 Cambrian Semilattices

In [23, Section 7] the Cambrian semilattice Cγ is defined as the sub-semilattice of the weak
order on W consisting of all γ-sortable elements. That Cγ is well-defined follows from the
following theorem.

Theorem 2.6 ([23, Theorem 7.1]). Let A be a collection of γ-sortable elements of W . If
A is nonempty, then

∧
S A is γ-sortable. If A has an upper bound, then

∨
S A is γ-sortable.

It turns out that Cγ is not only a sub-semilattice of the weak order, but also a quotient
semilattice. The key role in the proof of this property is played by the projection πγ↓
which maps every word w ∈ W to the unique largest γ-sortable element below w. More
precisely if s is initial in γ, then define

πγ↓ (w) =

{
sπsγs↓ (sw), if s 6S w

πsγ↓ (w〈s〉), if s 66S w,
(2)

and set πγ↓ (ε) = ε, see [23, Section 6]. The most important properties of this map are
stated in the following theorems.

Theorem 2.7 ([23, Theorem 6.1]). The map πγ↓ is order-preserving.

Theorem 2.8 ([23, Theorem 7.3]). For some subset A ⊆ W , if A is nonempty, then∧
γ π

γ
↓ (A) = πγ↓

(∧
S A
)

and if A has an upper bound, then
∨
γ π

γ
↓ (A) = πγ↓

(∨
S A
)
.

Hence, πγ↓ is a semilattice homomorphism from the weak order on W to Cγ, and Cγ
can be considered as the quotient semilattice of the weak order modulo the semilattice
congruence θγ induced by the fibers of πγ↓ . This semilattice congruence is called Cambrian
congruence. Since the lack of a maximal element is the only obstruction for the weak
order to be a lattice, it follows immediately that the restriction of πγ↓ (and hence θγ) to
closed intervals of the weak order yields a lattice homomorphism (and hence a lattice
congruence). Figure 1 shows the Hasse diagram of the weak order on the Coxeter group
A3 and the congruence classes of θγ for γ = s1s2s3.

In the remainder of this article, we switch frequently between the weak-order semi-
lattice on W and the Cambrian semilattice Cγ. In order to point out properly which
semilattice we consider, we denote the order relation of the weak-order semilattice by
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ε

s1 s2 s3

s1s2 s2|s1 s1s3 s2s3 s3|s2

s1s2|s1 s1s2s3 s1s3|s2 s2s3|s1 s3|s2|s1 s2s3|s2

s1s2s3|s1 s1s2s3|s2 s1s3|s2|s1 s2s3|s1s2 s2s3|s2|s1

s1s2s3|s1s2 s1s2s3|s2|s1 s2s3|s1s2|s1

s1s2s3|s1s2|s1

Figure 1: The Cambrian congruence on the weak-order lattice on A3 induced by the
Coxeter element s1s2s3. The non-singleton congruence classes are highlighted.

6S, and the order relation of Cγ by 6γ. Analogously, we denote a closed (respectively
open) interval in the weak-order semilattice by [u, v]S (respectively (u, v)S), and a closed
(respectively open) interval in Cγ by [u, v]γ (respectively (u, v)γ). Moreover, we denote
the meet (respectively join) in the weak-order semilattice by ∧S (respectively ∨S), and
the meet (respectively join) in Cγ by ∧γ (respectively ∨γ).

3 EL-Shellability of the Closed Intervals in Cγ
In this section, we define an edge-labeling of Cγ, discuss some of its properties and even-
tually prove Theorem 1.1.

3.1 The Labeling

In the remainder of this article, we focus on a fixed reduced word for γ, namely γ =
s1s2 · · · sn. Define for every w ∈ W the set of positions of the γ-sorting word of w as

αγ(w) =
{

(i− 1) · n+ j | δi,j = 1
}
⊆ N,

where the δi,j’s are the exponents from (1).

Example 3.1. Let W = S4, γ = s1s2s3 and consider u = s1s2s3|s2, and v = s2s3|s2|s1.
Then, αγ(u) = {1, 2, 3, 5}, and αγ(v) = {2, 3, 5, 7}, where u ∈ Cγ, while v /∈ Cγ.
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ε

s1 s2 s3

s1s2 s1s3 s2s3

s1s2|s1 s1s2s3 s2s3|s2

s1s2s3|s1 s1s2s3|s2

s1s2s3|s1s2

s1s2s3|s1s2|s1

1 2 3

2
3 3

1

1

2

4
3

2

5

13 4 5

15

4

7

Figure 2: An A3-Cambrian lattice with the labeling as defined in (3).

It is not hard to see that an element w ∈ W lies in Cγ if and only if the following
holds: if i ∈ αγ(w) and i > n, then i− n ∈ αγ(w). In the previous example, we see that
αγ(u) contains both 5 and 2, while αγ(v) does not contain 7− 3 = 4.

Lemma 3.2. Let u, v ∈ W with u 6S v. Then αγ(u) is a subset of αγ(v).

Proof. The γ-sorting word of an element w ∈ W is a reduced word for w. Thus, it follows
immediately from the definition of the weak order that any letter appearing in the γ-
sorting word of u has to appear also in the γ-sorting word of every element that is greater
than w in the weak order. Thus, if u, v ∈ Cγ with u 6γ v, then αγ(u) ⊆ αγ(v).

Denote by E(Cγ) the set of covering relations of Cγ, and define an edge-labeling of Cγ
by

λγ : E(Cγ)→ N, (u, v) 7→ min
{
i | i ∈ αγ(v) r αγ(u)

}
. (3)

Figures 2 and 3 show the Hasse diagrams of a Cambrian lattice Cγ of the Coxeter groups
A3 and B3, respectively, together with the labels defined by the map λγ.

Remark 3.3. By definition, the Cambrian semilattice Cγ does not depend on a reduced
word for γ, see Remark 2.5. In contrast to that, the labeling defined in (3) does depend
on the reduced word for γ. That means, if γ1 and γ2 are two different reduced words
for γ, the Cambrian semilattices Cγ1 and Cγ2 are isomorphic, but the labeling of Cγ1 is
structurally different from the labeling of Cγ2 . However, we show that the property that
λ is an EL-labeling does not depend on the reduced word for γ.
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ε

s3 s2 s1

s2s3 s1s3 s1s2

s2s3|s2
s1s2|s1

s1s2s3

s2s3|s2s3
s1s2s3|s1 s1s2s3|s2

s1s2s3|s2s3
s1s2s3|s1s2

s1s2s3|s1s2s3 s1s2s3|s1s2|s1

s1s2s3|s1s2s3|s1

s1s2s3|s1s2s3|s1s2

s1s2s3|s1s2s3|s1s2s3

3 2 1

1

2

3

1

3
2

5

1

2

4
3

6

1

3
4 5

1

5
6

4

4

6 7

7 6

8

9

Figure 3: A B3-Cambrian lattice, with the labeling as defined in (3).
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3.2 Properties of the Labeling

Lemma 3.4. Let Cγ be a Cambrian semilattice, and let u, v ∈ Cγ such that u 6γ v. Let
i0 = min{i | i ∈ αγ(v) r αγ(u)}. Then, the following hold.

(i) The label i0 appears in every maximal chain of the interval [u, v]γ.

(ii) The labels of a maximal chain in [u, v]γ are distinct.

Proof. (i) Suppose that this is not the case. Then there exists a maximal chain u =
x0 lγ x1 lγ · · · lγ xt−1 lγ xt = v with λγ(xi, xi+1) 6= i0 for every i ∈ {0, 1, . . . , t − 1}.
Hence, i0 ∈ αγ(u) if and only if i0 ∈ αγ(v), which contradicts the definition of i0.

(ii) Let u = x0 lγ x1 lγ · · · lγ xt = v be a maximal chain in [u, v]γ. Assume that
there are i, j ∈ {0, 1, . . . , t − 1} with i < j such that λγ(xi, xi+1) = k = λγ(xj, xj+1).
By definition, k ∈ αγ(xi+1), and k /∈ αγ(xj). Since xi+1 6S xj, we can conclude from
Lemma 3.2 that αγ(xi+1) ⊆ αγ(xj), which yields a contradiction.

The γ-sortable elements of W are defined recursively as described in Proposition 2.4.
Before we investigate how our labeling behaves with respect to this recursion, we need to
recall one more result. For s ∈ S, let W>s = {w ∈ W | s 6S w} and let W6>s = {w ∈ W |
s 66S w}.

Proposition 3.5 ([23, Proposition 2.18]). Let w ∈ W and s ∈ S. Then `S(sw) < `S(w)
if and only if s 6S w if and only if s ∈ inv(w). Left multiplication by s is a poset
isomorphism from

(
W6>s,6S

)
to
(
W>s,6S

)
. If w lS w

′, s 6S w′ and s 66S w, then
w′ = sw.

Lemma 3.6. Let W be a Coxeter group and let γ = s1s2 · · · sn be a Coxeter element of
W . For u, v ∈ Cγ with ulγ v, we have

λγ(u, v) =


1, if s1 66S u and s1 6S v,

λs1γs1(s1u, s1v) + 1, if s1 6S u,

λs1γ
(
u〈s1〉, v〈s1〉

)
+ k, if s1 66S v and the first position where u and v

differ is in their k-th block.

Proof. Let first s1 66S u and s1 6S v. By definition of the weak order, s1 does not occur
in the first position of any reduced word for u, in particular it does not occur in the first
position of the γ-sorting word of u. Hence, 1 /∈ αγ(u). On the other hand, s1 does occur
in the first position of the γ-sorting word of v, and hence 1 ∈ αγ(v). By definition this
implies λγ(u, v) = 1.

Let now s1 6S u. Then, s1 6S v, and with Proposition 2.4, we find that s1u and s1v
are s1γs1-sortable. It follows from Propositions 2.4 and 3.5 and from the definition of
the weak order that s1uls1γs1 s1v. Say λs1γs1(s1u, s1v) = k. By construction, the s1γs1-
sorting word of s1u is precisely the subword of u starting at the second position. Thus, the
s1γs1-sorting word of s1u is the leftmost subword of γ∞ where the first position is empty,
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and likewise for s1v. If the first position of (s1γs1)∞ where s1u and s1v differ is k, then
the first position of γ∞ where u and v differ is k+1. Hence, λγ(u, v) = λs1γs1(s1u, s1v)+1.

Finally, let s1 66S v. Then, s1 66S u, and with Proposition 2.4, we find that u = u〈s1〉
and v = v〈s1〉 are s1γ-sortable elements of the parabolic subgroup W〈s1〉 of W , and the
Cambrian lattice Cs1γ is an order ideal in Cγ. Say that the first position filled in v〈s1〉 but
not in u〈s1〉 is in the k-th block of v〈s1〉. Considering u〈s1〉 and v〈s1〉 as subwords of γ∞ adds
the letter s1 with exponent 0 to each block of u〈s1〉 and v〈s1〉. Since the first difference of
u〈s1〉 and v〈s1〉 is in the k-th block, the first difference of u and v is still in the k-th block,
but each block has an additional first letter. Hence λγ(u, v) = λs1γ

(
u〈s1〉, v〈s1〉

)
+ k.

Example 3.7. Let W = B3 generated by S = {s1, s2, s3} satisfying (s1s2)3 = (s2s3)4 =
(s1s3)2 = ε and s2

1 = s2
2 = s2

3 = ε, and let γ = s1s2s3 be a Coxeter element of B3. Thus,
Cγ is the lattice depicted in Figure 3.

Consider u1 = s2s3|s2s3 and v1 = s1s2s3|s1s2s3|s1s2s3. With the definition of our
labeling follows λγ(u1, v1) = 1 immediately.

Let now u2 = s1s2s3|s1s2 and v2 = s1s2s3|s1s2s3. Then, s1u2 = s2s3s1|s2 and s1v2 =
s2s3s1|s2s3 considered as s1γs1-sorting words. We have

λs1γs1(s1u2, s1v2) = 5, and λγ(u2, v2) = 6.

Finally, let u3 = s2s3|s2 and v3 = s2s3|s2s3. The (s1γ)∞-sorting words of (u3)〈s1〉 and
(v3)〈s1〉 written as in (1) are

(u3)〈s1〉 = s1
2s

1
3|s1

2s
0
3, and (v3)〈s1〉 = s1

2s
1
3|s1

2s
1
3.

The corresponding γ-sorting words of u3 and v3 are

u3 = s0
1s

1
2s

1
3|s0

1s
1
2s

0
3, and v3 = s0

1s
1
2s

1
3|s0

1s
1
2s

1
3.

Hence, λs1γ
(
(u3)〈s1〉, (v3)〈s1〉

)
= 4 and λγ(u3, v3) = 6.

3.3 Proof of Theorem 1.1

We will prove Theorem 1.1 by showing that the map λγ defined in (3) is an EL-labeling
for every closed interval in Cγ. In particular we show the following.

Theorem 3.8. Let u, v ∈ Cγ with u 6γ v. Then the map λγ defined in (3) is an EL-
labeling for [u, v]γ.

For the proof of Theorem 3.8, we need two more technical results. The first one is
[23, Proposition 2.20] which was first proved in [13, Lemmas 4.2 (iii) and 4.5]. The second
result uses many of the deep results on Cambrian semilattices developed in [23]. For
w ∈ W , we say that t ∈ inv(w) is called a cover reflection of w if there exists some s ∈ S
with tw = ws. We denote by cov(w) the set of all cover reflections of w.

Proposition 3.9 ([23, Proposition 2.20]). Let J ⊆ S and A ⊆ W and define AJ = {wJ |
w ∈ A}. If A is nonempty, then

∧
S

(
AJ
)

=
(∧

S A
)
J
, and if A has an upper bound, then∨

S

(
AJ
)

=
(∨

S A
)
J
.
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Lemma 3.10. Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u 6γ v. If s1 66γ u and s1 6γ v,
then the join s1 ∨γ u covers u in Cγ.

Proof. First of all, since s1 6γ v and u 6γ v, we conclude from Theorem 2.6 that s1 ∨γ u
exists, and we set z = s1 ∨γ u. Now, we observe that if w,w′ ∈ Cγ, then it follows from
Theorem 2.7 that

w 6S w
′ implies πγ↓ (w) 6γ π

γ
↓ (w

′) implies w 6γ w
′. (4)

By assumption, we have s1 66γ u, and by contraposition follows from (4) that s1 66S u.
Hence, with (2) follows that u = πγ↓ (u) = πs1γ↓ (u〈s1〉) ∈ W〈s1〉, and Proposition 2.4 implies
u = u〈s1〉 ∈ W〈s1〉.

Since u <γ z, there exists some u′ ∈ Cγ with u 6γ u
′ lγ z. If s1 6γ u

′, then u′ is an
upper bound for s1 and u which contradicts u′ lγ z. Thus, we have s1 66γ u

′, which with
(4) implies s1 66S u

′ again, and it follows from Proposition 2.4 that u′ = u′〈s1〉 ∈ W〈s1〉.
Since Cγ is a sub-semilattice of the weak-order semilattice, the relation u′ lγ z implies
u′ <S z, and we obtain u′〈s1〉 6S z〈s1〉 = (s1 ∨γ u)〈s1〉. In view of Proposition 3.9, this

implies u′〈s1〉 6S (s1)〈s1〉 ∨γ u〈s1〉. However, since (s1)〈s1〉 = ε, and since u = u〈s1〉 and
u′ = u′〈s1〉, we obtain u′ 6S u. This implies u = u′ and thus the result.

Proof of Theorem 3.8. Let [u, v]γ be a closed interval of Cγ. Since the weak order on W
is finitary, it follows that [u, v]γ is a finite lattice. We show that there exists a unique
maximal rising chain which is the lexicographically first among all maximal chains in this
interval.

We proceed by induction on length and rank, using the recursive structure of γ-sortable
elements, see Proposition 2.4. We assume that `S(v) > 3, and that W is a Coxeter group
of rank > 2, since the result is trivial otherwise. Say that W is of rank n, and say that
`S(v) = k. Suppose that the induction hypothesis is true for all parabolic subgroubs of W
having rank < n and suppose that for every closed interval [u′, v′]γ of Cγ with `S(v′) < k,
there exists a unique rising maximal chain from u′ to v′ which is lexicographically first
among all maximal chains in [u′, v′]γ. We show that there is a unique rising maximal chain
in the interval [u, v]γ wich is lexicographically first among all maximal chains in [u, v]γ.
Let γ = s1s2 · · · sn. We distinguish two cases: (1) s1 66γ v and (2) s1 6γ v.

(1) Since s1 66γ v, it follows that no element of [u, v]γ contains the letter s1 in its
γ-sorting word. We consider the parabolic Coxeter group W〈s1〉 (generated by S \ {s1})
and the Coxeter element s1γ. It follows from Proposition 2.4 that the interval [u, v]γ
is isomorphic to the interval [u〈s1〉, v〈s1〉]s1γ in W〈s1〉. Since the rank of W〈s1〉 is n − 1 <
n, by induction there exists a unique maximal rising chain c′ : u〈s1〉 = (x0)〈s1〉 ls1γ

(x1)〈s1〉 ls1γ · · · ls1γ (xt)〈s1〉 = v〈s1〉 which is lexicographically first among all maximal
chains in [u〈s1〉, v〈s1〉]sγ. Let (xja)〈s1〉 ls1γ (xja+1)〈s1〉 and (xjb)〈s1〉 ls1γ (xjb+1)〈s1〉 be two
covering relations in c′ with ja + 1 6 jb. Say that the first block where (xja)〈s1〉 and
(xja+1)〈s1〉 differ is the da-th block of their s1γ-sorting word and say that the first block
where (xjb)〈s1〉 and (xjb+1)〈s1〉 differ is the db-th block of their s1γ-sorting word. Since c′ is
rising, we conclude that da 6 db, and Lemma 3.6 implies that the corresponding maximal
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chain c : u = x0 lγ x1 lγ · · · lγ xt = v in [u, v]γ is rising. Similarly, it follows that c is
the unique maximal rising chain and that it is lexicographically first among all maximal
chains in [u, v]γ.

(2a) Suppose first that s1 6γ u as well. Then, s1 is the first letter in the γ-sorting
word of every element in [u, v]γ. It follows from Propositions 2.4 and 3.5 that the interval
[u, v]γ is isomorphic to the interval [s1u, s1v]s1γs1 . Moreover, Lemma 3.6 implies that for
a covering relation x lγ y in [u, v]γ we have λγ(x, y) = λs1γs1(s1x, s1y) + 1. Say that
c′ : s1u = s1x0 ls1γs1 s1x1 ls1γs1 · · · ls1γs1 s1xt = s1v is the unique rising maximal chain
in [s1u, s1v]s1γs1 . (This chain exists by induction, since `S(s1v) < `S(v).) Then, the chain
c : u = x0 lγ x1 lγ · · · lγ xt = v is a maximal chain in [u, v]γ and clearly rising. Now
consider some maximal chain c̄ : u = x̄0 lγ x̄1 lγ · · · lγ x̄t̄ = v in [u, v]γ with c̄ 6= c,
and let c̄′ : s1u = s1x̄0 ls1γs1 s1x̄1 ls1γs1 · · ·ls1γs1 s1x̄t̄ = s1v be the corresponding chain
in [s1u, s1v]s1γs1 . Then, it follows from Propositions 2.4 and 3.5 that c̄′ 6= c′, and the
induction hypothesis implies that c̄′ is not rising and that c̄′ is lexicographically larger
than c′. Lemma 3.6 implies now the same for c̄. Thus, c is the unique rising chain in
[u, v]γ and every other maximal chain in [u, v]γ is lexicographically larger than c.

(2b) Suppose now that s1 66γ u. Since s1 6γ v and u 6γ v the join u1 = s1 ∨γ u exists
and lies in [u, v]γ. Lemma 3.10 implies that ulγ u1. Consider the interval [u1, v]γ. Then
s1 6γ u1 and analogously to (2a) we can find a unique maximal rising chain c′ : u1 =
x1 lγ x2 lγ · · ·lγ xt = v in [u1, v]γ which is lexicographically first. Moreover, min{i | i ∈
αγ(v)rαγ(u1)} > 1, since s1 6γ u1 6γ v. By definition of our labeling, the label 1 cannot
appear as a label in any chain in the interval [u1, v]γ. On the other hand, it follows from
Lemma 3.6 that λγ(u, u1) = 1. Thus, the chain c : u = x0 lγ x1 lγ x2 lγ · · · lγ xt = v
is maximal and rising in [u, v]γ. Suppose that there is another element u′ that covers u
in [u, v]γ such that λγ(u, u

′) = 1. Then, by definition of λγ, it follows that s1 appears in
the γ-sorting word of u′. In particular, since s1 is initial in γ, we deduce that s1 6γ u

′.
Therefore u′ is above both s1 and u in Cγ. By the uniqueness of joins and the definition
of u1 it follows that u1 = u′. Thus, c is the lexicographically smallest maximal chain in
[u, v]γ. Finally, Lemma 3.4 implies that c is the unique maximal rising chain.

Proof of Theorem 1.1. This follows by definition from Theorem 3.8.

Remark 3.11. In the case where W is finite and crystallographic, Ingalls and Thomas
have shown in [12, Theorem 4.17] that Cγ is trim. Trimness is a lattice property that
generalizes distributivity to ungraded lattices. Then, by definition of trimness, it follows
that Cγ is left-modular, meaning that there exists a maximal chain c : x1lγ x2lγ · · ·lγ xn
satisfying (y ∨γ xi) ∧γ z = y ∨γ (xi ∧γ z), for all y <γ z and i ∈ {1, 2, . . . , n}. According
to [14], this property yields another EL-labeling of Cγ, defined by

ξ(y, z) = min{i | y ∨γ xi ∧γ z = z},

for all y, z ∈ L with ylγ z. It is not hard to show that this labeling is structurally different
from our labeling. (The difference between the two labelings can already be observed in
the Cambrian lattice depicted in Figure 2.)
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Remark 3.12. In the case where W is finite and γ = s1s2 · · · sn, [20, Remark 2.1] states
that the γ-sortable elements constitute a spanning tree of the Hasse diagram of Cγ, which
is rooted at the identity. The edges of this spanning tree correspond to covering relations
u lγ v in Cγ such that the γ-sorting word of u is a prefix of the γ-sorting word of v.
This spanning tree is related to the labeling λγ in the following way: let w ∈ W , with
`S(w) = k, and let (i0, i1, . . . , ik−1) be the sequence of edge-labels of the unique rising
chain in [ε, w]γ. In view of Theorem 3.8, and [20, Remark 2.1], we notice that the unique
path from ε to w in the spanning tree of Cγ corresponds to the unique rising chain in
[ε, w]γ. Hence, the γ-sorting word of w is si0si1 · · · sik−1

, where sij is the ij-th letter of γ∞,
and the length of the rising chain in [ε, w]γ is precisely `S(w). Moreover, it follows from
the proof of Theorem 3.8 that the length of the unique rising chain in an interval [u, v]γ
equals `S(v)− `S(u).

In view of Theorem 3.8, we can carry out the same construction even in the case of
infinite Coxeter groups.

4 Applications

In [18], Reading investigated, among other things, the topological properties of open
intervals in so-called fan posets. A fan poset is a certain partial order defined on the
maximal cones of a complete fan of regions of a real hyperplane arrangement. For a finite
Coxeter group W and a Cambrian congruence θ, the Cambrian fan Fθ is the complete
fan induced by certain cones in the Coxeter arrangement AW of W . More precisely, each
such cone is a union of regions of AW which correspond to elements of W lying in the
same congruence class of θ. It is the assertion of [18, Theorem 1.1] that a Cambrian
lattice of W is the fan poset associated to the corresponding Cambrian fan. The following
theorem is a concatenation of [18, Theorem 1.1] and [18, Propositions 5.6 and 5.7]. In
fact, Propositions 5.6 and 5.7 in [18] imply this result for a much larger class of fan posets.

Theorem 4.1. Let W be a finite Coxeter group and let γ ∈ W be a Coxeter element.
Every open interval in the Cambrian lattice Cγ is either contractible or spherical.

It is well-known that the reduced Euler characteristic of the order complex of an open
interval (x, y) in a poset equals µ(x, y), see for instance [25, Proposition 3.8.6]. Hence,
it follows immediately from Theorem 4.1 that for γ-sortable elements x and y in a finite
Coxeter group W satisfying x 6γ y, we have |µ(x, y)| 6 1, as was already remarked in
[19, pp. 4-5]. In light of Proposition 2.1 and Theorem 3.8, we can extend this statement
to compute the Möbius function of closed intervals in the Cambrian semilattice Cγ, by
counting the falling maximal chains with respect to the labeling defined in (3), as our
next theorem shows.

Theorem 4.2. Let W be a (possibly infinite) Coxeter group and γ ∈ W a Coxeter element.
For u, v ∈ Cγ with u 6γ v, we have |µ(u, v)| 6 1.

Proof. In view of Proposition 2.1 it is enough to show that the interval [u, v]γ has at most
one maximal falling chain. We use similar arguments as in the proof of Theorem 3.8 and
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proceed by induction on length and rank. Again, we may assume that `S(v) = k > 3 and
that W is a Coxeter group of rank n > 2, since the result is trivial otherwise. Suppose
that the induction hypothesis is true for all parabolic subgroups of W with rank < n and
suppose that for every closed interval [u′, v′]γ of Cγ with `S(v′) < k, there exists at most
one falling maximal chain. We will show that there is at most one maximal falling chain
in the interval [u, v]γ as well. Let γ = s1s2 · · · sn. We distinguish two cases: (1) s1 66γ v
and (2) s1 6γ v.

(1) The result follows directly by induction on the rank of W by following the steps
of case (1) in the proof of Theorem 3.8.

(2a) Suppose in addition that s1 6γ u. The result follows directly by induction on the
length of v by following the steps of case (2a) in the proof of Theorem 3.8.

(2b) Suppose now that s1 66γ u. Thus, it follows from Lemma 3.4 that the label 1
occurs in every maximal chain from u to v, and that a maximal chain u = x0 lγ x1 lγ

· · · lγ xt−1 l xt = v of [u, v]γ can be falling only if λγ(xt−1, v) = 1. Hence, if there is no
element v1 ∈ (u, v)γ, with v1 l v satisfying λγ(v1, v) = 1, then the interval [u, v]γ has no
maximal falling chain, which means that µ(u, v) = 0. Otherwise, consider the interval
[u, v1]γ. By the choice of v1, it follows that every maximal falling chain in [u, v1]γ can
be extended to a maximal falling chain in the interval [u, v]γ. Conversely, every maximal
falling chain in [u, v]γ can be restricted to a maximal falling chain in [u, v1]γ. Therefore,
since `S(v1) < `S(v), we deduce from the induction hypothesis that the interval [u, v1]γ
has at most one maximal falling chain. Thus |µ(u, v)| 6 1.

In addition Propositions 5.6 and 5.7 in [18] characterize the open intervals in a (finite)
Cambrian lattice which are contractible, and those which are spherical in the following
way: an interval [u, v]γ in Cγ is called nuclear if the join of the upper covers of u (in
[u, v]γ) is precisely v. Reading showed that the nuclear intervals are precisely the spherical
intervals. With the help of our labeling, we can generalize this characterization to infinite
Coxeter groups.

Theorem 4.3. Let u, v ∈ Cγ with u 6γ v and let k denote the number of atoms of the
interval [u, v]γ. Then, µ(u, v) = (−1)k if and only if [u, v]γ is nuclear.

For the proof of Theorem 4.3, we need the following lemma.

Lemma 4.4. Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u 6γ v. Suppose further that
s1 66γ u, while s1 6γ v. Then the following are equivalent:

1. The interval [u, v]γ is nuclear.

2. There exists an element v′ ∈ [u, v]γ satisfying s1 66γ v
′lγ v, and the interval [u, v′]γ

is nuclear.

Proof. Let A = {w ∈ Cγ | ulγ w 6γ v} be the set of atoms of the interval [u, v]γ. Since
s1 6γ v and u 6γ v, we conclude from Theorem 2.6 that the join s1 ∨γ u exists, and
we set z = s1 ∨γ u. It follows from Lemma 3.10 that u lγ z, and hence z ∈ A. We set
Az = A\{z} and remark that if w ∈ Az, then s1 66γ w. (Indeed, suppose that there exists
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some z′ ∈ Az with s1 6γ z
′. Since ulγ z

′, this implies s1 ∨γ u 6γ z
′, and hence z 6γ z

′.
Since z and z′ both cover u, this implies z = z′, which contradicts z /∈ Az.) In particular
we have Az ⊆ W〈s1〉. (Indeed, suppose that there is some z′ ∈ Az with `S(z′) = k and
z′ /∈ w〈s1〉. This means that the γ-sorting word of z′ contains the letter s1 at least once.
Since z′ ∈ Cγ this means that s1 must occur in the first position of the γ-sorting word of
z′. Then `S(z′) = k = (k − 1) + 1 = `S(s1z

′) + `S(s1) which implies s1 6S z
′, and with

(4) follows s1 6γ z
′ which is a contradiction.)

(1)⇒(2) Suppose that [u, v]γ is nuclear and let v′ =
∨
γ Az. Again, Theorem 2.6

ensures that v′ exists and that it satisfies u 6γ v
′ 6γ v. Since Az ⊆ W〈s1〉, it follows from

Proposition 3.9 that v′ =
∨
γ Az ∈ W〈s1〉 which means that s1 66γ v

′, and Az is thus the
set of atoms of the interval [u, v′]γ. Hence, [u, v′]γ is nuclear. It remains to show that
v′ lγ v. It follows from u 6γ v

′ and the associativity of ∨γ that

v =
∨

γ
A = z ∨γ

(∨
γ
Az

)
= z ∨γ v′ = (s1 ∨γ u) ∨γ v′ = s1 ∨γ (u ∨γ v′) = s1 ∨γ v′.

From above, we know that s1 66γ v
′ and we can apply Lemma 3.10 which implies imme-

diately that v′ lγ s1 ∨γ v′ = v.
(2)⇒(1) Suppose now that there exists an element v′ ∈ [u, v]γ satisfying s1 66γ v

′lγ v,
and suppose that the interval [u, v′]γ is nuclear. Let A′ denote the set of atoms of [u, v′]γ.
Since s1 66γ v

′ and s1 6γ z, it follows that z /∈ A′, thus A′ ⊆ Az. Furthermore, from
s1 6γ v, from v′ lγ v, and from Lemma 3.10, we deduce that s1 ∨γ v′ = v. Now we have

z ∨γ v′ = (s1 ∨γ u) ∨γ v′ = s1 ∨γ (u ∨γ v′) = s1 ∨γ v′ = v,

since u 6γ v
′. Thus, we can write v =

∨
γ

(
A′ ∪ {z}

)
. Finally, we show that v =

∨
γ A.

Let z′ ∈ A \ A′. Since z′ 6γ v, it follows that∨
γ

(
A′ ∪ {z, z′}

)
=
∨

γ

(
A′ ∪ {z}

)
∨γ z′ = v ∨γ z′ = v,

and hence v =
∨
γ A. This implies that [u, v]γ is nuclear.

We remark that under the hypothesis of Lemma 4.4, the element v′ =
∨
Az constructed

in the part (1)⇒(2) of the proof is the unique element in [u, v]γ satisfying condition (2).
The uniqueness of v′ is a consequence of the uniqueness of the join

∨
γ Az.

Proof of Theorem 4.3. In view of Proposition 2.1, we need to show that [u, v]γ has a
falling chain if and only if [u, v]γ is nuclear. We use similar arguments as in the proof of
Theorem 3.8 and proceed by induction on length and rank. Again we may assume that
`S(v) = k > 3 and that W is a Coxeter group of rank n > 2, since the result is trivial
otherwise. Suppose that the induction hypothesis is true for all parabolic subgroups of
W with rank < n and suppose that for every closed interval [u′, v′]γ of Cγ with `S(v′) < k
there exists a falling maximal chain if and only if [u′, v′]γ is nuclear. Let γ = s1s2 · · · sn.
We distinguish two cases: (1) s1 66γ v and (2) s1 6γ v.

(1) The result follows directly by induction on the rank of W by following the steps
of case (1) in the proof of Theorem 4.2.
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(2a) Suppose in addition that s1 6γ u. The result follows directly by induction on the
length of v by following the steps of case (2a) in the proof of Theorem 4.2.

(2b) Suppose now that s1 66γ u. If [u, v]γ is nuclear, then Lemma 4.4 implies that there
exists a unique element v′ ∈ Cγ with u 6γ v

′lγ v such that [u, v′]γ is nuclear, and s1 66γ v
′.

Thus, we can apply induction on the rank of W and obtain a maximal falling chain
c′ : u = x0 lγ x1 lγ · · ·lγ xt−1 = v′. Lemma 3.4 implies that 1 /∈ λγ(c′), and Lemma 3.6
implies that λγ(v

′, v) = 1. Thus, the chain c : u = x0 lγ x1 lγ · · ·lγ xt−1 lγ xt = v is a
falling maximal chain in [u, v]γ, and Theorem 4.2 implies its uniqueness.

Conversely, suppose that there exists a maximal falling chain c : u = x0 lγ x1 lγ

· · · lγ xt = v in [u, v]γ. In view of Lemma 3.4, we notice that λγ(xt−1, v) = 1, which
implies s1 66γ xt−1. Clearly `S(xt−1) < k and the chain c′ : u = x0 lγ x1 lγ · · · lγ xt−1

is falling, thus by induction we can conclude that the interval [u, xt−1]γ is nuclear. Since
s1 66γ xt−1 lγ v, it follows from Lemma 4.4 that [u, v]γ is nuclear. This completes the
proof of the theorem.

Proof of Theorem 1.2. Theorem 1.1 implies that every closed interval [u, v]γ of Cγ is EL-
shellable. Theorem 5.9 in [5] states that the dimension of the i-th homology group of
the order complex of (u, v)γ corresponds to the number of falling chains in [u, v]γ having
length i+ 2. Theorem 4.2 implies that there is at most one falling chain in [u, v]γ. Hence,
either all homology groups of the order complex of (u, v)γ have dimension 0 (then, (u, v)γ
is contractible) or there exists exactly one homology group of dimension 1 (then, (u, v)γ
is spherical). Finally, the characterization of the spherical intervals is an immediate
consequence of Theorem 4.3.

Remark 4.5. In the case of finite Coxeter groups, the statements of Theorems 1.1 and 1.2
can be generalized straightforwardly to the increasing flip order of subword complexes for
so-called realizing words, as was pointed out to us by Stump (private conversation). In
[16, Section 5.3], Pilaud and Stump define an acyclic, directed, edge-labeled graph on the
facets of the subword complex, the so-called increasing flip graph. The transitive closure
of this graph is then a partial order, the increasing flip order. In the case of realizing
words, the Hasse diagram of the increasing flip order coincides with the increasing flip
graph which then yields two natural edge-labelings of this poset. One can show that these
labelings are indeed EL-labelings and that every interval has at most one falling chain
with respect to either of these labelings. This has recently been done in [17].

It is the statement of [16, Corollary 6.31] that the Cambrian lattices of finite Coxeter
groups correspond to the increasing flip order of special subword complexes. In addition,
the construction of [16] as briefly described in the previous paragraph provides a nice
geometric description of the statements of Theorems 1.1 and 1.2. We remark that both
EL-labelings of Pilaud and Stump are structurally different from our labeling. This is
pointed out in [17, Example 5.12] for the so-called positive labeling, and it can be seen for
the so-called negative labeling in the Cambrian lattice of the symmetric group S4 with
respect to the Coxeter element γ = (2 3)(1 2)(3 4).

We conclude this section with a short example of an infinite Coxeter group.

the electronic journal of combinatorics 20(2) (2013), #P48 18



ε

s3 s1 s2
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s1s3|s1 s2s3|s2 s1s2s3 s1s2|s1

s1s2s3|s2 s1s2s3|s1

s1s2s3|s1s2 s1s2s3|s1s3

s1s2s3|s1s2|s1 s1s2s3|s1s2s3

s1s2s3|s1s2s3|s1 s1s2s3|s1s2s3|s2

3 1 2

1

2

3 2 3

1

4

2

5 3 4

5 4

3

4

5 6

7 6

5

7 8

Figure 4: The first seven ranks of an Ã2-Cambrian semilattice, with the labeling as defined
in (3).

Example 4.6. Consider the affine Coxeter group Ã2, which is generated by the set
{s1, s2, s3} satisfying (s1s2)3 = (s1s3)3 = (s2s3)3 = ε, as well as s2

1 = s2
2 = s2

3 = ε.
Consider the Coxeter element γ = s1s2s3. Figure 4 shows the sub-semilattice of the
Cambrian semilattice Cγ consisting of all γ-sortable elements of Ã2 of length 6 7. We
encourage the reader to verify Theorem 3.8 and Theorem 4.2.
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