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Abstract

A group A acting faithfully on a set X has distinguishing number k, written
D(A,X) = k, if there is a coloring of the elements of X with k colors such that no
nonidentity element of A is color-preserving, and no such coloring with fewer than k
colors exists. Given a map M with vertex set V and automorphism group Aut(M),
let D(M) = D(Aut(M), V ). If M is orientable, let D+(M) = D(Aut+(M), V ),
where Aut+(M) is the group of orientation-preserving automorphisms. In a previous
paper, the author showed there are four maps M with D+(M) > 2. In this paper,
a complete classification is given for the graphs underlying maps with D(M) > 2.
There are 31 such graphs, 22 having no vertices of valence 1 or 2, and all have at
most 10 vertices.

1 Introduction

A group A acting faithfully on a set X has distinguishing number k, written D(A,X) = k,
if there is a coloring of the elements of X with k colors such that no nonidentity element
of A is color-preserving, and no such coloring exists with fewer than k colors. The concept
was introduced by Albertson and Collins [1] in the context of the automorphism group
of a graph acting on the vertex set. It originates in the observation that to destroy any
symmetry of a necklace of n beads, one needs beads of three different colors for n = 3, 4, 5,
but only two colors for n > 5; this observation actually plays a role in some of our proofs.

In [6], we considered a variety of questions where X is the vertex set of a map M
and A is either the full automorphism group Aut(M) for the map, or the orientation-
preserving automorphism group Aut+(M), with respective distinguishing numbers D(M)
and D+(M). In particular, we showed that there are only four maps with D+(M) > 2. We
also showed there are only finitely many maps with D(M) > 2 and considered a number
of questions for distinguishing chromatic numbers, where vertex colorings are required to
be proper.
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In this paper, we consider the general case of non-orientable maps and orientation-
reversing actions on oriented maps. We find the possible underlying graph G for any
map M with D(M) > 2 and for each such graph, we give an example of a map M with
underlying graph G and D(M) > 2. Unlike [6], our list of possible underlying graphs is
rather long and complicated, although no graph has more than 10 vertices. This paper
is self-contained in terminology, definitions, and methods, but the reader might want to
see [6] for a broader discussion of distinguishability and maps, including a much more
extensive list of references.

Much of this classification appears in an earlier unpublished preprint (2005). A recent
paper by Negami [3] gives a partial classification and relates it to the earlier preprint. We
discuss Negami’s results at the end of the paper.

This paper is organized as follows. Section 2 gives definitions, terminology, and some
background for maps and their automorphisms, including Petrie duality, reflexible and
chiral regular maps, and Cayley maps. In Section 3, we give examples of vertex-transitive
and intransitive maps with D(M) > 2. In Section 4 we give a statement of the classi-
fication theorem for maps M with D(M) > 2. In Section 4, we prove the classification
theorem for the intransitive case. In Section 5, we prove the theorem in the case of regular
(reflexible) maps. In Section 6, we complete the proof of the classification theorem for
transitive maps using overlays of regular reflexible and chiral maps.

We note that the concept of distinguishability has forced us to develop a variety
of new techniques: partial Petrie duality, τ -edges, induced embeddings for subgraphs,
overlays, and angle measure. These in turn have led to a much deeper understanding of the
symmetries of a map. In particular, angle measure yields an astonishingly simple and short
proof that there are no reflexible regular maps with underlying graph Kn, n 6= 2, 3, 4, 6, a
well-known result obtained at some length by algebraic methods. Angle measure might
hint at a geometric explanation of our results depending on the euclidean or hyperbolic
structure carried by maps. Distinguishability has also led us to a variety of small maps,
some familiar and some not, many with remarkable symmetry properties.

2 Maps, automorphisms, and stabilizers

All our graphs are finite and connected with no multiple edges or loops. A map M is
an embedding of a graph G, called the underlying graph, in a closed surface S, called
the underlying surface, such that each component, or face, of S − G is homeomorphic
to an open disc (that is, the embedding is cellular). There are a variety of ways of
looking at maps as combinatorial structures: rotation systems or band decompositions
[2], permutation groups acting on directed edges (monodromy or dart groups)[4], triples
of vertex-edge-face incidences (flags) [5]. The rotation viewpoint, being more intuitive
and geometric, serves our purposes best.

An oriented map naturally defines a cyclic ordering of the directed edges beginning
at each vertex, usually called the rotation at that vertex; the set of all such rotations is
called a rotation system and can be written as a single permutation of the directed edge
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set whose cycles correspond to vertices. Conversely, given a rotation system, one can
construct an oriented map by first assigning to each vertex an oriented disk containing
a vertex at the center and spokes for edge-ends in the cyclic order given by the rotation
system. Then one can join the vertex-disks by edge-bands to form a compact orientable
surface with a number of boundary components, a “thickening” of the underlying graph.
Finally, one can paste disks to the boundary components to form the faces of a map in
a closed orientable surface. The faces can be traced out beginning at any directed edge
simply by using the rotation at each vertex to choose the next directed edge in the face.

For non-orientable maps, there are two possible cyclic orderings at a vertex, since
there is no orientation present to differentiate “clockwise” from “counterclockwise”. We
also must specify whether each edge is “flat” or “twisted”, depending on whether or not
the edge-band can be oriented consistently with its end-point vertex-disks. The collection
of rotations and twisting, we call a general rotation system. Notice that one can always
reverse the rotation at a vertex in exchange for reversing the twisting of all edges incident
to the vertex, twisted to flat and flat to twisted; one can use this operation to define an
equivalence relation on general rotation systems. Every embedding defines an equivalence
class of general rotation systems and every such equivalence class defines an embedding.
It can be shown that a general rotation system defines an orientable embedding if and
only if every cycle in the graph contains an even number of twisted edges, or equivalently,
if and only if there is an equivalent general rotation system for which all edges are flat.
Faces are traced out using the rotation for directions at each vertex, but now if uv is
twisted we use at v the reverse of what we use at u, and if uv is flat we use the same.

Given a general rotation system for the graph G, if H is a subgraph of G, we can talk
about the general rotation system restricted to H, where the cyclic order at a vertex of
H is simply the original cyclic order, leaving out all the edges not in H. Thus for any
map with underlying graph G, there is an induced map for any subgraph H of G. Note,
however, that the underlying surface for the induced map may be different.

Given a map M , the map obtained by changing all twisted edges to flat and all flat
edges to twisted is called the Petrie dual, denoted MP ; see [5] for a definition in terms of
monodromy groups and flags. The underlying graph for MP is the same as that for M ,
but the faces now correspond to Petrie “right-left” cycles from the original map M . If M
is oriented, then MP is orientable if and only if the underlying graph is bipartite.

An automorphism of a map is an automorphism of the underlying graph that extends
(as a homeomorphism of the graph) to a homeomorphism of the surface. In terms of
general rotation systems, a map automorphism is an automorphism of the underlying
graph that, for some general rotation system of the map, either preserves the rotation at
every vertex or reverses the rotation at every vertex and that takes flat edges to flat edges
and twisted edges to twisted edges. The set of all automorphisms of a map M forms
a group, denoted Aut(M); if the map is orientable, the set of all orientation-preserving
automorphisms forms a subgroup of index at most 2 in Aut(M) and is denoted Aut+(M).
The distinguishing number of a map M with vertex set V is D(Aut(M), V ) and is denoted
simply D(M); if M is orientable, the orientable distinguishing number, is D(Aut+(M), V ),
denoted simply D+(M).
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From our definition of automorphism, it follows that for the Petrie dual MP , the action
of Aut(M) and AutP (M) on the underlying graph are the same. Indeed, this is true even
for a partial Petrie dual obtained by only changing edge-types in a single edge orbit of
Aut(M). In fact, if B is a subgroup of Aut(M), we can also change edge-types only in a
single edge orbit of B. The resulting map M ′ will have the same underlying graph G and
Aut(M ′) will contain a subgroup acting on G in the same way as B.

Given an action of the group A on the set X, and given a subset Y of X, the set-wise
stabilizer of Y is the subgroup of a in A with a(Y ) = Y . Although this is usually denoted
A{Y }, we will maintain the notation Stab(Y ) used in [6]. The point-wise stabilizer is the
subgroup of all a such that a(y) = y for all y in Y . Again, we use the notation Fix(Y )
from [6] rather than the usual AY . We say that Stab(Y ) or Fix(Y ) is trivial if it contains
only the identity. The actions in this paper are all faithful, that is for A acting on X,
Fix(X) is trivial.

Remarks: Note that D(A,X) = 1 if and only if A is the trivial group, and D(A,X) = 2
if and only if A is nontrivial but Stab(Y ) is trivial for some nonempty subset Y of X:
simply color Y white and all all other elements of X black. Also, if Fix(Y ) is trivial and
Y has k elements, then D(A,X) 6 k + 1: just color each element of Y with the first k
different colors and color the remaining vertices with the last color. Finally, any faithful
action of A = Z2×Z2 on a set X has D(A,X) = 2: color one element of each orbit black
and the rest white.

Unlike graphs, maps have highly restricted set stabilizers. In particular, if uv is an
edge, Fix(u, v) has at most one nontrivial element, namely a reflection, which we de-
note τuv, that interchanges the faces incident to uv. If the map is oriented, then τuv is
orientation-reversing. Summarizing:

Proposition 2.1. If uv is an edge in map M , then Stab(u, v) is a subgroup of Z2 × Z2.
If v is a vertex in M of valence d, then Stab(v) is a subgroup of the dihedral group Dd,
acting in the natural way on the cyclic order of vertices adjacent to v given by a rotation
for M .

We call a map all-τ if every edge uv has the reflection τuv, no-τ if none do, and mixed
if some do and some don’t. A regular map M is one with maximal symmetry, that is,
vertex-transitive with vertex stabilizer Dd. In particular, a regular map is all-τ ; note,
however, that a vertex-transitive all-τ map is not necessarily regular. An oriented map M
is chiral regular if Aut+(M) is transitive on directed edges, so that M is vertex-transitive
with cyclic vertex stabilizers of order d, but no orientation-reversing automorphism. In
particular, a chiral regular map is no-τ . An oriented regular map is also sometimes called
reflexible regular.

If uv and vw are edges of map M , we call uvw an angle. An angle uvw is a corner
if u and w are consecutive in the rotation at v. If v has valence d, the measure of angle
uvw is the number m 6 d/2 of corners between u and w in the rotation at v; notice that
angles are not oriented, with a first and second side, so angle measure is independent of
the local orientation for the rotation at v. We call an angle straight if its measure is d/2
and bent otherwise. An angle uvw is closed if there is an edge uw and open otherwise. We
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note that if angle uvw is open, then any element of Stab(u, v, w) fixes v. By the dihedral
action of Stab(v) on the neighbors of v, there is at most one automorphism fixing v and
interchanging neighbors u and w, called an angle reflection. We summarize facts about
angle stabilizers:

Proposition 2.2. Given a bent angle uvw, then Fix(u, v, w) is trivial. In particular,
if uvw is open, |Stab(u, v, w)| 6 2. If uvw is instead straight, then |Fix(u, v, w)| =
|Fix(u, v)| 6 2. In particular, if uvw is open, then Stab(u, v, w) is a subgroup of Z2×Z2.

We will need to describe some fairly complicated small maps. The easiest way to do
this is with Cayley maps [4, 5]. Given a group A with generating set S, the associated
Cayley graph C(A, S) is the directed, labeled graph with vertex set A and directed edge
labeled s from a to as for each a ∈ A and s ∈ S. Left multiplication by A of vertex labels
gives a regular (transitive and free) action of A by automorphisms of the graph C(A, S).
If we also assign a cyclic order ρ to the elements of S ∪ S−1, the associated Cayley map
CM(A, ρ) is the oriented map with underlying graph C(A, S) and vertex rotations given
by ρ. Again, left multiplication by A gives a regular action by map automorphisms.

In addition to the natural regular action of A on CM(A, ρ) there may be other sym-
metries fixing a vertex. In particular, if f is an automorphism of A with f(ρ(s)) = ρ(f(s))
for all s ∈ S (i.e. f “respects” the rotation), then f also defines an orientation-preserving
automorphism of the map CM(A, ρ), fixing the identity vertex. If instead f(ρ(s)) =
ρ−1(f(s)) for all s ∈ S (i.e. f “reverses” the rotation), then f defines an orientation-
reversing automorphism of the map CM(A, ρ), fixing the identity vertex.

A Cayley map CM(A, ρ) is balanced if ρ(s−1) = ρ(s)−1, for all s ∈ S; that is, if
s 6= s−1, then they are antipodal in the rotation. Note this implies that if one element
of X is an involution, then all are. The natural action of A on CM(A, ρ), as a subgroup
of Aut(CM(A, ρ)), is normal if and only if CM(A, ρ) is balanced [5]. In the case where
the elements of S are d non-involutions, we give only the first half of the cycle for ρ and
abbreviate (s1, · · · , sd)b = (s1, . . . , sd, s

−1
1 , . . . , s−1d ).

Our graph notation and terminology are as follows. If the graph G has edge uv, then
we say u and v are adjacent or u and v are neighbors. The subgraph of G induced by
all the neighbors of u is the link of v, denoted Link(u). The distance between vertices u
and v is the length of the shortest path between them. The diameter of G is the greatest
distance between any two vertices. The complete graph on n vertices is denoted Kn, the
complete bipartite graph on m and n vertices is Km,n, the cycle of length n is Cn, and
the graph obtained from K2n, for n > 1, by removing n disjoint edges is the octahedral
graph O2n (note O4 = C4) The graph obtained by adding k independent vertices to G
and joining them by edges to all vertices of G is the k-fold suspension of G and denoted
Sk(G). Note that S1(Kn) = Kn+1 and S2(O2n) = O2n+2. Alternatively, Sk(G) can be
written as the join K̄k ∗G of G with the complement of Kk.

For groups, we let Zn denote the cyclic group of order n and Dn the dihedral group of
order 2n. The direct product A× A× · · · × A of k copies of the group A is denoted Ak.
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3 Examples of maps with D(M) > 2

We begin by giving two examples to illustrate the role of Petrie duality.

Example 3.1. Let M the map on the sphere obtained by joining an m-cycle, m = 3, 4, 5,
along the equator with the north and south poles; its underlying graph is S2(Cm). The
action of the dihedral group B = Dm on this map, leaving fixed the north and south poles,
has distinguishing number 3, by the original necklace problem. The action of B has three
edge orbits, so we can take a variety of partial Petrie duals with respect to B, one of which
will be the Petrie dual. Each of these maps has D(M) = 3.

Example 3.2. Let M be the tetrahedron. Its Petrie dual MP has three faces, all of size
4 and is a map in the projective plane, since the Euler characteristic is 4 − 6 + 3 = 1.
Notice that for any vertices u, v, w, each of uvw,vwu, and wuv is a corner of the map and
Stab(u, v, w) = D3. One might expect, as in the orientable case, that this means there is
a triangular face of the embedding whose boundary is the 3-cycle uvw. But the embedding
has no triangular faces. In addition, we can place a new vertex inside each face and join
to the original four vertices to get a map M with underlying graph S3(K4) and D(M) = 3.

The following example has underlying graph Km,n.

Example 3.3. Consider the Cayley map M(m,n) = CM(A, (x, x−1, y, y−1)), where A =
Zm × Zn generated by x, y of order m,n. Each face of the map is bounded by a cycle in
the Cayley graph corresponding to xm = 1, yn = 1 or (xy)lcm(m,n) = 1. Let B(m,n) be the
map obtained by placing a new vertex at the center of each of the faces corresponding to
xm = 1 or yn = 1 and then joining the new vertices by edges through the vertices of the
original graph M(m,n) (and discarding all the original vertices and edges). This makes
M(m,n) the medial graph of B(m,n) [5]. The graph underlying B(m,n) is Km,n. In
M(m,n), the stabilizer of the face F corresponding to xm = 1 is Dm: multiplication by x
is a map automorphism rotating F and the group automorphism inverting both x and y
reverses the rotation providing a map automorphism reflecting F . Similarly, the stabilizer
of a yn = 1 face is Dn. Thus vertex stabilizers in B(m,n) are Dm or Dn. In addition, if
m = n, then the group automorphism interchanging x and y is also a map automorphism
for M(n, n), making B(n, n) vertex-transitive.

We now give examples of maps M with D(M) = 3. First, we have:

Theorem 3.1. [6] If M has a vertex of valence 1 or 2 and D(M) > 2, then the underlying
graph is Cn, K1,n or K2,n, for n = 3, 4, 5.

Theorem 3.2. [6] If M has a no-τ group action A with D(A, V ) = 3 and all vertices of
valence d > 2, then the underlying graph is K4, K5, K7, O6 or O8.

The following table provides examples of vertex-transitive, oriented maps M with
D(M) = 3, D+(M) = 2, and no vertices of valence 1 or 2. Here G stands for the
underlying graph, d for valence, Stab for vertex stabilizer, g for genus. The type of each
map is regular (“reg”), not regular but all-τ (“all”), no-τ (“no”) or mixed (“mix”).
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ID Name G d Stab g Type

T1 CM(Z4, (1,−1, 2)) K4 3 D1 1 mix
T2 CM(Z5, (1,−1, 2,−2)) K5 4 D1 2 no
T3 CM(Z3

2 , (x, y, z)) cube 3 D3 1 reg
T4 CM(Z3

2 , (x, x+ y, y, y + z, . . . )) O8 6 D3 7 all
T5 CM(Q, (i, j, k)b) O8 6 D3 5 no
T6 CM(Z2

3 , (x, y)b) C3 × C3 4 D4 1 reg
T7 CM(Z2

3 , (x, y,−x+ y)b) K3,3,3 6 D6 1 reg
T8 CM(Z2

3 , (x, x+ y, y, y − x)b) K9 8 D4 10 all
T9 B(3, 3) K3,3 3 D3 1 reg
T10 B(4, 4) K4,4 4 D4 3 reg
T11 B(5, 5) K5,5 5 D5 6 reg

Table 1: Vertex-transitive maps with D(M) = 3 but D+(M) = 2.

The proofs that each of these maps have D(M) > 2, that is Stab(Y ) is nontrivial for
any set Y of vertices, we leave to the reader; only when |Y | = 4, 5 is there much to check.
We note that maps T1, T2 are just the necklace problem for D4 and D5. The cube T3 is
well-known [1]. The action of Aut(T4) on its vertex set is the same as that of Aut(T3).
T5 is discussed in [6]. The action of Aut(T8) on its vertex set is the same as that of
Aut(T6). The maps T9-T11 are variations of the necklace problem.

We have not given the group structure of Aut(M) for each of the maps in Table 1.
Since all the maps except T9-T11 are balanced Cayley maps for some group A, making
A normal, Aut(M) is a semi-direct product of A with Stab(v). The action of Stab(v) by
conjugation on A can be inferred from Stab(v), the presence of τ edges, and the given
generating set for A. For example, for map T5, since Stab(v) = D3 and there are no τ
edges, there must be only corner reflections. Thus a typical involution in Stab(v) must
be a group automorphism of the quaternions interchanging i and j, and interchanging k
and −k. As another example, for T7, the reflection fixing edges labeled x is the group
automorphism f(x) = x, f(y) = −y. The groups in T9-T11 are best understood in terms
of the original Cayley map CM(Zm×Zm, (x, y,−x,−y)), which is the semi-direct product
of Zm×Zn by D2 generated by the group automorphism inverting x and y and the group
automorphism interchanging x and y.

We now give examples of intransitive maps with D(M) = 3. All except B(m,n) are
obtained by the following construction. Let M be a map on n < 6 vertices having a
face of size n incident to all n vertices and suppose that the stabilizer of the face is Dn,
so that D(M) = 3. Let M r be the radial map obtained by adding a new vertex at the
center of the face and joining it to all the original vertices of M . Then Aut(M r) = Dn

so D(M r) = 3. The underlying graph for Aut(M r) is S1(G) where G is the underlying
graph of M . If M has two such faces, as in map T2, the process can be repeated to get
a 2-radial map with underlying graph S2(G).

Examples for intransitive maps are given in Table 2. For the radial types, the column
headed by “map” give the map to which the radial construction is applied. Columns V
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and E are the number of vertex and edge orbits, respectively. For map N9, we abbreviate
the Petrie dual of the tetrahedron by KP

4 . We note that by partial Petrie duality, each
map in the table can give rise to many other maps. For example, map N10 has 16
possible partial Petrie duals. We do not give intransitive examples with underlying graph
K(n, n), n = 3, 4, 5. We will show later that there are such maps only for n = 4.

ID Type map G surface V E

N1-N3 1 rad Cn, n = 3, 4, 5 S1Cn sphere 2 2
N4 1 rad T1 S1K4 torus 2 3
N5 1 rad T2 S1K5 g = 2 2 3
N6-N8 2 rad Cn, n = 3, 4, 5 S2Cn sphere 3 3
N9 3 rad KP

4 S3K4 proj 2 2
N10 2 rad T2 S2K5 g = 2 3 4
N11-13 bipart B(m,n), 2 < m < n < 6 Km,n g = 3, 4, 6 2 1

Table 2: Intransitive maps with D(M) = 3.

We have only claimed each of these maps has D(M) > 2. We must also show that
none have D(M) = 4.

Theorem 3.3. If D(M) = 4, then M is the tetrahedron or its Petrie dual.

Proof. Suppose that D(M) = 4. Let uv be any edge. If Stab(u, v) ⊂ Z2 × Z2 acts
on the remaining vertices faithfully, then its distinguishing number in that action is 2, so
D(M) = 3, a conatradiction. Thus there is f ∈ Stab(u, v) fixing all other vertices; since
it cannot also fix u and v, it must interchange them.

It is easily proved by induction that a set E of transpositions in the symmetric group
Sn generates Sn if and only if the graph on n vertices having E as edges is connected. We
have shown for each edge uv in the map M , the transposition (u, v), as a permutation
of the vertices, is an automorphism. Since the map is connected, Aut(M) = Sn, where
n is the number of vertices. But |Aut(M)| 6 4[n(n− 1)/2] = 2n(n− 1), since each edge
stabilizer has size at most 4. Thus n! 6 2n(n− 1), so n 6 4. Since M has no vertices of
valence 2, we have n = 4 and Aut(M) = S4, so M is the tetrahedron or its Petrie dual.
2

4 The Classification Theorem

Theorem 4.1. (Classification Theorem) Suppose that D(M) = 3 and no vertex of M
has valence 1 or 2. If M is vertex-transitive, the underlying graph is one of the following:
Kn for n = 4, 5, 6, 7, 9; Kn,n for n = 3, 4, 5; the octahedral graphs O6 and O8; the cube;
K3,3,3; or C3 × C3. If M is not vertex-transitive, then the underlying graph for M is one
of the following: SkCn for k = 1, 2 and n = 3, 4, 5; SkK4 for k = 1, 3; SkK5 for k = 1, 2;
or Km,n for 3 < m < n < 6 or K4,4. For each underlying graph, Tables 1 and 2 give an
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example of the map M , except for K6 and an intransitive map for K4,4.
The only map M with D(M) = 4 is the tetrahedron or its Petrie dual.

Before proceeding, we first show all our maps are small.

Theorem 4.2. The only map M with D(M) = 3 and diameter greater than 2 is the cube
or its Petrie dual.

Proof. We note at the outset that by Theorem 3.1, every vertex has valence at least
3. Also, since the action of Aut(M) is not necessarily transitive, we write u ∼ v if u and
v are in the same orbit of the action of Aut(M).

Suppose that y has distance 3 from v and let vwxy be a path from v to y and let
Y = {v, w, x, y}. In particular, angles vwx and wxy are open. Note that any nontrivial
element f of Stab(Y ) either fixes the path or reverses it. In either case, if vwx is straight,
so is wxy. If vwx is straight, there is a z adjacent to y such that xyz is bent. Since z
cannot be adjacent to v (or else y has distance 2 from v), it cannot make a straight angle
with any of the edges induced by Y . Thus, any f ∈ Stab(Y ∪ {z}) fixes z, and hence x
and hence the other vertices in Y , then fixing the bent angle xyz, a contradiction. We
conclude that vwx is bent. In particular, f ∈ Stab(Y ) cannot fix the path so f(v) = y.
Thus v ∼ y. Also, v ∼ x and w ∼ y since angles vwx and xwy are bent and open.
Therefore v ∼ w ∼ x ∼ y.

Suppose that two neighbors z1, z2 of y are not adjacent to w. Let Y = {v, w, x, y, z1, z2}
and let H be the subgraph induced by Y . Then any nontrivial f ∈ Stab(Y ) must fix the
edge vw, since it is the only edge in H joining a vertex of valence 1 and a vertex of
valence 2. But then f fixes x, the only vertex in H adjacent to w, thus fixing the bent
angle vwx, a contradiction. Suppose that z is a neighbor of y that is adjacent to w.
Let Y = {v, w, x, y, z} and let H be the subgraph induced by Y . Then any nontrivial
f ∈ Stab(Y ) must fix v (the only vertex of valence 1 in H) and hence w, so f = τvw.
Then f fixes y (the only vertex in H a distance 3 from v) and interchanges z and x (since
it cannot fix angle wxy) so it also functions as the angle reflector for zyx. Thus, there is
only one possibility for z other than x.

Since y has valence at least 3 with only one vertex not adjacent to w and at most 1
vertex other than x adjacent to w, we conclude that y has valence 3. Moreover, since the
roles of v and y are interchangeable and Stab(v) has τvw fixing y, then Stab(y) also has an
edge reflection fixing v. We already have the angle reflector for zyx, fixing v, so Stab(y)
is D3 and Stab(v) = Stab(y). Since w has two neighbors in Link(y), so do all vertices in
Link(v). Since v ∼ y ∼ w, all vertices in Link(v) and Link(w) have valence 3 and each
is incident to two edges between the links. Thus the map M has 8 vertices. Since it has
valence 3 and is regular (it is vertex-transitive and all vertex stabilizers are D3), and has
diameter 3, it is the cube (as a map) or its Petrie dual. 2

We recall that we know from [6] that the problem is a finite one:

Theorem 4.3. There are only finitely many maps M with D(M) > 2.
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Moreover, in the following sections, we easily bound the valence d 6 8. At that point,
with diameter at most 2 and small valence, maps with D(M) > 2 are very small, at most
1 + 8 + 8 · 7 = 65 vertices. Indeed, with not much more work one can get the number
of vertices to be smaller still. In particular, the Classification Theorem can be proved
simply with a computer search. On the other hand, although our overall proof involves
some case-by-case analysis, the number of cases is not that large and the proofs are not
long.

5 The intransitive case

We note that the orbits under Aut(M) form a kind of coloring, so any question about
distinguishability depends on the relative valences of the different orbits. This coloring
leads to the banning of certain angles (assume P,Q,R are different orbits):
There can be no bent PQR angles.
There can be no bent open PQQ angles

If P and Q are different orbits and u is in P , we let dPQ be the number of neighbors
of u in Q and dPP the number of neighbors of u in P .

Lemma 5.1. Let P and Q be different orbits. Then
a) dPQ > dQQ and if dQP > 1, then dPQ > dQQ + 1;
b) if dPQ > 0, then it divides dPP ; in particular, if dPP > 0, then dPQ 6 dPP ;
c) dPQ < 6;
d) if dPP > 0 and dPQ > 0, then dQQ = 0;
Note that by symmetry, the same statements hold with P and Q interchanged.

Proof. We let u be a vertex in P and v a vertex in Q adjacent to u.
a) Let w be any vertex in Q adjacent to v. Then unless uvw is straight, there must be an
edge uw since there are no open bent PQQ angles. Thus u is adjacent to at least dQQ−1 of
the neighbors of v in Q; including the adjacency of u to v, we have dPQ > dQQ. If dQP > 1,
we claim that u must also be adjacent to w even if uvw is straight, so dPQ > dQQ + 1.
Suppose not. Since dQP > 1, then there is another vertex x from P adjacent to v. Let
Y = {u, v, w, x}, let H be the subgraph induced by Y , and let f ∈ Stab(u, v, w, x) be
nontrivial. Since v, w ∈ Q and u, x ∈ P , f fixes v since it has valence 3 in H and w does
not. Then f also fixes w, but that is impossible since uvw is straight and xvw is not.

b) For any PQ edge uv, there is a reflection τuv. Thus Stab(u) acts transitively on
the QPQ “corners” at u, that is angles vuv′ where v and v′ are consecutive Q vertices in
the rotation at u (there may be intervening vertices from other orbits). Then any w ∈ P
adjacent to u must lie in some QPQ corner and hence has at least dPQ images under
Stab(u). Thus dPQ divides dPP .

c) This follows from the original necklace problem.
d) Suppose instead that dQQ > 0. From (a) and (b), we have

dPQ > dQQ > dQP .

the electronic journal of combinatorics 20(2) (2013), #P50 10



Reversing the roles of P and Q, we get dQP > dPQ. Thus dPQ = dQP = dQQ. Since
dQQ > 1 implies dPQ > dQQ, the common value must be 1. Since there are no vertices of
valence 2, we have dQR > 0 for some third orbit R, but then there must be a bent PQR
angle or an open bent PQQ angle, a contradiction. 2

Lemma 5.2. If there are three or more vertex orbits, then the underlying graph G for M
is S2Cn, for n < 6, or S2K5.

Proof. By connectivity, there must be an angle uvw with the vertices in different
orbits P,Q,R. Since there can be no bent PQR angles, u and w are the only neighbors of
v not in Q and uvw is straight. Since v does not have valence 2, we have dQQ > 0, so by
part (d) of Lemma 5.1, dPP = dRR = 0. Moreover, u cannot be adjacent to a vertex not
in Q, since by the same argument as we used for v, we would have dPP > 0. We conclude
that both u and w only have neighbors in Q. In particular, P,Q,R are the only orbits
and P = {u}, R = {w}, since dQP = dQR = 1. By Lemma 5.1, we also have dPQ < 6 and
dPQ > dQQ, so |Q| < 6. Since every vertex in Q is like u, every vertex in Q has a P and
Q neighbor, and since |P | = |R| = 1, every vertex in Q is adjacent to both u and w.

Thus G = S2H, where H is the subgraph induced by Q. Since the PQR angle uvw is
straight, Stab(uvw) includes τuv, which pairs the Q neighbors of v, so dQQ is even. Since
H is also vertex-transitive, because of the action of Stab(u) on its Q neighbors, and since
|H| < 6, the only possibilities for H are Cn, for n = 3, 4, 5 and K5. 2

The exceptions appear in our list of intransitive maps with D(M) = 3.

Lemma 5.3. Suppose that dPP = dQQ = 0. Then the underlying graph G for the M is a
complete bipartite graph Km,n where m = 3, 4, 5 and n = 3, 4, 5.

Proof. The graph G is bipartite, with colors P and Q. By Lemma 4.2, the diameter
is 2, so the distance between any vertex in P and any in Q, which must be odd, can only
be 1.

The limits on m and n follow from (d) of the Lemma 5.1. 2

We observe that our list of intransitive examples includes all the values 2 < m < n < 6
for Km,n, but not the values where m = n. We already have transitive examples when
m = n and our goal is simply to classify underlying graphs, but this does raise the question
of whether there are intransitive examples with m = n.

Lemma 5.4. There are intransitive maps M with D(M) = 3 and underlying graph Kn,n

only for n = 4.

Proof. To show there is no such map for n = 3, 5, we reverse the process of turning
the map M(m,n) into B(m,n). Suppose that M is a map with underlying graph K3,3 and
D(M) = 3, but there is no automorphism switching the parts; in particular, for any edge
uv, |Stab(u, v)| 6 2 so Aut(M) 6 18. If Stab(v) 6= D3 for some vertex v, then D(M) = 2
by the necklace problem and the fact that v is not interchanged with any of its neighbors
by an automorphism. If Stab(v) = D3 for every vertex, then the map is edge-transitive,
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so either all edges are twisted or none are. But then since K3,3 is bipartite, the map is
oriented. Then Aut+(M) acts regularly on the edges, so the medial map is a Cayley map
for a group A of order 9, with generating set consisting of two elements of order 3, both
bounding faces. The only possibility is M(3, 3) so M = B(3, 3). The same proof works
for n = 5.

For n = 4, however, there are more possibilities for A. In particular, if A = 〈s, t :
s4 = t4 = 1, tst−1 = s−1〉, the Cayley map CM(A, (s, s−1, t, t−1) has a reflection inverting
s and t, but none interchanging s and t. Thus, when we put vertices at the center of s4

and t4 faces, the resulting map is not vertex-transitive, but still Stab(v) = D4; moreover
the underlying graph is bipartite (by construction) and hence is K4,4. 2

Lemma 5.5. Suppose that dPP = 0 and dQQ > 0. Then the underlying graph G for M is
SkCn where k = 1, 2 and n = 3, 4, 5; SkK4 where k = 1, 3; SkK5 where k = 1, 2.

Proof. Let u be any vertex in P . We claim all vertices in Q are adjacent to u. If
P = {u}, then dQP = 1, so all vertices in Q are adjacent to u. Suppose instead u′ ∈ P .
Because the diameter is at most 2, there must be a PQP path from u to u′, since dPP = 0.
Thus dQP > 1. Suppose that w ∈ Q. Again, there must be a path uvw with v ∈ Q. Since
dQP > 1, by the proof of part (a) of Lemma 5.1, w must be adjacent to u.

Let 2 < d < 6 be the valence of u, and let H = Link(u), which is vertex-transitive
(the vertices are just Q). If dQQ > 1, the only possibilities for H are Cn, for n = 3, 4, 5 or
K4 or K5. If dQQ = 1, the only possibility is that H is the disjoint union of 2 edges. Let
v, w ∈ Q be endpoints of one of those edges. Then the only nontrivial element of Stab(v)
is τvw. Thus if |P | > 1, some element z ∈ P is moved by τvw, so Stab(v, z) is trivial. If
|P | = 1 instead, then v has valence 2, a contradiction. Thus dQQ > 1 and H is one of the
required graphs.

It remains to show |P | < 3 in all cases, except for K4, where we want |P | = 1, 3.
But by Lemma 5.1, we have dQQ is divisible by dQP = |P |. This restricts |P | to the
required values in all cases, except for the possibility |P | = 4 for H = K5. For this
last case, suppose u, v ∈ Q. Then Stab(u, v) ⊂ Z2 × Z2 acts on P . Since any faithful
action of Z2 × Z2 on a set with 4 elements has distinguishing number 2, some nontrivial
f ∈ Stab(u, v) fixes all vertices in P . But f also fixes an element of Q since f is an
involution and |Q| = 5, so f fixes a bent PQP angle. 2

Again, we have provided examples of maps with the given underlying graph G.

6 The vertex-transitive case: regular maps

Our basic plan for the vertex-transitive case is to factor the vertex-transitive map M with
D(M) = 3 into an all-τ map M1 and a no-τ map M2; either factor may be disconnected.
Since the collection of τ -edges is invariant under the action of Aut(M), the map obtained
by restricting the general rotation system only to the edges in M1 or M2 is vertex-transitive
and D(M1) = D(M2) = 3. In [6], we found the five graphs underlying no-τ maps M with
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D(M) = 3. Thus, we need to classify the all-τ maps M with D(M) = 3, and then see
how all-τ and no-τ maps can be overlaid with each other.

If M is an all-τ map, then vertex stabilizers are Dd if d is odd and Dd or Dd/2 if d is
even. In the Dd case we have a regular (reflexible) map. In the Dd/2 case, there are two
edge orbits and we can again restrict M to one of those orbits to obtain a regular map
M ′. Thus our first task is to classify reflexible regular maps M with D(M) = 3.

Throughout this section, we let M denote a regular (reflexible) map with D(M) = 3
and underlying graph G of valence d > 2, and diameter at most 2.

Theorem 6.1. The graph G is Kn for n = 4, 6, Kn,n for n = 3, 4, 5; K3,3,3; C3 × C3; or
O6.

The proof follows from a number of lemmas. First we handle Kn. It is well-known
[5] that the only reflexible regular maps with underlying graph Kn are for n = 3, 4, 6.
The following proof, however, is astonishingly simple and illustrates the power of angle
measure.

Theorem 6.2. The only complete graphs Kn, n > 3, underlying a reflexible regular map
are K4 and K6.

Proof. We note that all triangles are equiangular, since any angle uvw has a reflection
fixing v and interchanging u and w. We will show that if M has closed angles of measure
1 and 2, then the valence d = 5. Indeed, if angle uvw and wvx have measure 1 and uvx
has measure 2, then the K4 subgraph induced by u, v, w, x has two triangles with common
angle measure 1 (uvw and wvx) and two with common angle measure 2 (uvx and uwx).
But then at vertex u, the three incident edges make two angles of measure 2 and one of
measure 1, which can only happen if d = 2 · 2 + 1 = 5. If the graph underlying M is Kn,
all angles are closed, so the only possibilities are K6 for d = 5 and K4, since it has angles
only of measure 1. 2

We have not yet given a vertex-transitive map M with D(M) = 3 and underlying
graph K6. There is one, up to Petrie duality: the quotient of the icosahedron under the
antipodal map is a regular map triangulating the projective plane by K6. Since vertex-
stabilizers are D5, we have D(M) > 2.

Next, for diameter 2, we bound the valence.

Lemma 6.1. If the diameter of M is 2, then d 6 6.

Proof. Let v be any vertex and let its neighbors be u1, u2, . . . , ud, in cyclic order. Let
Y be all the neighbors of v except u1, u2, u4 and let H be the subgraph induced by Y and
v. As long as d − 4 > d/2, given any angle measure a 6 d/2 and any vertex u 6= u3 in
Y , there is a vertex u′ in Y such that angle uvu′ has measure a. For u3 the only missing
measure is 1. Thus unless the only open angle measure is 1, the only vertex in H of
valence d − 3 is v. Thus any automorphism stabilizing H fixes v, and hence must be
trivial, by the necklace problem. If the only open angle measure is 1, throw out instead
the neighbors u1, u4, u5. Again, every vertex in Y has valence less than d− 3, and again
the stabilizer of H is trivial, as long as d > 7; for d = 7, unfortunately τu1v stabilizes H.
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For d = 7, we again have trivial stabilizer for H, looking at open angles as before,
unless the only open angle measure is 1 or the only open angle measure is 3. But by the
previous lemma, we cannot have both measure 1 and 2 closed. Thus the only possibility
is for measures 2 and 3 to be closed. But then as in the previous lemma, we have a K4

subgraph with two triangles having common measure 2 and two having common measure
3. At one vertex of this K4 we have two angles of measure 3 and one of measure 2, so
2 · 3 + 2 = 8 6= 7, a contradiction. 2

Now we handle the remaining valences.

Lemma 6.2. For d = 6, we have G = K3,3,3.

Proof. Let v be any vertex and let the vertices of L = Link(v) be, in cyclic order,
u1, . . . u6. Suppose there are two open angle measures. Let H be the graph induced
by v, u1, u2, u4. If the valence of v is larger than the other vertices, any automorphism
stabilizing H fixes v, contradicting the necklace problem for d = 6. By the proof of
Lemma 6.1 applied to d = 6, we cannot have angles of measure 1 and 2 both closed, or
measures 2 and 3. We conclude that the only open angles have measure 2.

Since angles of measures 1 and 3 are closed, u1 is adjacent to u2, u6 and u4, in addition
to v. Thus u1 is adjacent to two other vertices w,w′ that have distance 2 from v. Since all
triangles are equiangular, angles u1u2v, u1u6v have measure 1 and angle vu1u4 is straight.
Thus the cyclic order at u1 is v, u2, w, u4, w

′, u6. Repeating this argument at vertices
u2, · · ·u6, we conclude that w and w′ are adjacent to each of u1, . . . , u6. Thus G = K3,3,3

with parts {v, w, w′}, {u1, u3, u5}, {u2, u4, u6}. 2

Next we finish the cases d = 3, 5.

Lemma 6.3. For d = 3, 5, the possibilities are G = K3,3 and G = K5,5.

Proof. For d = 3, since the diameter is 2, all angles are open, so G = K3,3. For d = 5,
if all angles are open then G = K5,5.

It remains to show for d = 5 that it is impossible to have one of the angle measures
1, 2 open and one closed (they cannot both be closed since the diameter is 2). Let H be
the subgraph induced by the vertices a distance 2 from v and let L = Link(v). If u ∈ L,
then u is adjacent to v and two vertices in L, so u is adjacent to two vertices w,w′ in H,
which must be interchanged by τuv. Thus there are exactly 5 · 2 = 10 edges between L
and H. Since one angle measure at u is closed, w is adjacent to two vertices in Link(u).
At least one of those two vertices must also be in L, since the other neighbors of u are
w,w′, v and w is not adjacent to v. Thus each vertex in H has at least two edges to L, so
H has at most 5 vertices.

Let f ∈ Stab(v) have order 5. If f(w) = w, then all edges from w lead to L; the
same holds for w′ since τvu interchanges w and w′. Thus H consists of two nonadjacent
vertices, so G has 8 vertices. But then the complement is vertex-transitive, with 8 vertices
of valence 2 and a triangle vww′, a contradiction. If instead f(w) 6= w then the orbit of
w under f has size 5 and is all of H. In particular, w has exactly two edges to L, so H
has 5 vertices, all of valence 3, which is impossible. 2

Finally, we handle d = 4.
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Lemma 6.4. If d = 4, then G is K4,4, O6 or C3 × C3.

Proof. If all angles are open, then G = K4,4, as in the other cases. Since the diameter
is 2, there must be both open and closed angles. Since there are only two possible angle
measures, either bent angles are open and straight are closed, or vice versa. Let v be any
vertex, L = Link(v), and H the subgraph induced by vertices a distance 2 from v. If all
bent angles are closed and straight angles are open, G = O6, since there are four edges
from L to H and vertices a distance 2 apart (for example, at the end of straight angle at
v) have at least 3 common neighbors, forcing H to be a single vertex.

Suppose instead that bent angles are open and straight angles closed. Let u1, . . . , u4
be the vertices of L in cyclic order around v. Then u1vu3 and u2vu4 form triangles T and
R through v in which every angle is straight; it is best to think of these as perpendicular
lines. Since M is regular, there is an automorphism f of order 3 leaving T invariant;
think of f as a translation along the line T taking v to u1 to u3 to v. Then f also
leaves invariant the straight triangle/line T ′ through u2 disjoint (or “parallel”) to T .
Similarly, f takes R to the parallel line R′ through u1. This forces a point of intersection
f(u2) of R′ and T ′. Similarly, f 2(u2), f(u4), f

2(u4) give other points of intersection of
lines through u1, u2, u3, u4, giving 9 vertices in all on two perpendicular families of three
parallel lines. The result is C3 × C3. In addition, the automorphism f , together with a
similar automorphism for the straight triangle u2vu4, make M a Cayley map for Z3×Z3.
2

7 The vertex-transitive case: completing the classifi-

cation

It remains to consider all-τ nonregular maps and mixed maps.

Theorem 7.1. The possible nonregular all-τ maps M with D(M) = 3 have underlying
graph either G = K9, as an overlay of two copies of a regular map for C3×C3, or G = O8,
as an overlay of the cube with two tetrahedrons.

Proof. Since M is all-τ but not regular, there are two edge orbits inducing regular
maps M1 and M2, whose edges alternate at each vertex; the maps need not be connected.
Let uvw be a corner. Since there is no automorphism taking edge uv to uw, the angle
must be closed, so there is an edge uw. Without loss of generality, we can assume that
uw is in M1. Then all edges closing the corners must be in M1 by the transitive action
of Stab(v) on the corners at v. In particular, if uv is in M2, there is a path of length 2
in M1 from u to v, so M1 is connected and hence contains all vertices of M . In addition,
M1 contains the cycle Cd with alternate vertices joined to v (there may be other edges
between vertices in L that are also in M1, but no other edges to v).

Checking our list of regular maps with D(M) = 3 for the structure of M1, we find the
only possibilities are C3 × C3 and the cube. In the first case, the graph G underlying M
is K9 so the graph underlying M2 is the complement of C3 × C3 which is again C3 × C3.
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For the cube, G = O8 since the valence is d = 3 + 3 = 6 and there are 8 vertices. There
are various ways to see that the complement in O8 of any cube subgraph is two copies of
K4. For example, O8 is K8 with four disjoint edges removed, which we can consider as
the four diagonals through the center of the cube; viewing the cube as a bipartite graph,
the complement in O8 is then all the edges within the two parts. 2

Theorem 7.2. The only mixed map M with D(M) = 3 is CM(Z4, (1,−1, 2)) and its
three partial or full Petrie duals.

Proof. Let M1 be the all-τ map induced by τ edges and M2 be the no-τ map induced
by the remaining edges; both maps could be disconnected. Denote their valences by d1
and d2, respectively. Whether M1 is regular or not, Aut(M) acts transitively on the
corners of M1, so d1 divides d2. Also, if uv is in M1, then τuv fixes no neighbor of u in
M2, so d2 is even.

We claim that M2 is connected. It suffices to show that for any edge uv in M1, there
are edges uw and wv in M2. Suppose not. If w is any neighbor of u in M2, then the angle
vuw must be bent since uv is a τ edge but uw is not. Since there is no automorphism
fixing u and interchanging edges uv and uw, the angle vuw must be closed, so there is
an edge vw. By our assumption, vw is in M1. But then for each of d2 neighbors w of u
in M2, there is an edge vw in M1, which implies d1 > d2, a contradiction. Thus M2 is
connected and its underlying graph spans M .

Suppose that d2 > 2. Then Aut(M) acts faithfully on M2, so D(M2) = 3. In this
case, since d2 is even, we must have by Theorem 3.2 that the graph underlying M2 is
K5, K7, O6 or O8. It cannot be K5 or K7, since that would make M1 empty. If it is either
O6 or O8, then there is only one edge from M1 incident to any vertex v. But then the
vertex stabilizer in Aut(M) has order at most two, which is not the case for any group
acting with distinguishing number 3 on a map with underlying graph O6 or O8.

We conclude that d2 = 2 so the graph underlying M2, is Cn for n = 3, 4, 5. Since M1

is not empty, n 6= 3. For n = 5, the graph underlying M2 is also C5 and for any edge uv
in M1, we have τuv fixing exactly two of five vertices in C5, which is impossible.

For n = 4, the underlying graph is K4, so we can simply enumerate all transitive
subgroups of the symmetric group S4 with blocks 13 and 24 and containing the involutions
(13) and (24) (all permutations in S4 can be realized by automorphisms of the standard
tetrahedron map). The only such subgroup is generated by (1234) and (13) and is therefore
the same as Aut(CM(Z4, (1,−1, 2))). 2

8 Comments

We have not classified maps M with D(M) > 2; rather we have classified the underlying
graphs. A careful count, eliminating duplications such as S1(K4) = K5, gives 22 different
graphs having no vertex of valence 1 or 2.

If instead we want to count maps, then things get very complicated. For example, the
graph S2(K5) underlying N10 (the double radial map of T2) has 4 edge orbits E1, . . . , E4
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under a D5 action, which would appear to lead to 24 = 16 different maps using all
partial and full Petrie duals. On the other hand, there is also an automorphism f of T2
interchanging the edge orbits in pairs E1 with E2 and E3 with E4, so, for example, the
Petrie dual twisting only edges in E1 is isomorphic to the one twisting edges only in E2.
In this way, f is an automorphism of 4 of the 16 maps and pairs the remaining 12, so
there are only 10 isomorphism classes of maps, not 16. As another example, the graph
K5 underlies three very different maps with D(M) = 3: a chiral regular embedding in the
torus (which gives two maps because of the orientation), the transitive but non-regular
map T2, and the intransitive map N4; moreover, each of these maps have various partial
Petrie duals.

In the transitive case, many of our arguments classify the map up to Petrie duality
(see for example, Lemma 6.4 in the case C3 × C3). In [6], we also classify the maps M
with D+(M) = 3. We suspect that with more effort, we could also classify the maps in
the intransitive case.

Finally, our results should be compared with Theorem 6 of Negami [3], which gives a
partial classification of graphs underlying polyhedral maps M with D(M) = 3. A map
is polyhedral if every face boundary is a cycle and the intersection of two face boundaries
is either empty, a single vertex, or a single edge. This is a major restriction eliminating
all the maps of Theorem 3.1 and 3.2 except those for K2,n, K4, K7, O6, and all the vertex-
transitive maps from Table 1 except T3,T6, T7. It also eliminates the intransitive maps
N4, N5, N10, N11-N13. In addition, Negami leaves open the possibility that there are
maps with D > 2 for some or all of the complete graphs K8, Kn, n > 10 and for the
complement of K6 × K2. As we have shown, there are none. Negami’s methods are
completely different from the methods in this paper.
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