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Abstract

In this paper, we remove the outstanding values m for which the existence of a
GBTD(4, m) has not been decided previously. This leads to a complete solution to the
existence problem regarding GBTD(4, m)s.

Keywords: generalized balanced tournament design; holey generalized balanced tour-
nament design; starter-adder

1 Introduction

A set system is a pair & = (X, B), where X is a finite set of points and B is a collection of
subsets of X. Elements of B are called blocks. The order of & is | X|, the number of points.
Let K be a set of positive integers. A set system (X, B) is said to be K -uniform if |B| € K
for all B € B. Let (X, B) be a set system and S C X. A partial a-parallel class over X\S
of (X, B) is a set of blocks A C B such that each point of X\'S occurs in exactly a blocks of
A, and each point of S occurs in no block of A. A partial a-parallel class over X is simply
called an a-parallel class. We adopt the convention that if « is not specified, then it is taken
to be one, so that a parallel class refers to a 1-parallel class. A set system (X, B) is said to
be resolvable if B can be partitioned into parallel classes.
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A balanced incomplete block design of order v, block size k, and index A, denoted by
(v, k, A\)-BIBD, is a {k}-uniform set system (X, B) of order v such that every 2-subset of X
is contained in precisely A blocks of B. A resolvable (km, k,k — 1)-BIBD (X, B) is called a
generalized balanced tournament design (GBTD), or simply a GBTD(k, m), if the m(km —1)
blocks of B are arranged in an m x (km — 1) array such that

(i) the set of blocks in each column is a parallel class, and
(ii) each point of X is contained in at most k cells of each row.

GBTDs were introduced by Lamken [3] and are useful in the construction of many combi-
natorial designs, including resolvable, near-resolvable, doubly resolvable, and doubly near-
resolvable balanced incomplete block designs (see [2, 3]). More recently, GBTDs have also
found applications in near constant-composition codes [12], and codes for power line com-
munications [1].

Schellenberg et al. [8] showed that a GBTD(2,m) exists for all positive integers m # 2.
Lamken [4] showed that a GBTD(3,m) exists for all positive integers m # 2. For k = 4, Yin
et al. [12] obtained the following.

Theorem 1 (Yin et al. [12]). A GBTD(4,m) exists for all positive integers m > 5, except
possibly when m € {28,32,33,34,37,38,39,44}.

The purpose of this paper is to remove all the remaining eight possible exceptions in
Theorem 1 and to show that a GBTD(4, m) exists for m = 4 but not for m € {2, 3}.

Theorem 2. For each m € {4,28,32,33,34,37,38,39,44}, a GBTD(4,m) exists. Form =2
and 3, a GBTD(4,m) does not exist.

A GBTD(4,1) exists trivially. Combining Theorem 1 and Theorem 2, the existence of
GBTD(4,m) is now completely determined.

Theorem 3. A GBTD(4,m) exists if and only if m > 1 and m # 2, 3.
We first present a non-existence result.
Proposition 1.1. A GBTD(k,2) does not exist for all k > 2.

Proof: Suppose (X, B) is a (2k, k, k—1)-BIBD whose blocks are organized into a 2 x (2k—1)
array to form a GBTD(k, 2). Since (X, B) is a (2k, k, k — 1)-BIBD, each point in X appears
in exactly 2k — 1 blocks, and hence each point must appear either k times in the first row
and k£ — 1 times in the second row, or vice versa.

Consider a point € X that appears k times in the first row and k£ — 1 times in the
second row. Let y € X be distinct from x. The cells in the first row can be classified as
follows:

(i) Type-zy: a cell that contains both x and y.
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(ii) Type-zy: a cell that contains = but not y.

(iii) Type-zy: a cell that contains y but not x.

(iv) Type-Zy: a cell that contains neither = nor y.

Let a and B be the number of type-xy cells and type-zy cells in the first row, respecitvely.

Then we have the table

Type-zy | Type-zy | Type-zy | Type-zy
T1= # cells in first row ! k—« g k—1-0
# cells in second row | Kk —1— 7 15} k—« «

where the second row is obtained from the first by the following observation: if a cell is of
type-zy (respectively, type-xy, type-zy, type-Zy) in the first row, then the cell in the second
row of the corresponding column is of type-zy (respectively, type-Zy, type-xy, type-zy). On
the other hand, the total number of type-zy cells is k — 1, since (X, B) is a BIBD of index
k — 1. Hence, we have a+ (k — 1 — ) = k — 1, implying o = 5.

Considering the number of occurrences of y in the first row and the number of occurrences
of y in the second row of the GBTD give the inequalities

a+p < Kk,
2k—1—a—p < Kk,
from which, and a = 8 shown earlier, follow that
a=|k/2].
Table T1 can therefore be revised to
Type-ry | Type-zy | Type-ry | Type-zy

T2= /2] —1 |

/2]

[k/2] [k/2]
(k2] =1 [k/2]

Counting in two ways the number of elements in the set

/2]
[k/2]

# cells in first row
# cells in second row

{(y,C) :y € X,y #x, and C is a cell of type-zy in the second row}.

gives

(2k = 1)([k/2] = 1) = (k — 1),

which is a contradiction. O
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2 Existence of GBTD(4,m)s with m =3 and 4

For a positive integer n, the set {1,2,...,n} is denoted by [n]. Let ¥ be a set of ¢ symbols.
A g-ary code of length n over ¥ is a subset C C ¥". Elements of C are called codewords.
The size of C is the number of codewords in C. For i € [n], the ith coordinate of a codeword
u € C is denoted u;, so that u = (ug, us, ..., uy,).

The symbol weight of u € ¥, denoted swt(u), is the maximum frequency of appearance
of a symbol in u, that is,

swt(u) = rggg\{ul =01 € [n]}.

A code has constant symbol weight w if all of its codewords have symbol weight exactly w.
The (Hamming) distance between u,v € 3" is dy(u,v) = [{i € [n] : u; = v;}|, the number
of coordinates at which u and v differ. A code C is said to have distance d if dy(u,v) > d
for all distinct u,v € C. A g-ary code of length n, constant symbol weight w, and distance
d is referred to as an (n,d, w),-symbol weight code. An (n,d,w),-symbol weight code with
maximum size is said to be optimal.

Chee et al. [1] established the following relation between a GBTD and a symbol weight
code.

Theorem 4 (Chee et al. [1]). A GBTD(k, m) ezists if and only if an optimal (km—1, k(m—
1), k)pm-symbol weight code ezists.

In view of Theorem 4, to prove the nonexistence of a GBTD(4, 3), it suffices to show that
there does not exist a ternary code of length 11, constant symbol weight four, and size 12,
that is of equidistance eight. Consider the Gilbert graph G = (V, E), where V = {u € [3]'* :
swt(u) = 4} and two vertices u,v € V are adjacent in G if and only if dy(u,v) = 8. Then
there exists a ternary code of length 11, constant symbol weight four, and size 12, that is of
equidistance eight if and only if there exists a clique of size 12 in GG. It is not hard to see that
G is vertex-transitive so that we can just search for a clique of size 11 in GG’, the subgraph of
G induced by the set of vertices {v € V : dy(u,v) = 8} for some fixed u € V. This induced
subgraph G’ has 8001 vertices and 7233060 edges. We solve this clique-finding problem
using Cliquer, an implementation of Ostergard’s clique-finding algorithm by Niskanen and
Ostergard [6]. The result is that the largest clique in G’ has size 10. Consequently, we have
the following.

Proposition 2.1. There does not exist a GBTD(4, 3).

There exists, however, a GBTD(4,4). Unfortunately, a GBTD(4,4) is too large to be
found by the method of clique-finding above. Instead, to curb the search space, we assume
the existence of some automorphisms acting on the GBTD(4, 4) to be found. Let (X, B) be a
GBTD(4,4), where X = ZyxZy4. If BC X and x € X, B+x denotes the set {b+z : b € B}.
If A is an array over X and z € X, A 4+ x denotes the array obtained by adding x to every
entry of A. For succinctness, a point (x,y) € Zy X Z4 is sometimes written zy.
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The GBTD(4,4) we construct contains the 4 x 3 subarray

{00,02,20,22} {11,13,31,33} {10,12,30,32}
| {01,03,21,23} {00,02,20,22} {11,13,31,33}
1 {10,12,30,32} {01,03,21,23} {00,02,20,22}

{11,13,31,33} {10,12,30,32} {01,03,21,23}

0

The blocks in Ay contain exactly the 2-subsets {ab, cd} C X, where a+¢=b+d =0 mod 2,
each thrice. The remaining 4 x 12 subarray of the GBTD(4,4) is built from a set of 12 base
blocks S = {B;; : i € [3] and 0 < j < 3} as follows. Let

By Bap Bsp
By1 Bs1 Bsj
Bis By Bss |
By3 Bz Bsg

A1:

Then the 4 x 12 subarray is given by
AL AL +(0,1) Ai+(0,2) A+(0,3) ]

For

(Ao Ar A+(0,1) A +(0,2) A+(0,3) ]
to be a GBTD(4,4), the following conditions are imposed:

(i) U?:o B, j = Zy X Zy, for i € [3], so that every column is a parallel class.

(ii) For each j, 0 < j < 3, each element of Z, appears exactly three times as a first
coordinate among the elements of U?:l B, ;, so that every row contains each element
of Z, x Z, at most three times.

(iii) Let k,l € Z4 and define A;S to be the multiset |, .s{z —y : (k,2), (I,y) € A}. Then

AL — {1,1,1,3,3,3}, itk=1or k+!=0mod?2;
B 740,0,0,1,1,1,2,2,2,3,3, 3}, otherwise.

This ensures that every 2-subset of X not contained in any block in Ay is contained in
exactly three blocks in Ay, A; + (0,1), Ay + (0,2), or A; + (0, 3).

A computer search found the following array A; that satisfies all the conditions above.
{23,22,32,11} {10,00,21,11} {00, 01,30, 33}
{20,01, 30,33} {33,02,03,12} {10, 13,22,23}

{31,00,12,21} {01,13,20,32} {02,11,21,32} |
{02,10,13,03} {22,23,30,31} {03,12,20,31}

A1:

Consequently, we have the following.

Proposition 2.2. There ezists a GBTD(4,4).
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3 Incomplete Holey GBTDs

Let (X, B) be a set system, and let G be a partition of X into subsets, called groups. The
triple (X, G, B) is a group divisible design (GDD) of index A when every 2-subset of X not
contained in a group appears in exactly A blocks, and |[BNG| < 1 for all B € Band G € G.
We denote a GDD (X, G, B) of index A by (K, \)-GDD if (X, B) is K-uniform. The type
of a GDD (X, G, B) is the multiset [|G| : G € G]. When more convenient, the exponential
notation is used to describe the type of a GDD: a GDD of type gi'g5’ - - - gt is a GDD where
there are exactly t; groups of size g;, i € [s].

Suppose further G = {G1, Gy, ... G} and H = {Hy, Hy, ... Hy} is a collection of subsets
of X with the property H; € G;, 0 < @ < s. Let H = (J;_; H;. Then the quadruple
(X,G,H, B) is an incomplete group divisible design (IGDD) of index A when every 2-subset of
X not contained in a group or H appears in exactly A blocks, and |BNG| < 1 and |[BNH| < 1
for all B € B and G € G. The type of an IGDD (X,{G1,Gs,...,Gs},{H1,Hs, ..., Hs}, B)
is the multiset [(|Gy], |H;|) : 1 < i < s| and we use the exponential notation when more
convenient.

Let k, g, u, and w be positive integers such that k£ | g and u > (k+1)w. Let R; = {7“ 6 7 :
ig/k <r < (i+1)g/k—1}. An incomplete holey GBTD with block size k and type g(*“*), de-
noted IHGBTD (k, g™*)), is a ({k},k — 1)-IGDD (X,{Go,G1,...,Gu1},{2, ..., 2, Gu,w,

Gu-1},B) of type (g,0)* " (g,9)", whose blocks are arranged in a (gu/k) x g(u — 1)
array A, with rows and columns indexed by elements from the sets {0, 1, ..., gu/k — 1} and
{0,1,...,g(u— 1) — 1}, respectively, such that the following properties are satisfied.

(i) The (gw/k) x g(w — 1) subarray whose rows are indexed by r € R;, where u —w < i <
u — 1, and columns indexed by ¢, where g(u — w) < ¢ < g(u — 1) — 1, is empty.

(ii) For each i, 0 < i < u— w — 1, the blocks in row r € R; form a partial k-parallel class
over X \ G, and for each i, u —w < i < u— 1, the blocks in row r € R; form a partial

k-parallel class over X \ (Uw_l Gj).

J=u—w

(iii) For each j, 0 < j < g(u — w) — 1, the blocks in column j form a parallel class, and for
each j, g(u — w) j < g(u—1)—1, the blocks in column j form a partial parallel class

over X \ (U/Z,_ ij).

Each group acts as a hole of the design, since no block contains any 2-subset of a group. The
design is also incomplete in the sense that the array A contains an empty (gw/k) x g(w — 1)
subarray.

We note that an IHGBTD(k, g®") is a holey GBTD, HGBTD(k, g*), as defined by Yin et
al. [12]. The following was established by Yin et al. [12].

Proposition 3.1 (Yin et al. [12]). If there exists an HGBTD(k, k"), then there exists a
GBTD(k, u).

Proposition 3.1 shows that a GBTD(k, u) can be obtained from an HGBTD(k, k*). The
next result shows how we can obtain an HGBTD(k, g*) (and, in particular, an HGBTD(k, k)
from an IHGBTD(k, g®™)) and an HGBTD(k, g*).
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Proposition 3.2. If there exist an IHGBTD(k, g™")) and an HGBTD(k, g*), then there
exists an HGBTD(k, g*).

Proof: When w = 1, an HGBTD(k, g*) is empty and an IHGBTD(k, g™®)) is just an
HGBTD(k, g%). So assume w > 1 and let (X,G,B) be an IHGBTD(k, g®")) with G =
{Go,G1,...,Gy_1}. Fill in the empty subarray of this IHGBTD with an HGBTD(k, g*),
(X',G",B), with ¢’ = {Gy—w, Gu—wi1,---,Gu_1} and X' = U“_1 G;. The resulting array

t=u—w

is a HGBTD(k, ¢%), (X,G,BUB’). O

4 Starter-Adder Construction for IHGBTD

The starter-adder technique first used by Mullin and Nemeth [5] to construct Room squares
(also a combinatorial array) has been useful in constructing many types of designs with
orthogonality properties, including GBTDs (see [3, 7, 10, 11, 12]). Here, we extend the
technique to the construction of IHGBTDs. Since only IHGBTD(k, g™®)) with g = k are
considered here, we describe our construction for this case.

Let I" be an additive abelian group of order k(u —w) with u > (k+ 1)w, and let 'y C T
be a subgroup of order k. Fix a set, A = {dy = 0,01,...,04—w_1} C I', of representatives for
the cosets of I'g so that I'; = 'y +6;, 0 < i < u—w—1, are the cosets of I'y. Let H be a set
of kw points such that H and I' are disjoint. Further, let H be partitioned into w subsets
Hy, Hy, ..., H, 1 of size k each.

We take X = I'|J H to be the point set of an IHGBTD (k, k™). An intransitive starter
for an IHGBTD(k, k%)), with groups {Go, G1,...,Gyu_1}, where

) Hifquw, lfU—wgzgu_l’
is defined as a quadruple (X, S, R,C) satisfying the properties:

(i) (X,S), (X,R), and (X,C) are {k}-uniform set systems of size u — w, w, and w — 1,
respectively;

(ii) among the blocks in &, kw of them intersects H in one point, that is, |{B € S :
|IBN H| =1} = kw;

(iii) blocks in R are each disjoint from H;
(iv) blocks in C are each disjoint from H, and |J!—)" ' (6; + C') =T, for each C € C.
(v) SUR is a partition of X;

(vi) the difference list from the base blocks of S|JR|JC contains every element of I' \ I'y
precisely £ — 1 times, and no element in I'y.
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Suppose § = {By, B1,..., By—w-1}. Then a corresponding adder 2(S) for S is a per-
mutation Q(S) = (wp, w1, - . . ,Wy—w_1) of the u — w elements of the representative system A
satisfying the following property:

(vii) the multiset ({J;-," (B + wi)) U (Ucee C) contains exactly k elements (not nec-
essarily distinct) from I'; for 1 < j < u—w —1, and is disjoint from I'g. We remark
that when B € S and BN H = {oo}, or B = {00, by, bs,...,bx_1}, the block B + v
is defined to be {00, b1 + 7,02 +,...,bk—1 +} for v € T

The result below shows how to construct an IHGBTD from an intransitive starter and
its corresponding adder.

Proposition 4.1. Let I' be an additive abelian group of order k(u—w) with u > (k+1)w and
Lo be a subgroup of order k. Define X and the groups G; (0 < i < u— 1) as above. If there
exists an intransitive starter (X,S,R,C) with groups {G; : 0 < i < u— 1}, a corresponding
adder Q(S), then there exists an IHGBTD(k, k™).

Proof: Retain the notations in the definition of intransitive starter and adder. Suppose
A={A+~vy:7veT,Ac SURUC},

then (X, {Go,G1,...,Gu1},{9,...,9,Hy,...,Hy_1}, A) forms a ({k}, k—1)-IGDD of type
(k,0)**(k,k)* by Condition (vi) in the definition of intransitive starter. Therefore, it
remains to arrange the blocks in a u x k(u — 1) array.

First, consider the blocks S. Consider a (u — w) X (u — w) array S, whose rows and
columns are indexed with the elements in A. Now identify the elements in A with elements
in the quotient group I'/Ty, so that the binary operation + on A is defined by the additive
operation on I'/T'y. In addition, for § € A, denote the additive inverse of § by —§. That is,
5-+(=0) = do.

So, for 0 < 4,7 < u —w — 1, we place the block B; + 9, at the cell (5j151,5j) if 6, = w;.
Note that this placement is well defined because Q(S) is a permutation of A. Let I'g = {7y =
0,71, ,Y_1}. Form a (u— w) x k(u — w) array S from the square S by concatenating k
squares D + v; where 0 <7 < k — 1 as follows.

S=[S S+% ~ S+

Next, let R = {Ry, Ra, ..., Ry} and construct a w x k(u — w) array R in the following
way:

ﬁz’R R+m -+ R+v

U

where the w x w subarray R is given by

Ry Ri+61 -+ Ri+0du—wa
R — Ry Ro+61 -+ Ry+0dy—w
Rw Rw + 61 e Rw + 6u—w—1
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Similarly, let C = {Cp, C, ..., Cu_2}, and we construct a (u — w) X k(w — 1) array C.

C=[GC G - Cusl)

where each (u — w) x k subarray C;, 0 < i < w — 2, is given by

C; Ci+tm Ci + M1
C._ Ci+ 5 Cz+51+71 Cl+51+"}/k_1
C’i + 5u7w71 Cz + 5u7w71 o Cz + 6u7w71 + Vr—1
Finally, let
S | ¢
A=—— :
R
and it is readily verified that the placement results in an IHGBTD(k, k(™). ]

5 Proof of Theorem 1.2

We first remove all the eight remaining values in Theorem 1.

Lemma 5. For (u,w) € {(28,5),(32,5), (33,6)}, an IHGBTD(4,4™") ezists.
Proof: We apply Proposition 4.1 to construct the desired IHGBTDs. Take

['=2Zy w X Z47

Fo = {0} X Z4,

A ={(0,0),(1,0),...,(u —w—1,0)}, and
w—1

H = U Hi> where Hl = {OOZ',OOZ'_HU, Q42w Ooi+3w} for 0 < 1 < w— 1.
i=0

For each pair (u,w) € {(28,5),(32,5), (33,6)}, the desired intransitive starter and cor-
responding adder are displayed below. Here we write the element (a,b) of I' as a;, for
succinctness.

When (u,w) = (28,5):

S QS) S Qi) S Q(S)
141,30, 70,00} 170 {50, 19,121, 15} 120 {180,133,163,8:} 19
{000,31,122,113} 10 {001,143,60,103} 210 {002,141,91,201} 200
{003,191,101,222} 70 {004,33,13,22} 180 {005,02,151,10} 150
{006711,63,93} 20 {007,140,111,01} 100 {0087037172,212} 220

{009,43,80,210} 60 {0010,131,193,162} 90 {0011,42,213,171} 50
{0012,170,52,211} 160 {0013,517202,112} 40 {0014,220,23,160} 140
{0015,183,203,20} 00 {0016,123,21,223} 30 {0017,53,71,173} 80
{0018,62,90,192} 139 {0019, 72,835,221} 11
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C= {18p,111,53,62}, {182,85,19¢,61}, {143,120,32,71},
{52,71,163,11p}.

R = {32,185,161,102}, {82,15¢,200,132}, {13¢,92,181,153},
{61, 75,142,152}, {129,100, 40, 110}.

When (u,w) = (32,5):

S QES) S QiS) S Q(S)
{49,175,161,225} 169  {31,41,10,91} 119 {43,263,220,103} 0o
{141,607260,30} 120 {000,3372427251} 70 {001722,120,13} 60
{002701,261,202} 40 {C)O?,,2507 150,230} 150 {0047 130,212, 160} 30
{005,50,193,121} 240 {006,63,1437132} 10 {007712,20,00} 210
{ocs; 02,100,190} 149 {009, 152,185,035} 20 {o010,61,52,23} 179

{o011,123,259, 113} 225 {0012,104,213,173} 18y {0013, 170, 90,203} 200
{o014,200, 32,163} 50  {oo15,129,214,85} 9  {oo16,181,110,153} 100
{o017,11,151,171} 8  {001s,92,162,235} 130 {o019,149,183,215} 259

C= {13,260,161,172}, {53,141,245,120}, {192,250,171,135},
{62, 80,115,131 }.

R = {51,111,245,201}, {241,180,70,62}, {221,253,80,133},
{199,72,21,233}, {71,93,262,40}.

When (u,w) = (33,6):

S Q8) S Qs) S Q(3)
{220, 01, 230, 213} 139 {255,45,151,20;} 49 {75,22,235,1p} 7o
{000,211,30,222} 180 {001,00,143,101} 60 {002,123,80,161} 80
{003,61,232,91} 230 {004,40,827142} 20 {005,141,23,60} 170
{006,212,242,112} 90 {007,50,21,251} 200 {008,111,221,121} 220

{009,02,727192} 150 {0010,130,16()7140} 240 {0011,110,150,181} 30
{0012,70,90,261} 190 {0013,250,71, 100} 210 {0014, 180,252,263} 260
{0015,42,152, 133} 160 {0016,171,2007 113} 50 {0017,202,93,120} 140
{C)Olg7 262, 52, 172} 120 {0019, 240, 1317 103} 10 {OOQQ, 13, 102, 122} 110
{o021,32,153,241} 259 {0022,51,183,210} 10  {0023,170,245,260} 0o

C= {33,101,52,150}, {85,141,92,180}, {12,103,262,5:},
{212,114,230,95}, {151,52,123,30}.

R: {6372071827190}7 {83792731;12}7 {1737337417223}7
{1937132762753}7 {16372317117191}7 {2037162781703}‘

Lemma 6. For (u,w) € {(34,6), (44,8)}, an IHGBTD(4,4"")) exists.
Proof: As with Lemma 5, we apply Proposition 4.1 to construct the desired IHGBTDs.
Take
I' = Zou—w) X Zs,
Fo={0,u —w} X Zy,
A =1{(0,0),(1,0), -+, (u —w—1,0)}, and
w—1

H = U H;, where H; = {00;, 0014, X012, Rjt3w} for 0 < i < w — 1.
=0
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When (u,w) = (34,6):

S

Q(S)

S Q(S)

S Q(S)

{414,169, 60, 150}
{161,21,40, 31}
{0027 140, 3117 11}
{005,817301,200}
{0087451; 211,281}
{0011, 30, 2207 120}
{o014,151,531,514 }
{0017, 52()7 321, 171}
{0020, 121,310,470}
{0023,340,400,501}

20,
30
10¢
12,
180
19
6o
13¢
30
264

{360, 90,331,131} 169
{OO(), 201, 240, 420} 230
{003, 480, 4507 80} 250
{006,61,2107441} 20
{009,270,280,341} 170
{0012,440,3507390} 140
{015,530, 110,510} 150
{0018, 550, 291, 25()} 50
{0021, 170,271,471} 210

{370, 18¢,261,41} 0o
{0017221,300,391} 110
{0047251,481, 141} 40
{007,401,330,521} 10
{0010,421,351,371} 220
{0013,361,70,91} 70
{o016,500,551,101} 9o
{0019, 01, 71,410} 279
{0022, 190, 230, 290} 240

C:

R =

{271,100,444,510}
{241,12¢,379,21,}
{130, 260, 380, 241 },
{100, 20,111, 540},

{351, 150, 500, 141 },
{390, 21,451,500 }
{541,231,461,49, }
{460, 191,431,50},

When (u, w) = (44, 8):

{161,511,540,270},

{10,490,181,430},
{381,320,51,00}

S

6

S Q)

S QS)

{320,691, 361,531}
{221, 390,551,331}
{OOQ7 180, 671, 360}
{005, 160,440, 20}
{ocs, 690, 521,21}
{0011,7107 151,470}
{0014,520,460,601}
{0017, 490, 917 530}
{0020, 650, 681, 231}
{0023, 19, 700, 261 }
{0026,581,407570}
{0029, 190,480,210}

20
11

{421,651, 00,431} 1o
{OO(), 6707 401, 540} 220
{003,2517 100,281} 160
{006,280,501,351} 100
{OOg, 371, 660, 711} 260
{0012,5907191761} 230
{0015, 170,600,220} 00
{0018,680,01,561} 150
{0021,201, 181,80} 310
{0024,571,111,130} 210
{0027,411,131,311} 190
{()03()7 481, 580, 500} 330

{394,271,451,51; } 3o
{001,230, 101,341} 250
{0047 631, 60, 370} 290
{007,430,461,321} 90
{0010, 701,214,241} 8
{0013,90,4717200} 70
{0016,640,541,120} 170
{0019,270,121,41} 270
{0022,591, 171,441} 140
{0025, 161, 50, 7o} 189
{0028, 641, 560, 301} 300
{0031,400,491,51} 340

C= {2173172207690}7

{281,690, 191,620},

Lemma 7. For each (u,w) € {(37,6),(38,7), (39,6)}, an IHGBTD(4,4")) exists.

{570,121,40,551},
{331,219, 281,520 }.
{661, 31,250,291},
{6217 6103 4207 290}3
{144,119, 31,630}

{4105 21173217 80}7

{380a 3407 307 240}7
{5107 3507 3003 260}7
{71,330, 81,419 }.
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{4117 407 2017 590}3
{717 130; 1413 280})

{550, 150, 620, 450 }
{614,114, 140,381},

The desired intransitive starter and corresponding adder for (u,w) € {(34,6), (44,8)} are
displayed below. Here we write the element (a,b) of I" as a; for succinctness.
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Proof: As with Lemma 5, we apply Proposition 4.1. Take

I' =Zy_w X Zo X Zso,

FOZ{O}XZQXZQ

A =1{((0,0,0),(1,0,0), -+, (u —w —1,0,0))}, and
w—1

H = U H;, where H; = {00;, 0044, 00i+2w, Xjt3w} for 0 <i < w — 1.
=0

The desired intransitive starter and corresponding adder for (u, w) € {(37,6), (38,7), (39,6)}

are displayed below. Here we write the element (a, b, ¢) of I as a. for succinctness.
When (u, w) = (37,6):

S Qs) S Qs) S Q(S)
{600,2500, 300, 711} 3000  {2010,1300,2311,2701} 2800  {1200,1301,1911,1700} 200

{2011,1900,900, 111} 1700 {2911,2611, 211,001} 300  {2110,1110,110,2710} 2100
{901,2711,410,1611} 110 {000,2601,2801, 500 } 400 {o01,1410,311,2511} 2900
{002,210, 1111,2301} 2400  {003,2111, 510, 1800} Too  {004,2811,1011,2001}  Ooo

{005,2810,2501,1511} 2500 {006,010, 201, 710} 1400 {007,2901,1010,2200} 1290
{o0g,301,1211, 1910} 800 {009, 3001,2700, 811} 2700 {0010,1901,2101,200} 2300
{o011,411,2211, 700} 2000 {0012, 2600, 601,400 } 1900 {0013,2800,2201, 1401} 2200
{0014, 210,1601,2210} 1300 {0015, 401,2900, 701 } 1800  {o016,2400, 801,511} 1600
{0017,1811,101, 1510}  loo  {0018,1701,2310,800} 2600 {0019,2410,1600,810} 1000
{0020,310,1801,2401}  Boo  {0021,3011,2411,1810} 900  {0022,011,1411,2300} 1500
{0023, 610,1501,2910} 600

C = {3010,1300, 711,801}, {701,210,2811, 1700}, {611,901, 1000, 1310},
{3010, 2801, 1800, 1711}, {3001,2600,811,610}-

R = {1400,3000,1310,000}, {910, 1610, 1500, 1100}, {1000, 2510, 1710,3010},
{2000, 501,911, Loo}, {2610,1210,1311,1711}, {1201, 1101, 1001, 611}

When (u,w) = (38,7):

S Qs) S Qs) S Q(S)
{2800,2900,2211,2700} 800  {2011,2311,1111,511} 600 {1800,2710,801,3000}  21oo
{200,3001, 1300, 501 } 300 {001, 2801, 301, 2301 } 2000 {002,2711,810,2411} 2500
{003, 011,411,600} 1100 {o04,400, 900,800} 2600 {005,1611,2910,1001} 1209
{006,2600,291,2101}  Ooo  {007,2701,1600,1810} 1900 {008, 701, 2300, 1311} oo

{009,3011,610,1610} 2800 {0010, 1301,2410,2200} 1400  {0011,200,2000, 1211} 1300
{0012, 1100, 2310, 1210} 1600 {0013, 110, 1500, 1411} 1800 {0014, 1811,1010,1201} 2200
{0015, 300,2500, 1700} 2700  {001651200,2611,2210} 290 {0017, 101,1701,1000} 900

{0018,000,1911,2010} 2300 {0019, 2400,211,410} 1000 {©020,500, 210, 111} 1700
{0021,2510, 710, 001 } 1500  {0022,1710,2001,1910} 3000 {0023, 1400, 2111, 700 } Too

{0024, 010,401, 1101} 500  {0025,911,1901,2110} 4oo {0026, 901,2401,2511} 200

{0097, 1401, 2501, 3010} 2400

C= {1400,2911,2501,3010}, {2010,911, 701,500}, {401, 2500, 2811, 1210},
{1300, 2410, 101,2211},  {710,601,2011, 1000}, {2401, 610, 100, 1611 }.

R = {811,510, 190, 1510}, {2601, 711,1310,1711}, {910, 1511, 601, Loo},
{2610, 1410, 2100,2810}, {2201, 1801,1011, 1501}, {311,201, 1601,2911},
{310,2811, 110,611}
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When (u,w) = (39, 6):

S Q) S Q$s) S Q(S)
{2810,2910,2610,200} 2300 {2401,1011,901,1700} 1300 {300,290, 600, 2101} 0Ooo
{1101,3001,1000, 711} 1000 {911,2600,2100,2001}  11loo {3000, 3200, 001,800} 800
{2201,810,1800,2701} 900  {2110,3011,2400,411} 500  {3201,2710,1801,2500} 2500
{000,2801,1600,1211} 3200 {001,101, 1810, 1601 } 2000  {002,910,611,401} 300
{003,1500,3210,610} 1900 {004,3211,3010, L10} 2700 {005,291, 811,3100} 1600
{006, 26017 ].411, 2300} ].800 {007, 2800, ].3()17 2410} ].500 {008, 24117 3101, 1310} 3].00
{009,2700,1811,1210} 2800  {0010,2511,1311,1911} 2200 {0011, 510,400,000 } 3000
{o012,700,1300, 1901}  6oo  {0013,210,1611,2501} 2600 {0014,1701, 701, 1110} Too
{0015, 1501,1910,211} 1700  {o016,2200, 1200, 1oo } 400 {0017, 010, 1401, 500 } Too
{0018, 1511, 201, 1400} 1200 {o019,410, 301, 2311} 200 {0020,310,1610, 1710}  14go
{0021,311,1900,2510} 2900  {0022,511,1100,2211} 2400 {0023, 1010,2210,2301} 2100

C= {1011,1510,2300, 1301}, {2211,401,2000,2710}, {1210, 1611, 800,401},
{2311, 1201, 100, 910}, {2000, 3001, 2310, 2811}
R = {2011,601,2811,501}, {2911,1201, 1141, 3111}, {3110, 1001, 1510, 710},
{900, 2711, 1410,2000}, {2310, 011,2010, 801}, {2611, 111,2111, 1711}
]

Proof of Theorem 2: We first construct a GBTD(4,m) for any m € N, where N =
{28,32,33,34,37,38,39,44}.

For each w € {5,6,7,8}, an HGBTD(4,4") is given by Yin et al. [12]. For each m € N,
apply Theorem 3.2, with IHGBTDs from Lemma 5, Lemma 6 and Lemma 7 and corre-
sponding HGBTD(4,4")’s where w € {5,6,7,8} as ingredients, to produce the desired
HGBTD(4,4™). Hence, the desired GBTD(4, m) follows from Proposition 3.1.

Combining Proposition 1.1, Proposition 2.1 and Proposition 2.2, we complete the proof.

]
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