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Abstract

Let S be a set of n points in the plane, and let D be an arbitrary set of disks,
each having a pair of points of S as a diameter. We show that the combinatorial
complexity of the union of the disks in D is O(n3/2), and provide a lower bound
construction with Ω(n4/3) complexity. If the points of S are in convex position, the
upper bound drops to O(n logn).

The problem. Let S be a set of n points in the plane, and let E be a collection of
unordered pairs of points of S. For each pair {a, b} ∈ E let Dab denote the disk with
diameter ab; we refer to Dab as the diametral disk determined by {a, b}. Let D denote
the resulting collection of disks, and let U denote their union. Let the complexity of U be
measured by the number of its vertices, namely intersection points of two disk boundaries
that lie on the boundary ∂U of U . In this paper we establish the following upper and
lower bounds on the complexity of U .
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Theorem 1. The maximum possible complexity of the union of any number of diametral
disks, determined by any set of pairs of points from an n-point set in the plane, is Ω(n4/3)
and O(n3/2).

If the points of S are in convex position, the upper bound on the union complexity
improves considerably:

Theorem 2. The complexity of the union of any number of diametral disks, determined by
any set of pairs of points from an n-point set in convex position in the plane, is O(n log n).

Preliminary properties. As is well known, the complexity of U , being the union of
|E| disks, is O(|E|) [4], so the problem becomes more challenging as |E| grows. We call
a disk Dab ∈ D essential if it appears on the boundary of the union U at some point
which does not belong to any other disk; that is, it contributes a nonempty arc, or several
arcs, to ∂U . We eliminate all non-essential disks, noting that every vertex of U is also a
vertex of the union of the essential disks. (Notice that this latter union can have more
features on its boundary, because the removal of the non-essential disks might expose new
vertices which now lie on the union boundary.) On the other hand, as each essential disk
contributes to the boundary, their number provides a natural lower bound, and, in view
of the linear bound in [4], (up to a constant multiplicative factor) also an upper bound,
on the union complexity. In other words, it suffices to establish the upper bounds in
Theorems 1 and 2 on the number of essential disks in D and this holds trivially also for
the lower bound in Theorem 1.

Lemma 3. Fix a point a ∈ S and consider the set Ea of all the neighbors of a in E.
Let Ua denote the union of the disks Dab, for b ∈ Ea, and let Ca denote the convex hull
of Ea ∪ {a}. Then (i) Ca ⊂ Ua and (ii) the disks Dab that appear on ∂Ua (in the above
sense, of contributing at least one nonempty arc to ∂Ua) are precisely those for which b is
a vertex of Ca.

Proof. Let Dab and Dac be two disks in D with the common diametral endpoint a. The
boundaries of these disks meet at a and at another point q which has to lie on the line
passing through b and c; q can lie either between b and c (as in Figure 1(a)) or past b or c
(as in Figure 1(b)). In either case the entire triangle abc is covered by the union Dab∪Dac.

To prove (i), we note that Ca is the union of all triangles ab1b2, for b1, b2 ∈ Ea (in fact,
it suffices to take only those triangles for which b1, b2 are consecutive hull vertices), and
the preceding argument implies that each of these triangles is contained in Ua.

To prove (ii), consider a point b ∈ Ea which is not a vertex of Ca. There exist two
points b1, b2 ∈ Ea that are consecutive vertices of Ca such that b lies in the triangle ab1b2;
see Figure 2. Let b′ be the intersection point of the line ab with the line b1b2 (b

′ = b when b
lies on the segment b1b2). Note that Dab is fully contained in Dab′ , which is fully contained
in Dab1 ∪Dab2 . For the latter property, note that ∂Dab′ passes through a and through the
second intersection point q of ∂Dab1 and ∂Dab2 (because, by construction, ∠aqb′ = π/2).
Hence Dab′ belongs to the pencil of disks determined by a and q. Since the center of Dab′

lies between those of Dab1 and Dab2 , it is contained in the union of these two disks. Note
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Figure 1: Two diametral disks with a common diametral endpoint.
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Figure 2: Illustrating the proof that only hull neighbors of a can generate essential disks
with a. In both figures, Dab is the darkly shaded disk, and Dab′ is the lightly-shaded disk.

that ∂Dab′ meets ∂(Dab1 ∪Dab2) only at a and q, and thus does not contribute any arc to
∂Ua.

To see that the converse also holds, consider a vertex b of Ca. Draw a supporting line ℓ
to Ca through b, so that ℓ∩Ca = {b}, and mark on it the foot q of the perpendicular to ℓ
from a. Clearly, q belongs to ∂Dab, but it cannot belong to any other disk Dab′ because,
by construction, the angle ∠aqb′ is acute. This completes the proof of property (ii).

In other words, every essential disk in {Dab | b ∈ Ea} is such that b is a vertex of
Ca (note that not all those disks necessarily contribute to the overall union U). We may
therefore remove all other disks from D. Hence, in what follows we will assume that the
set Ea of all the neighbors in E of any a ∈ S lie in convex position, and that either a lies
in their hull or Ea ∪ {a} is also in convex position.
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Proof of the upper bound in Theorem 1. We turn the set E into a directed geo-
metric graph G. The vertices of G are the points in S. We orient an edge (drawn as a
straight line segment) from a to b if {a, b} ∈ E, and some portion of the semicircle of
∂Dab which lies counterclockwise from a to b appears on ∂U ; we refer to this semicircle
as the CCW-semicircle of Dab. Since we only deal with essential disks, each pair in E
becomes either a single edge or a pair of anti-parallel edges of G. See Figure 3.

cb

a

d

Figure 3: The directed graph G.

Without loss of generality we may assume that a constant fraction (in fact an eighth) of
the directed edges of G form an angle of at most π/8 with the y-axis and point downwards.
We delete all other edges from the graph G and bound the number of the remaining edges.
This way we may lose a constant factor of at most eight in the upper bound. Let G′

denote the new directed geometric graph.
We use the well-known fact that, for any directed graph G̃(V,E) on n vertices, there

exists a partition of V into sets A and B so that at least |E|/4 edges of G̃ emanate from
vertices of A and terminate at vertices of B.1

Applying this partitioning to G′, we obtain a new directed bipartite geometric graph
H, without losing more than a factor of four in the number of edges; overall, we have
|E(G)| 6 32|E(H)|.

Let a directed K2,2 be (a graph isomorphic to) the directed graph on four vertices
a, b, u, v with edges (a, u), (a, v), (b, u), (b, v).

Lemma 4. H does not contain a copy of a directed K2,2 as a subgraph.

Proof. Suppose to the contrary that H does contain such a subgraph. That is, there exist
four points a, b, u, v in S so that all ordered pairs in {a, b} × {u, v} are in H.

1To see this, assign independently each vertex v ∈ V to A or to B with equal probability. An edge
(u, v) ∈ E will have u ∈ A and v ∈ B with probability 1/4, so the expected number of such edges is |E|/4,
so at least one assignment has at least |E|/4 edges directed from A to B.
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Suppose first that a, b, u, v are in convex position. Since all edges of H point down-
wards, a and b are both higher than u and v, so ab and uv are edges of the hull. Hence,
the edges of H consist of the two remaining hull edges and the two diagonals of the hull.
That is, in this case au, av, bu, bv form a self-intersecting quadrangle (see Figure 4).

Otherwise, a, b, u, v are not in convex position. In this case, as is easily verified, au,
av, bu, and bv form a non-convex simple quadrangle (see Figure 5).

We consider separately these two cases. We start with the more difficult case in which
au, av, bu, and bv form a self-intersecting quadrangle, where some pair of edges, say av
and bu, cross. This implies that, up to relabeling, the situation is as depicted in Figure 4.
That is, a, b, v, and u are in convex position, appearing in this clockwise order along the
boundary of their convex hull Q, and the CCW-semicircles of all four disks Dau, Dav, Dbu,
and Dbv appear on the boundary of U .

For any pair of points p, q we denote by ℓpq the directed line passing through p and
q and oriented from p to q. In the hypothetical configuration, the right halfplane of ℓbv,
that is, the halfplane delimited by ℓbv and lying on its right side, contains a, u, and
the CCW-semicircle of Dbv; see Figure 4. By assumption, there exists a point q on this

w

ℓab

ℓuv

b

v

q

Dbv

u

a

q′

q′′

Figure 4: Illustrating the impossibility of a self-intersecting copy of a directed K2,2 in H.

semicircle which appears on the boundary of the union of all the disks and thus also on
that of the four disks Dau, Dav, Dbu, and Dbv. The preceding arguments imply that q
cannot lie inside the convex hull Q.

If q lies to the left of the line ℓuv (in the halfplane containing Q; consider the point
q in Figure 4—in the figure q also lies to the left of ℓab, but the proof does not exploit
this property), then we must have ∠uqb = ∠uqv + ∠vqb > ∠vqb = π

2
; since the disk Dbu

has bu as a diameter, it follows that q must lie inside Dbu, contrary to our assumption.
A symmetric argument applies when q lies to the right of ℓab (consider the point q′ in
Figure 4). It therefore remains to consider the case where q lies on the opposite sides of
both lines, which can happen only when these lines meet at a point w to the right of ℓbv,
and when q lies in the wedge W formed at w by the intersection of these two opposite
halfplanes. Refer to q′′ in Figure 4; to conform with the notation in the figure, we refer
to this point as q′′ in the remainder of the argument.
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We claim that in this case the CCW-semicircle of Dau cannot appear on the union
boundary. Indeed, suppose to the contrary that there exists a point p in that semicircle
that lies on the union boundary. By assumption, p has to lie to the right of ℓau, and
outside the triangle q′′bv. Hence, p cannot lie both to the right of ℓab and to the left of
ℓuv.

If p lies to the left of ℓab, then ∠upb > ∠upa = π
2
, so p lies inside Dbu, a contradic-

tion. The symmetric case where p lies to the right of ℓuv is handled similarly. These
contradictions imply that au, av, bu, and bv cannot form a self-intersecting quadrangle.

Next we analyze the remaining case in which au, av, bu, and bv form a non-convex
simple quadrangle.

a

b

v

(b) Case 2.(a) Case 1.

u

a

u

b

p

p

v

Figure 5: The case where au, av, bu, and bv form a non-convex simple quadrilateral.

There are two cases to consider here.

Case 1. One of {a, b}, say b, is not a vertex of the convex hull of {a, b, u, v}. We
assume the situation is as depicted in Figure 5(a). We claim that no point of the CCW-
semicircle of Dbu can appear on the boundary of U , contradicting the fact that bu is a
directed edge in G. To see this, let p be any point on the CCW-semicircle of Dbu. By
definition of H, we have ∠aub 6 π/4 and ∠uab < ∠uav 6 π/4. It thus follows that
∠uba = π − ∠aub − ∠uab > π/2. Since ∠uab 6 π/4 it follows that a lies outside Dbu.
Now if p and b lie on opposite sides of au then ∠upa > ∠upb = π/2 and then p lies inside
Dau. If p and b lie on the same side of au then ∠upa > ∠uba > π/2, again implying that
p lies inside Dau. In either case p cannot appear on ∂U , as claimed, and the resulting
contradiction shows that Case 1 is impossible.

Case 2. One of {u, v}, say v, is not a vertex of the convex hull of {a, b, u, v}. We assume
the situation is as depicted in Figure 5(b). We claim that no point of the CCW-semicircle
of Dav can appear on the boundary of U , contradicting the fact that av is a directed edge
in G. To see this, let p be any point on the CCW-semicircle of Dav.
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By definition of H, we have ∠uav 6 π/4 and ∠auv < ∠aub 6 π/4. It thus follows
that ∠uva = π − ∠uav − ∠auv > π/2. Since ∠auv 6 π/4 it follows that u lies outside
Dav. Now if p and v lie on opposite sides of au then ∠upa > ∠vpa = π/2 and then p
lies inside Dau. If p and v lie on the same side of au then ∠upa > ∠uva > π/2, again
implying that p lies inside Dau. In either case p cannot appear on ∂U , as claimed, and
the resulting contradiction shows that Case 2 is impossible too.

We conclude that the directed graphH does not contain a copy of a directedK2,2. This
is well known to imply (see the theorem of Kővari-Sós-Turán [5]) that H (and therefore G)
can have at most O(n3/2) edges. It follows that D contains at most O(n3/2) essential disks,
and thus its union has complexity O(n3/2), completing the proof of the upper bound in
Theorem 1.

Lower bound. We next show that the complexity of U can be Ω(n4/3) in the worst case.
Informally, the construction consists of the following steps. (i) We take a construction
of n/2 points and n/2 lines in the plane that have Ω(n4/3) incidences between them (see,
e.g., [2]). (ii) We apply a transformation in which each of these lines is bent into a very
flat parabola, and so that all incidences are preserved. (iii) We take a far-away point on
each parabola, and our set is the collection of original points and the new far points on
the parabolas. (iv) For each parabola, we take all the diametral disks, each formed by
an original point lying on the parabola and by the far point representing the parabola.
All the relevant points lie in convex position (on the parabola), and we show that all the
corresponding disks are essential within their own union. (v) Finally, we argue that if
the far points are indeed suffciently far and if the parabolas are sufficiently flat, all the
constructed disks are essential within the overall union. Since we have Ω(n4/3) disks, the
lower bound follows.

In more detail, we construct the following set S of Θ(n) points. One half of the set,
S1, consists of the vertices of the

√
n × √

n integer grid, centered at the origin (for this,
assume, without loss of generality, that

√
n is an odd integer). As shown by Erdős and

others (see, e.g., [2]), there exists a set L of m = Θ(n) distinct lines, each containing
Θ(n1/3) points of S1. By applying an appropriate projective transformation, which only
slightly moves the points of S1, we may assume that no two lines in L are parallel. We
then shrink and rotate the plane, so that S1 is contained in the unit disk around the
origin, and so that no line of L is vertical. All these transformations preserve the Θ(n4/3)
incidences between the points of S1 and the lines of L.

We next take a circle C centered at the origin with a sufficiently large radius r, and
form the set S2 of the intersection points of C with the lines of L. Each line in L intersects
C at two points, but we put in S2 only the point with positive x-coordinate (when r is
sufficiently large there will be exactly one such point).

Lemma 5. For all sufficiently large values of r the following condition holds: For any
pair q1, q2 of distinct points of S2 and for every point p in the unit disk around the origin,
the disk Dpq1 does not intersect the disk of radius 5/r around q2.
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Proof. As no two lines in L are parallel, for sufficiently large r the distance between every
pair of points in S2 can be assumed to be larger than 10.

We need to lower bound the distance from q2 to the center c of Dpq1 . Write p =
(2a, 2b), with a2 + b2 < 1

4
. Assume, without loss of generality, that q1 = (r, 0), and write

q2 = (r cos θ, r sin θ), with θ > 0. We then have c =
(

r
2
+ a, b

)

.
We need a lower bound for ‖cq2‖ − ‖cq1‖. For this we write

‖cq2‖ − ‖cq1‖ =
‖cq2‖2 − ‖cq1‖2
‖cq2‖+ ‖cq1‖

>
‖cq2‖2 − ‖cq1‖2

4r
.

Substituting the above expressions for c, q1, and q2, we obtain

‖cq2‖ − ‖cq1‖ >
1

4r

(

(r(cos θ − 1/2)− a)2 + (r sin θ − b)2 − (r/2− a)2 − b2
)

=
1

4r

(

r2((cos θ−1/2)2 + sin2 θ − 1/4)− 2r(a(cos θ−1/2) + b sin θ − a/2)
)

=
r

4
(1− cos θ) +

1

2
(a(1− cos θ)− b sin θ).

Clearly, when r is sufficiently large, the term 1
2
a(1 − cos θ) is negligible compared with

the leading term, so we can write, say,

‖cq2‖ − ‖cq1‖ >
2r sin2(θ/2)

5
− 1

4
sin θ.

We have assumed that ‖q1q2‖ > 10, so sin(θ/2) = ‖q1q2‖/(2r) > 5/r. In this case the
second term in the above expression is smaller than half the first term, so we have

‖cq2‖ − ‖cq1‖ >
r sin2(θ/2)

5
>

5

r
,

completing the proof.

We now put S := S1 ∪ S2; we have |S| = Θ(n). See Figure 6.
The construction so far is not the end of the story. We next distort S = S1 ∪ S2

by mapping each point p = (x, y) to the point p∗ = (x, y + εx2), where ε > 0 is a
sufficiently small parameter. This turns each line ℓ = {y = aℓx + bℓ} ∈ L into the
parabola ℓ∗ = {y = aℓx + bℓ + εx2}, which is still incident to Θ(n1/3) points of the
perturbed copy S∗

1 of S1. The final step in the construction uses the set S∗ = S∗

1 ∪S∗

2 and
defines the following set D of diametral disks on S∗. For each line ℓ ∈ L we add to D all
diametral disks of the form Dp∗q∗ , where q∗ is the point S∗

2 ∩ ℓ∗ and where p∗ ∈ S∗

1 ∩ ℓ∗.
Clearly, |D| = Θ(n4/3). We claim that all disks in D are essential, which readily implies
the asserted lower bound.

To show that all disks in D are essential, consider a line ℓ ∈ L and its associated
parabola ℓ∗. Let p∗1, . . . , p

∗

k denote the points of S∗

1 on ℓ∗, appearing there in this left-
to-right order, and let q∗ denote the single point of S∗

2 on ℓ∗; see Figure 7. Since all
these points are in convex position, it follows from Lemma 3 that all the disks Dp∗

i
q∗ , for
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C

S1

Figure 6: The (still unperturbed) lower bound construction.

i = 1, . . . , k, are essential within their own union Uq∗ . Moreover, if ε is sufficiently small,
the boundaries of these disks intersect only within the disk D̃q of radius 1/r around q∗

(when ε = 0, all these disks are tangent to each other at q∗ = q). Hence, each of these
disks, except for the largest one, can appear along ∂Uq∗ (and therefore also along ∂U) only
within D̃q. By Lemma 5, these appearances are disjoint from all the disks constructed on
the other points of S∗

2 , and therefore the corresponding disks are all essential in U .
This establishes the lower bound, and thereby completes the proof of Theorem 1. ✷

q∗

p∗1 p∗2 p∗3

p∗4
p∗k

q12

q23

q34

Figure 7: The convex chain p∗1, . . . , p
∗

k, q
∗ lies on a common parabola.

Proof of Theorem 2. Consider next the case where the points of S are in convex
position, and denote by CH(S) their convex hull. As in the general case, we are also given
a set E of unordered pairs of points of S, and a corresponding set D of diametral disks
Dab, for {a, b} ∈ E. As before, we let U denote the union of these disks.

The proof is a variation of a classical result of Füredi [3] on the number of repeated
distances between n points in convex position, which reduces the problem to that of
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bounding the number of 1s in a 0− 1 matrix which does not contain a copy of a certain
2× 3 forbidden submatrix. We apply a different reduction to the very same problem, and
obtain the same upper bound, namely O(n log n), as in [3].

To do so, we construct, as above, a directed geometric graph G on S so that, for each
essential disk Dau ∈ D for which some portion of its CCW-semicircle from a to u appears
on ∂U , we add the directed edge (a, u) to G.

a

u

b

c

v

w

a

u

v

c

w

b

Figure 8: Left: (a, u) is an acute chord. Right: (a, u) is an obtuse chord.

We distinguish between three types of edges (a, u) of G; we refer to them collectively
as chords (of CH(S)):

(i) An acute chord: Every pair of lines ℓa, ℓu that support CH(S) at a and u, respec-
tively, either do not meet at all in the right halfplane of ℓau, or meet there at an
acute angle (the angle at which the intersection point of ℓa and ℓu sees the segment
au). See Figure 8(left).

(ii) An obtuse chord: Every pair of supporting lines ℓa, ℓu, as above, meet in the right
halfplane of ℓau at an obtuse angle (at which their intersection point sees au). See
Figure 8(right).

(iii) A right-angle chord: There exist a pair of supporting lines ℓa, ℓu, as above, that
meet in the right halfplane of ℓau at a right angle. As is easily verified, a chord
which is neither acute nor obtuse must be a right-angle chord.

The number of right-angle chords is O(n), as easily follows by an argument based on rotat-
ing calipers [7]. (As we rotate a right-angle wedge so that it contains CH(S) and touches
it at two points, the right-angle chords are exactly those which connect the appropriately
directed pairs of contact points, and these pairs change only O(n) times.)

To obtain an upper bound on the number of acute and obtuse chords we employ an
argument similar to that used by Füredi [3], which involves forbidden submatrices in a
0− 1 matrix. Specifically, the argument is based on the following lemma.
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Lemma 6 (Füredi [3]). Let A be an n× n 0− 1 matrix which does not contain the 2× 3
submatrix

A0 =

(

1 1 ∗
1 ∗ 1

)

,

where ∗ denotes any value. That is, there do not exist a pair of rows i < j and a triple of
columns k < ℓ < m, such that Aik = Aiℓ = Ajk = Ajm = 1. Then the number of 1s in A
is O(n log n).

Corollary 7. Let G be a directed graph on a set S of n points in convex position in the
plane. If G does not contain five vertices a1, a2, u3, u2, u1, appearing in this counterclock-
wise order along the convex hull of S, such that (a1, u1), (a2, u1), (a1, u2), and (a2, u3) are
all directed edges in G, then G has O(n log n) edges.

Proof. Enumerate the points of S in counterclockwise order along the hull as p1, . . . , pn,
starting at an arbitrary point, and construct two 0 − 1 matrices A(1), A(2), which are
variants of the adjacency matrix of G, where A

(1)
i,j = 1 iff (pi, pj) is an edge of G, and i < j,

and A
(2)
n+1−i,j = 1 iff (pi, pj) is an edge of G, and i > j. Hence, A(1) is an upper triangular

matrix, and the nonzero entries of the matrix A(2) lie above the reflected main diagonal.
The condition imposed on G is easily seen to imply the nonexistence of A0 in A(1), and
symmetric considerations imply that A(2) also does not contain A0 as a submatrix. By
Lemma 6, each of A(1) and A(2) has O(n log n) 1s. Since these matrices record all edges
of G, the corollary follows.

We are now ready to bound the number of acute chords. We consider the subgraph
Ga of G consisting only of the acute chords, and claim that Ga does not contain as a
subgraph the directed graph in the statement of Corollary 7. That is, there do not exist
five vertices a1, a2, u3, u2, u1 of CH(S) in this counterclockwise order along ∂ CH(S), so
that (a1, u1), (a2, u1), (a1, u2), and (a2, u3) are all directed edges in Ga. See Figure 9(left)
for an illustration of this forbidden subgraph.

To prove the claim, assume to the contrary that Ga does contain such a subgraph.
Consider the lines ℓa1a2 and ℓu1u2

, and assume that they meet at a point w that lies to
the right of ℓa1u1

; the analysis is much simpler if they do not meet in the right halfplane
of ℓa1u1

and we handle this case separately below. Arguing as in the proof of the upper
bound in Theorem 1, the existence of the three chords (a1, u1), (a1, u2), and (a2, u1) in
Ga implies that any point q on the CCW-semicircle of Da1u1

which appears on the union
boundary must lie in the wedge W which is the intersection of the right halfplane of ℓa1a2
and the left halfplane of ℓu1u2

(and therefore has w as an apex; see Figure 9(left)). We
claim that the angle at which w sees a1u1 is acute. This in turn will imply that q must
also see a1u1 at an acute angle and thus cannot lie on ∂Da1u1

, contrary to assumption.
To prove that the angle at which w sees a1u1 is acute we make use of the existence

of the fourth acute chord (a2, u3). Take any supporting line ℓa2 to CH(S) at a2 and any
supporting line ℓu3

to CH(S) at u3. Because a1, a2, u3, u2, and u1 are in convex position
in this counterclockwise order on CH(S), it follows that ℓa2 and ℓu3

must meet at a point
z that lies in the wedge opposite to W . By definition, z sees the segment a2u3 at an

the electronic journal of combinatorics 20(2) (2013), #P53 11



W

u1

wq

a1

u1

a2

u2

u3

z

u2

a2

a1

qz

u3

w

Figure 9: Left: An impossible realization of A0 in the acute case. Right: The obtuse case.

acute angle. This implies that z sees the segment a1u1 at an acute angle, which in turn
implies that w sees the segment a1u1 at an acute angle, thereby reaching the desired
contradiction.

To complete the analysis, notice that if ℓa1a2 and ℓu1u2
do not meet in the right halfplane

of ℓa1u1
, then the wedge W does not exist, leaving no place for the point q, and thereby

leading to an immediate contradiction.
Since Ga does not contain the forbidden subgraph of Corollary 7, we conclude that it

has at most O(n log n) edges.
We next consider the case of obtuse chords, and handle it using a “mirror image” of the

preceding argument. Specifically, we now consider the directed subgraph Go of G which
consists only of the obtuse chords, and claim that Go does not contain as a subgraph
the “reflection” of the subgraph in the statement of Corollary 7. That is, there do not
exist five vertices a1, a2, u3, u2, u1 of CH(S) in this clockwise order along ∂ CH(S), so that
(a1, u1), (a2, u1), (a1, u2), and (a2, u3) are all directed edges in Go. See Figure 9(right) for
an illustration of this forbidden subgraph.

Assume to the contrary that Go does contain a copy of the above subgraph. Consider
the lines ℓa2a1 and ℓu2u1

, and assume that they meet at a point w in the right halfplane of
ℓa1u1

(as the analysis will imply, they must indeed meet in this manner). By arguments
similar to those in the proof of the upper bound in Theorem 1, the existence of the three
chords (a1, u1), (a1, u2), and (a2, u1) in Go implies that any point q on the CCW-semicircle
of Da1u1

which appears on the union boundary must lie in the triangle bounded by ℓa1a2 ,
ℓu1u2

, and ℓa1u1
. We claim that the angle at which w sees the segment a1u1 is obtuse,

which in turn will imply that q must also see a1u1 at an obtuse angle and thus cannot lie
on ∂Da1u1

, contrary to assumption.
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To prove that the angle at which w sees a1u1 is obtuse we make use of the existence
of the fourth obtuse chord (a2, u3). Take any supporting line ℓa2 to CH(S) at a2 and
any supporting line ℓu3

to CH(S) at u3. By definition, ℓa2 and ℓu3
meet at a point z,

and ∠a2zu3 is obtuse. Since the points a2, a1, u1, u2, and u3 lie in convex position in that
counterclockwise order on the boundary of CH(S), it follows that w lies in the triangle
bounded by ℓa2 , ℓu3

, and a2u3. We have ∠a1wu1 > ∠a1wu3 = ∠a2wu3 > ∠a2zu3. Hence
∠a1wu1 is obtuse, thereby reaching the desired contradiction. (Note that, as mentioned
above, the analysis does indeed imply that ℓa1a2 and ℓu1u2

meet to the right of ℓa1u1
.)

Again, since Go does not contain the (reflection of the) forbidden subgraph of Corol-
lary 7, we conclude that it has at most O(n log n) edges. Hence G has O(n log n) edges,
and this implies the asserted bound on the number of essential disks in D, and thus also
on the complexity of the union U .

This completes the proof of Theorem 2. ✷

Remark. Note that the proof, in both acute and obtuse cases, actually goes through if
we replace the chord (a2, u3) by a chord (a3, u3), where a3 is any point lying between a2

and u3. That is, we also exclude the existence of the submatrix
(

1 1 ∗

1 ∗ ∗

∗ ∗ 1

)

in both A(1) and

A(2). Unfortunately, this in itself does not imply a better upper bound, as already noted
by Pettie [6], citing previously known constructions.

Discussion. The main contribution of this paper is to show that the maximum possible
complexity of the union of any collection of diametral disks defined over a set of n points
in the plane, is neither quadratic nor linear. Still there is a significant gap between our
lower and upper bounds, and the main obvious open problem is to close this gap. When
the given points are in convex position, the upper bound drops to O(n log n), but we do
not know whether the bound is worst-case tight. Therefore, here too there is a gap to close.
A linear lower bound on the number of essential disks is trivial. Is there a superlinear
construction?

If, instead of requiring the disks in D to be diametral, we only insist that every disk
in D pass through a (distinct) pair of points of S, the number of essential disks might be
quadratic in the worst case. To see this, take S to be a set of n points in general position
in a unit disk, and let γ be a concentric circle with generic radius larger than 2. For
each pair a, b of distinct points in S, draw a disk Dab which passes through a and b and
is tangent to γ (from the inside). The general position of S and a generic choice of the
radius of γ ensure that all the points of tangency between these disks and γ, which clearly
lie on the boundary of the union of the disks, are distinct, so all the disks are essential.

Hence, some restriction must be imposed on the disks of D to obtain subquadratic
behavior. Does the union complexity remain subquadratic when (a) in each disk Dab the
chord ab has the same central angle, or when (b) these central angles are bounded away
from 0 (by an angle independent of n) or sufficiently close to π?

More ambitiously, does our upper bound continue to hold when one replaces disks by
homothetic copies of some fixed convex shape K? Here one might define, for a given pair
of points a, b, the corresponding diametral copy Kab of K to be the smallest homothetic
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copy of K that contains both a and b. What is the complexity of the union of any subset
of diametral copies of K determined by pairs of points from a set of n points in the plane?

The motivation for studying the problem of the union of diametral disks came from
a recent study of a subset of the authors [1] on witness Gabriel graphs. Specifically, a
(negative) witness Gabriel graph for a pair of point sets P and Q in the plane is the
geometric graph with vertex set P , where p, p′ ∈ P are connected by an edge if the
diametral disk Dpp′ contains no points of Q. We were considering the problem of testing
whether a given geometric graph G, on a given vertex set P and a given witness set Q,
is indeed a witness Gabriel graph. For this one needs to verify that the union of the
diametral disks corresponding to the edges of G does not contain any point of Q. A
natural question that then arises is to obtain bounds on the complexity of such a union,
which is what we have done in this paper.

We note that applying the (upper) bounds that we have derived in the context of
witness Gabriel graphs requires some care. Two issues arise: (a) The size of G may be
large, so unless it is encoded in some compact form, the bound on the union complexity
may not lead to a comparably efficient algorithm. (b) One also needs to tackle the
complementary problem, of verifying that each disk corresponding to a non-edge of G
contains a point of Q.
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