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Abstract

We compute an asymptotic estimate of a lower bound of the number of k-convex
polyominoes of semiperimeter p. This approximation can be written as µ(k)p4p

where µ(k) is a rational fraction of k which up to µ(k) is the asymptotics of convex
polyominoes.

A polyomino is a connected set of unit square cells drawn in the plane Z × Z [7].
The size of a polyomino is the number of its cells. A central problem, which proved to
be difficult, is to find exactly or even asymptotically A(n), the number a polyominoes of
size n. Klarner proves that limn→∞

n
√
A(n) exists and is upper bounded by 4.64 [8]. The

lower bound was recently improved up to 3.98 [1].
In order to approximate the number of polyominoes, subclasses have been introduced,

one of them being convex polyominoes. A horizontal, resp. vertical, convex polyomino
is a polyomino for which each row, resp. column, is convex. Figure 1 gives an example
of horizontal but not vertical convex polyomino and of a horizontal and vertical convex
polyomino called convex polyomino. Bender gives an asymptotic estimate fr−n of the
number of convex polyominoes with n cells, f and r being numerical constants [2].

Convex polyominoes are often considered according to number of rows and columns,
called semiperimeter. Delest and Viennot [5] prove that the number of convex polyominoes
of semiperimeter p+ 4 is fp+4 = (2p+ 11)4p − 4(2p+ 1)

(
2p
p

)
∼ 2p4p.

In [3], Castiglione and Restivo observe that in a convex polyomino each pair of cells
can be joined by a monotone path (monotone means that it contains only two kinds of
steps, e.g. East (1, 0) and North (0, 1) or East and South (0,−1)). The minimal number
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Figure 1: a horizontal (but not vertical) convex polyomino and a convex polyomino

k of turns in the monotone paths linking two cells gives rise to a parameter which we call
the complexity, and is the basis of how we shall classify polyominoes here. A polyomino
is called k-convex if every pair of cells can be connected with a path of complexity at
most k and there exists a path of complexity k linking two cells. Examples of k-convex
(k = 0, 1, 2) polyominoes are given in Figure 2.

1-convex polyominoes are also called L-convex [3], 2-convex polyominoes are also de-
noted Z-convex. The generating function for L-convex polyominoes where the variable
t marks semiperimeter is given by G(t) = 1−2t+t2

1−4t+2t2
[4]. Z-convex polyominoes have been

recently studied by Duchi, Rinaldi and Schaeffer [6] who compute the rational generating
function and provide an asymptotics in p

24
4p when the semiperimeter is p+ 2.

In this article we provide a lower bound for the number of k-convex polyominoes for
any k and show that the asymptotics is also µ(k)p4p. The key idea in this article is to
transform a random walk into a set of polyominoes. Random walks are chosen with small
deviation. Thus the boundary of the obtained polyominoes is delimited by two rectangles
and we show that in that case, the polyominoes are k-convex. The first section gives basic
definitions and first results on random walks with small deviations and polyominoes. In
the second section, we describe the algorithm that tranform one random walk into a set
of bounded polyominoes and prove its correctness. Finally, in the last section, we give
the asymptotic number of a lower bound of k-convex polyominoes.

1 Small deviation random walks and polyominoes

1.1 Random walks

A random walk of size n is a sequence of n steps in the plane chosen uniformly at random
between (0, 1), called n step, and (1, 0), called e step. Figure 3 illustrates the parameter
called the deviation of a walk. This is the maximal distance between the walk and the
first diagonal. Here we consider only those walks with deviation smaller that c

√
n. This

restriction is justified by the following proposition, which is a direct consequence of the
central limit theorem:

Proposition 1. The number of random walks of size n with deviation less than c
√
n is

asymptotically λ2n where λ = λ(c).
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Figure 2: A 0,1,2-convex polyomino

deviation

Figure 3: A random walk of size 46

1.2 k-convex polyominoes

They are several paths that join two selected cells. Among the paths of minimal com-
plexity we can choose a canonical one as stated in the following lemma.

Lemma 1 (Canonical path of minimal complexity). For each pair of points P,Q with
complexity h, there exists a path joining P and Q with h turns such that each turn (except
perhaps the last one) lies on the border of the polyomino.

Proof. Let w = u1u2 . . . uh+2 be a path joining u1 = P and uh+2 = Q. Let i > 2 be the
smallest integer such that ui does not belong to the border. If i = h+ 1 then the Lemma
is verified. Otherwise, the idea is to shift the point ui by 1 along the segment [ui−1, ui] as
shown in Figure 4. Three cases could occur:

• (i) The new path has the same number of turns and point ui is closer to the border
of the polyomino by 1 unit.

• (ii) The new path has h− 1 turns, at points u2, . . . , uh, which contradicts the fact
that P and Q are at distance h.

• (iii) The new path has h − 1 turns, at points u2, . . . , ui, ui+2, . . . , uh+1, since point
ui+1 is not a turn anymore which contradicts the fact that P and Q are at distance
h.

Thus, only the first case (i) occurs and repeating the shift, we obtain a new path where
ui is on the border. u2, . . . , ui−1 have not been moved and thus lie on the border.

Moreover it is straightforward that only pairs of points on the boundary of the poly-
omino must be taken into account when computing the convexity. More precisely, Figure
2 displays four special points on the boundary which play a key role, the north point N
(resp. W,S and E) being the first northern cell of the polyomino preceded by a lower
one, encountered by a counterclockwise walk around it.
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Figure 4: Cases (i), (ii), (iii) for a path joining P and Q
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Figure 5: Definition of k-bounded polyominoes (k = 4)

1.3 k-bounded polyominoes

Typically, the shape of random k-convex polyominoes resembles a rectangle rotated by
π/4, such that the ratio of height to length is a function of k. We introduce a subclass of
k-convex polyominoes that we call k-bounded polyominoes. More precisely, a k-bounded
polyomino is a convex polyomino whose boundary is at a small distance from such a
rectangle.

Formally, there exists l > 0 such that the boundary lies within a rectangular strip of
width α = l

4k
delimited by two rectangles, a L × l one with L = (k − 1)l + l

2k
, and a

smaller one at distance α (see Figure 5).
The values have been chosen such that the plain, resp. dashed, line which represents

the monotone path linking extremal cells (N/S or E/W if k is even and N/E or S/W if
k is odd) of the outer, resp. inner, rectangle has k turns. Indeed, the choice of L, l is
such that every polyomino that is k-bounded, is also k-convex as stated in the following
theorem:

Theorem 1. A k-bounded polyomino is k-convex.
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Figure 6: End of the internal/external paths

Proof. By definition of k-convexity, the complexity of every path linking a pair of points
in the polyomino must be less than k and at least one pair must be of complexity k.

To ensure the k-convexity for every k-bounded polyomino, it is enough to check this
result for some specific paths. Similarly to the definition of point N of a polyomino, we
denote by N0, resp. N1, the northest point of the outer, resp. inner, rectangle, the same
goes for the other directions S,E,W (Figure 6 displays point S0 and S1).

We call external (resp. internal) path, the monotone path linking extremal points of
the outer L× l (resp. inner (L− 2α)× (l− 2α)) rectangle (Figure 5 displays the external,
resp. internal, path in plain, resp. dashed, line).

Remark that the external (resp. internal) path linking N0 (resp. N1) to S0 (resp. S1)
has an even number of turns whereas the external (resp. internal) path linking N0 (resp.
N1) to E0 (resp. E1) has an odd number of turns. In the following, we will consider an
even k, meaning that we will work with the extremal path linking N0 (resp. N1) to S0

(resp. S1), but the same holds for an odd k, considering then the extremal path linking
N0 (resp. N1) to E0 (resp. E1).

L = (k − 1)l + 2α ensures that the external path ends up as shown in Figure 6, thus
has complexity k, i.e. the complexity of the monotone path linking any point on segment
[N0N1] and any point on segment [S0S1] is at least k. Thus, k-bounded polyominoes are
at least k-convex.

The complexity of the internal path between N1 and S1 is at least the same as the
complexity of the external one, but it can be greater. Figure 6 illustrates the increase
by α
√

2 in the distance between the internal and external path at each turn. Thus, after
k−1 turns the distance between them is (k−1)α

√
2. But this distance is also constrained

by the fact that the internal path must not reach point S1 in more than k turns. This
implies that (see Figure 6):

(k − 1)
√

2α + (
√

2α + 1) 6
√

2(l − 2α)

A simple calculation shows that α 6 l−1/
√
2

k+2
is required.
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Figure 7: Paths with k turns in a k-convex polyomino.

In order to obtain k-convexity, we determine the value of α such that the complexity
of the monotone path linking any pair of points (A,B) is at most k. We call a segment
the border of a polyomino between two specified points A and B, turning clockwise from
A to B. For k > 2, we can restrict positions of A (resp. B) to be on the segment WN
(resp. segment ES).

The first step of any path from A to B goes from A to A′, which belongs to one of
the extremal paths, and follows it as shown in Figure 7 until reaching B′ (which is the

point on the (k − 1)th segment of the internal path at the same ordinate than B) and
then goes to B. This path has exactly k turns. Each internal path, the one linking N1 to
S1 and the one linking W1 to E1, allows to reach a part of the segment ES. To cover all
this segment, the two parts must intersect. This situation occurs when the internal path
starting from N1 (resp. W1) ends on segment E1S1 on the half part containing S1 (resp.
E1). It gives the following inequalities :

L+ l − 2α− k(l − 2α) 6 l
2

(
resp. k(l − 2α) > L− 2α +

l

2

)
⇔ ((k − 1)l + 2α) + l − 2α− k(l − 2α) 6 l

2

⇔ α 6 l
4k

Thus α = l
4k

refines the previous value if l > 1 and k > 2.

2 An algorithm deriving a set of k-bounded polyomi-

noes from a random walk

2.1 Description of the algorithm

Let w = w1w2 . . . w2p−6 be a random walk made of an odd number of East steps (e) and
an odd number of North steps (n). We give an algorithm to transform this walk into a set
Sw of k-convex polyominoes of perimeter 2p. The proof of the correctness of our algorithm
will be given in the next section. In this algorithm, we cut the path into different pieces
and apply reflections on each piece. For example, ←−wi is the symmetry along the vertical
axis and can be seen as the transformation of e (resp. w) step into w (resp. e) step.
Similarly, �wi is the reflection along the horizontal axis (exchange of n and s steps).
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Algorithm 1: Function BendWalk

input : w = w1w2 . . . w2p−6 a random path made of North and East steps,
i ∈ {1 . . . 2p− 6}

output: A convex polyomino w′ of perimeter 2p
1 Let j maximal such that |w1, w2, . . . , wj−1|n = |wj, wj+1, . . . , w2p−6|n + 1;
2 Let k maximal such that
|w1, w2, . . . , wi−1|e + |wk, wk+2, . . . , w2p−6|e = |wi, wi+1, . . . , wk−1|e + 1;

3 w′ ← ew1w2 . . . wi−1 nw
←−wi . . .←−−wj−1w �

←−wj . . . �←−−wk−1s �wk . . . �w2p−6s;

Algorithm 2: Function Polyominoes

input : c ∈ [0, 1], w = w1w2 . . . w2p−6 a path with deviation less than c
√
p, k the

expected convexity
output: Ew a set of k-convex polyominoes of perimeter 2p

1 α← p
4k2+2

, l← 4kα;

2 foreach i in [
√

2(l − α− α
6
),
√

2(l − α + α
6
)] do BendWalk(w,i);

2.2 Correctness

The correctness of the algorithm is done in two steps. First, we prove that it outputs a set
of polyominoes. Then, we prove that those polyominoes are asymptotically k-bounded,
hence k-convex by Theorem 1.

Notice first that the obtained geometric shape is closed. This is a direct consequence
of the form of w′ in step 3 of function BendWalk and the conditions described in step
1 and 2. Moreover it is a polyomino as w′ is a closed self-avoiding walk in the plane.
Recalling that w′ ← sew1w2 . . . wi−1 nw

←−wi . . .←−−wj−1w �
←−wj . . . �←−−wk−1s �wk . . . �w2p−6, this

defines four different segments, the first one beeing made of e and n steps, the next ones
consisting in n and w steps, then w and s steps and finally s and e steps. For the
path to intersect itself, the only possibilities are in each change of directions or between
two opposite segments. The first possibility is forbidden by the insertion of some steps
between each segment (printed in bold face). The second possibility cannot happen since
the initial walk has a deviation bounded by c

√
p, which is less than half the distance

(recall l = O(p)) between opposite segments.
The second step is to prove that the obtained polyominoes are asymptotically k-

bounded. In fact, we can prove this result for all output polyominoes, nevertheless, we
only need an asymptotic behaviour which is easier to prove.

We consider the strip S of width α and outer rectangle of size L × l where L =
(k − 1) + l

2k
. The starting point of our polyomino is S, the south point. Notice first that

if ŵ is the alternating path (ne)+ and i = l − α, the obtained polyomino is the closest
to the median rectangle. Since the path has small deviation, this implies the following
statistics on :

• the number n of steps between the south point, i.e. the origin, and each corner,

• the difference d between the number of n and e steps at the same points,
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n 0 i ∈ [l − α± α

6
] j ∈ [p±O(

√
p)] k ∈ [p+ i±O(

√
p)]

|d| 0 6 c
√
i O(

√
p) O(

√
p)

For example, the point N separates the path into two parts, the first one having one
more north step than the second one. Since the deviation is bounded by c

√
p, w1 . . . wp

contains nearly half of the north steps. This implies the result for j and for d. The same
argument holds for point W .

Considering the alternating path ŵ and a given i, it is straightforward to prove that
the obtained polyomino P (ŵ, i) stays within the strip and moreover the distance between
this polyomino and the border of the strip is bounded by α

6
. To conclude our proof, given

another path and a value i, the distance between the obtained polyomino and P (ŵ, i)
is bounded by the sum of all possible deviations at each corner that is O(

√
p). Since

α = O(p), the polyomino lies asymptotically in the strip.

Theorem 2. Algorithm BendWalk defines an injection between the set of random walks
with a distinguished step and the set of convex polyominoes.

Proof. In fact, given the output polyomino by function BendWalk(w, i), it is straightfor-
ward to recover the arguments w and i. To do so, notice that the added steps in the
algorithm can be deduced from the points E,N,W, S of the polyomino.

2.3 Enumeration of k-bounded polyominoes

As shown in Section 2.2, Algorithm BendWalk outputs a subset of k-bounded polyominoes.
Hence we have:

Theorem 3. The number of k-bounded, hence k-convex, polyominoes is asymptotically at
least µ p

k2
4p, where µ is a constant. Furthermore, the number of k-convex polyominoes is

asymptotically O(p4p).

Proof. By Theorem 2, function BendWalk is injective and outputs one polyomino. The
number of calls for a given walk w is exactly

√
2α
3
. The number of possible walks of length

2p− 6 with deviation bounded by c
√
p is λ(c)22p−6 by central-limit theorem. Taking the

expression of α in p, the number of k-bounded polyominoes is asymptotically at least
µ p
k2

4p.

3 Conclusion

The result provided is an asymptotic estimate of a lower bound of the number of k-convex
polyominoes. The estimate is O(p4p) for every value of k. A more precise result including
the function µ(k) would be relevant but unfortunately our approach cannot approximate
the correlation with k.

Nevertheless, the two graphs below seem to point out that k-convex polyominoes of
semiperimeter p have an asymtotics in O( 1

k2
(p− 4)4p−4).
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The following figures depict experimental results obtained by uniform sampling of
convex polyominoes of semiperimeter p = 302. For each polyomino we compute its
k-convexity and in the first diagram we draw the first ratios Pk/Pk+1 between two con-
secutive numbers of k-convex polyominoes. The plot seems to have a finite limit when k
increases. The second diagram plots F (k) the number of k-convex polyominoes divided
by (p−4)4p−4 with respect to k. It seems to show that the asymptotic number of k-convex
polyominoes is also in O( 1

k2
).
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Figure 8: Experimental results on the asymptotic number of k-convex polyominoes
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