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Abstract

In 1964, Erdés proved that for any o« > 0, an [-uniform hypergraph G with n >
no(a, 1) vertices and 04(7) edges contains a large complete [-equipartite subgraph. This
implies that any sufficiently large G with density o > 0 contains a large subgraph with
density at least 1!/1%.

In this note we study a similar problem for [-uniform hypergraphs ) with a weak
quasi-random property (i.e. with edges uniformly distributed over the sufficiently large
subsets of vertices). We prove that any sufficiently large quasi-random [-uniform hy-
pergraph ) with density « > 0 contains a large subgraph with density at least ZE’_‘llj'l
In particular, for [ = 3, any sufficiently large such @) contains a large subgraph with
density at least i which is the best possible lower bound.

We define jumps for quasi-random sequences of I-graphs and our result implies that

(-1 . . . _
every number between 0 and ;—=—5 is a jump for quasi-random [-graphs. For [ = 3
this interval can be improved based on a recent result of Glebov, Kril’ and Volec. We
prove that every number between [0, 0.3192) is a jump for quasi-random 3-graphs.
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1 Introduction

For fixed | > 2, an l-graph G = (V, E) is an [-uniform hypergraph with vertex set V' and
edge set £ C (‘l/), or a subset of the [-tuples of V. For K C V and |K| = k, we denote the
l-subgraph of G induced by K as G|K] = (K, EN (Il()) The density of such an [-graph G is
defined by d(G) = |E|/("V]).

Let G = {G,}22, be a sequence of I-graphs with G,, = (V,,, E,,) such that |V,,| — oo as
n — o0o. We define the density d(G) of a sequence G as d(G) = lim,_,o, d(G,) (if the limit
exists). We will consider only graph sequences for which the limit d(G,,) exists as n — 0.

Setting
01(G) = max max d(G,[K]),

n KE(‘;?)

a simple averaging argument yields that {oe(9)}2,isa non-increasing non-negative sequence
and so the limit d(G) = klim 01(G) exists. We call this limit d(G) the upper density of G.
—00

The result we present in this note are motivated by a theorem of Erdés from [2]:

Theorem 1.1. For every e > 0,1 > 2 and t, there exists n such that any [-graph with n
vertices and en' edges contains a complete l-partite I-graph Kt(ft) """" . Consequently, for any

sequence G of l-graphs with d(G) > 0, d(G) > 1!/I\.
In this note we are interested in a similar problem if we restrict to quasi-random [-graphs.

Definition 1.2. Given € > 0 and «a > 0, we define an («, €)-quasi-random hypergraph to
be an [-graph @ = (V, E) with the property that for all W C V| d(Q[W]) = «(1 £ ¢) for
|[W| > en where |V| = n. A sequence Q = {Q,}5, of («,¢,)-quasi-random [-graphs is
quasi-random if €, is decreasing and €, — 0 as n — oo.

Note that for [ = 2 quasi-random graphs must contain arbitrarily large cliques as €, — 0
and thus any quasi-random sequence of 2-graphs with d(Q) > 0 necessarily satisfies d(Q) = 1.
In this note we prove a related result for [ > 3:

Theorem 1.3. For a sequence Q of quasi-random l-graphs with d(Q) > 0,
(i) d(Q) > {5 and
(i4) when | = 3 there exists a quasi-random sequence of 3-graphs with d(Q) = }1.
For [ > 3, however, we do not know if E(Q) > % could not be replaced by a larger
number. Our results for [ = 3 are shown in the Section 2.1 and a similar construction may
be applied to generalize the result for all [-graphs, proving Theorem 1.3(1).

A number « is a jump if there exists a constant ¢ = c(a) such that given any sequence
of l-graphs G = {G,}>2, if d(G) > «, then d(G) > a + c. It follows from the Erdés-Stone

Theorem that all non-negative numbers less than 1 are jumps for graphs and it follows
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from Theorem 1.1 that all non-negative numbers less than f—; are jumps for [-graphs. Erdos
conjectured that, analogous to graphs, all numbers less than 1 are jumps for [-graphs as
well. This conjecture was disproved by Frankl and Rodl in [5] who showed that there are an
infinite number of non-jumps for all [ > 3. However, these non-jumps were found to occur
at relatively large densities. While the smallest case of determining whether f—; is a jump is
still open and likely a difficult problem, our result shows that under the further assumption
of quasi-randomness that f—l' is indeed a jump for all [ > 3.

We extend the concept of jumps to sequences of quasi-random [-graphs:

Definition 1.4. A number « is a jump for quasi-random I-graphs if there exists a constant
¢ = c(a) such that given any sequence of quasi-random [l-graphs G = {G,.};2, if d(G) > a,
then d(G) > a + c.

Theorem 1.3(7) implies that every number between 0 and lgl,_% is a jump for quasi-

random [-graphs. Further we will show that for [ = 3 this interval can be improved from
[0, %) to [0,0.3192) given the following question of Erdds [3] is answered positively:

Question 1.5. Let ¢ > 0 and Q = {Q,}2, be a quasi-random sequence of 3-graphs. If
d(Q) = 1 + ¢, then does each Q,, contain Kf) —easn — oo?

More formally, we prove in Section 3:

Theorem 1.6. A positive answer to Question 1.5 implies that any quasi-random sequence
Q with d(Q) > 1 satisfies d(Q) > 0.3192.

Very recently, Glebov, Kral’ and Volec in [6] proved Question 1.5 in the positive using
Razborov’s flag-algebra method [10]. This result confirms our assertion in Theorem 1.6.

We include our remarks and questions for future study for quasi-random [-graphs with
[ > 3 and other possibilites for jumps for quasi-random 3-graphs in Section 4.

2 Proof of Theorem 1.3

2.1 The lower bound
Our proof is based on the following lemma proved in [1] and [9]:

Lemma 2.1. For all a > 0 and ¢ > 0, there exists 6 > 0, m > 0 and ng > 0 such that
if @ = (V,E) is an («,d)-quasi-random l-graph with |V| = n = ng vertices then Q[M] is
(v, €)-quasi-random for at least %(:1) m-sets M € (Z)

Going forward in this subsection, we restrict to [ = 3 for simplicity. Essentially the same
statements may be applied to general [-graphs.

Given a 3-graph F', @ > 0 and € > 0, we write (o,e) — F to denote the fact that

every («, €)-quasi-random 3-graph R contains F. Let F' and H be 3-graphs. For F'; H, and
v € V(F), we define F}; to be the 3-graph as follows:

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P59 3



(i) V(Fy)=V(F)UV(H) — v and

(i) E(Fy) =E(F —v)UEH)U | {{a,bu}: {a,b,v} € E(F)}
ueV (H)

In other words, to obtain F}; from F', replace v with V(H) and add all the edges in H as
well as the edges of type {a, b, u} where u € V(H) and {a,b,v} € E(F). In this construction
we will assume that F' and H are vertex disjoint and thus |V (Fy)| = |V(F)| + |V(H)| — 1
and |E(Fg)| = |[E(F)| + |[E(H)| +|V(H) = 1[[{e € E(F),v € e}|.

Using the notation stated above, we observe the following:

Lemma 2.2. Foralla >0, € >0,y > 0 and 3-graphs F and H, there ezists 6 = d(a, €,7y) >
0 such that if (a,€) — F and (a,y) — H, then (a,d) — F}.

Proof. Let |V(F)| = f and let v € V(F). Given o > 0 and € > 0 such that (a,e) — F,
let 6r21) and m = m(a, €) be the constants ensured by Lemma 2.1. Consider an (o, 9)-
quasi-random hypergraph @ on n vertices. Set ¢ < min (d2.1), 507). We want to show
that  must contain F};. By Lemma 2.1, R = Q[M] is («, €)-quasi-random for at least
1(™) M’s. By assumption ((o,e) — F) each such (a,€)-quasi-random Q[M] contains a
copy of F. Consequently, the number of Q[M]’s with each containing a copy of F is at
least %(::1) On the other hand, each copy of F' is in at most (:;_’;) different Q[M]’s. Thus,
we have at least 1(")/ (:1__]}) = % > 2(2)/ = cn/ distinct copies of F in @, where
¢ =c(m(ae), f) = 57 Set V(F) = {ug, ug, ..., us_1,v} and let F°PY = F* be a copy of F
in @ with V(F°) = {uf,us, ..., u_y,v°} so that u; — uf fori =1,2,..., f =1 and v — v°
is an isomorphism.

For each of the cn/ copies F¢ of F, consider an ordered (f — 1)-tuple (u§,us, ... S UG ).
Since the total number of (f — 1)-tuples of vertices of @) is bounded by n(n — 1)...(n —
(f = 1)) < n/~! we infer that there exists an (f — 1)-tuple of vertices uy, Uy, ..., us_1 of
Q contained in cnf/n/~! ~ cn copies F¢ of F. Consider a set S, |S| = cn = -5, of
vertices U each of which together with @, us,...,%s_ induces a copy £ of F'. Due to the
(v, §)-quasi-randomness of ) and the fact that § < 5755 = ¢y, Q[S] is (o, 7)-quasi-random
and, therefore, due to the assumption of Lemma 2.2, contains a copy of H with vertex set
V(H) = {v1,..., vy} Since each v; (1 <14 < |V(H)|) together with @y, Uy, ..., Us_1 span
a copy F° of F, we infer that {uy, s, ..., Us_1,v1,..., vy} spans a copy of Fj;. Thus,
(v, 0) — F. O

Before we prove Theorem 1.3(i) for [ = 3, we construct an auxilliary sequence of 3-
graphs G = {G;}°, with density tending to ;. We will then show that G; is in @, for n
large enough. Let GGy be a 3-graph with three vertices and one edge. For i > 1, let G; be
the 3-graph obtained by taking 3 vertex disjoint copies of (G;_;, and adding all edges with

exactly one vertex in each copy. For instance, G5 has 9 vertices and 3 + 3% = 30 edges.
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b)

Lemma 2.2 Lemma 2.2
Gy Gi Gy
F=G, F' = Fg F'=F} F'" = Fle = Gy

Figure 1: Three applications of Lemma 2.2 prove Claim 2.3

Since [V(Gy)| = 3|V/(Gi_1)| = 3 and |E(G)| = |V(Gi_y) [P + 3| E(Gyy)| = 33D (141 +

L) = Si_lw, the density of G; as i — oo is

3i—l (8" -1)(3'41) 1 32 +1 1
zlgglo d(G:) zliglo ) Zlgglo 4 (31' - 2) 4
3
Consider an arbitrary sequence of (a,d,)-quasi-random 3-graphs Q = {Q,}>°, with

d(Qn) = a(l £4,) > 0 where §,, € (0,1), 0, is decreasing and 6, — 0 as n — oco. We will
show that there exists n; < ny < ng < ... such that for n > n;, Q),, contains G;. Based on
1

our density calculation of G; above, d(Q) > 1.

Since @,, contains GG; whenever §,, < «, it remains to show the following claim by induc-
tion on i:

Claim 2.3. Assuming («,0,,) — G, there exists nj11 such that (o, 6p,.,) — Git1

) Ynig

Proof. Our goal is to find n;y; so that («,d,) — G,y for all n > n; . This will be achieved
in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F”,
F" F" with G; C F' C F”" C F" = G;y; and n/, n”, n" with n; <n’ <n” <n” =n;,
such that

(a,8,) — F9 for all n > n® (*)

Set V(G1) = {a,b,c}, H=G;, and v = ¢,,,. Below we will describe appropriate choices
of F, ¢ and v to obtain graphs F®), i = 1,2, 3 satisfying (*).

a) Set ' = Gy, e = §; and v = a. Since (a,6;) — G; and (a, d,,) — G;, by Lemma 2.2
there exists 0’ = 6(a, d1, dy,) such that (a,d") — F§..

b) Set F' = F§ , e = ¢ and v = b. Since (a,0") — F' and (o, 6,,) — Gy, by Lemma 2.2
there exists 6" = §(a, &', d,,) such that (o, 0") — F{.

c) Set F" = ngi, e =¢" and v = ¢. Since («,0"”) — F” and («a,d,,) — G;, by Lemma 2.2

there exists 0" = d(a, 0", dy,) such that (o, 6") — F(°.

Observe that " = Fg¢ = Giyq. Consequently (a,d,) — Gy for all n with 4, < 0" O
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In a similar way to Claim 2.3 one can show a slightly more general fact stated below as
Proposition 2.5. First we define the lexicographic product of two 3-graphs:

Definition 2.4. The lexicographic product of two 3-graphs F' and H with vertex set U and W
respectively is a 3-graph F'- H with vertex set U x W and with {(uy, w), (u2, ws), (ug, w3)} €
E(F-H)if {uy,us,us} € E(F) or if u; = uy = ug and {wy, we, w3} € E(H).

Proposition 2.5. For all o > 0, € > 0, v > 0 and 3-graphs F and H there exists § =
d(a,€,7) > 0 such that (a,€) — F and (o, y) — F implies (a,0) — F - H.

2.2 The upper bound for [=3

It remains to show there exists a sequence of quasi-random 3-graphs with upper density %.

Proof. Consider a random tournament 7, on n vertices in which pairs are assigned arc
direction with probability 1. Let R, be a 3-graph with V(R,) = V(T,,) and E(R,,) consisting
of vertex sets of all directed 3-cycles (this 3-graph was first considered by Erdés and Hajnal
in [4] in the context of Ramsey theory).

It is well known (see [3]) that R, is (%, d,)-quasi-random with 6, — 0 as n — oo. On the
other hand it follows from the well known result of Kendall and Babington Smith [7] that
any tournament on n vertices has at most 5;(n® — n) directed 3-cycles (cf. [8]) and so no
subgraph of any R,, has density larger than %+ 0(1). Thus the upper density of the sequence
R = {R,}22, is at most 1 + o(1) establishing (4i) of Theorem 1.3. O

3 Proof of Theorem 1.6

For [ = 3, Theorem 1.3(7) implies that every number in [0, %) is a jump for quasi-random

3-graphs. In this section, we prove that % is a jump as well and, more precisely, any number
in [i, 0.3192) is a jump for quasi-random 3-graphs given Question 1.5 is answered positively.
To this end, we use a recent result of Glebov, Kral’ and Volec who in [6] confirmed Question
1.5 using a computer aided proof based on Razborov’s flag-algebra method [10].

Proof. Given a sequence of quasi-random 3-graphs Q = {Q,,}>° , with d(Q) > 1, any Q, with
n > ny contains K. f') —e by [6]. In a way similar to the proof of Theorem 1.3(7) we will first
construct a sequence of 3-graphs F = {F,,}>°, such that F,, C @, and lim,_, d(F,) = 13—0.
Subsequently we will alter it to a sequence of 3-graphs G = {G,,}°°; in which lim,,_,, d(G,,) ~
0.3192.

Let Fy = Kf) — e with V(F) = {a1,a2,a3,b} and E(Fy) = {{a1,a9,b},{a1,as, b},
{as,a3,b}}. Let A; (1 <i < 3) and B be copies of K\* — . We obtain F, by taking four
vertex disjoint copies of F}, with vertex set A;, 1 < i < 3, and B and adding edges of type
{a;,a;,b} where a; € A;,a; € A;,b € B,1 < i < j < 3. Note that |V(Fy)| = 4% = 16
and |E(Fy)| = 3(4) + 43(3). In other words Fy, = Fy - F} is the lexicographic product of
two copies of F;. We continue in this fashion to construct the sequence F. For ¢ > 1,
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let F; = Fy - F;_; be the 3-graph obtained by taking four vertex disjoint copies of F;_q,
and adding edges in a similar way as described above. Since |V (F})| = 4|V (F;_;| = 4" and
|E(F)| = 3|V(Fio1) |+ 4| E(Fioy)| = 3-47 (1 4+ 42+ ... +420-D) = £2(16 — 1), the density
of F; as ¢ — oo 18

4171 :
—(16" —1 3
lim d(F;) = lim # ==

In a similar way as in the proof of Theorem 1.3(i), one can show that for all i there
exists n such that F; is contained in @),,. Thus, every number between 0 and = is a jump
for quasi-random 3-graphs.

One can improve 1—0 to 0.3192 by considering conveniently chosen “blow ups” of Fj.
We will describe this in more detail now. Setting V(F;) = {1,2,...,v;}, we first observe
(similarly as in Lemma 2.2) that for each i, there exists an n; so that 3-graphs Q,, n > n;,
contain ¢;|V(Q,)|" copies of F;. Hence by Theorem 1.1, @,, contains a t-blowup Fj * t of
F;, more precisely, a graph with vertex set (J;2, Wj, [Wi| = -+ = [W,,| =t and {a,b,c} €
E(F; xt) if {a,b,c} € E(F;). In order to maximize the density, we consider graphs F; with
different vertices “blown up” to sets of different cardinalities.

More precisely, set a = 2(4v/6 — 9) &~ 0.2154 and to each vertex T = (z1,...,z;) € V(F})
assign a weight w(Z) = (1 — 3a)’a’™7 where j represents the number of b’s among entries
of T and for t large consider a blow-up G; of F; with each vertex T “blown-up” by w(T) * ¢
vertices. Using this iterated construction, one can calculate that every number between 0
and 15(9 — 2v/6) ~ 0.3192, where =9 - 2\/_) = lim; . d(G;), is a jump for quasi-random
3-graphs. O

4 Other remarks and questions

In Section 2.2 we considered R = {R,}32,, a sequence of quasi-random 3-graphs formed

by random tournaments 7},, and observed that d(R) = d(R) = 1. There are other quasi-

random sequences of 3-graphs with density equal to upper density. Consider the quasi-
random sequences Q = {@,}°°; described in [11]: Let x be a random (k — 1)-coloring of
pairs of {1,...,n} and define the edges of @,, to be all trlples {i,u,v} such that x({i,u}) #

x({i,v}). It can be shown that d(Q) = d(Q) = 1 — 5. In summary, if o € {3, 1 2.},

then there is a sequence of quasi-random B—graphs with d(Q) = d(Q). Are there any others?

We proved that a sequence of quasi-random I-graphs Q with d(Q) > 0 has d(Q) > %
In particular, we showed that this bound is the best possible when | = 3. For [ = 4, it is not

clear to the authors if there exists a quasi-random sequence of 4-graphs with upper density
3 2
FEEETE

Theorem 1.3(7) implies that every quasi-random sequence of [-graphs with positive den-

sity has upper density at least p= 11)1. For [ = 3 this is the best possible, but we were
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unable to show an analogous fact for [ > 3. One can observe that LD cannot be replaced

[
by a number larger than % In order to see this, consider the quasi-random sequence

Q = {Q,}5°, with vertex set V(Q,) = {1,...,n} = [n]. Let x be a random (I — 1)-coloring
of pairs of [n]. Define the edge set {i,v1,...,v,1} € E(Q,) if and only if all pairs {7, v;},

..., {4,v,_1} have different color. One can observe that d(Q) = d(Q) = (l(:%
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