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Abstract

In 1964, Erdős proved that for any α > 0, an l-uniform hypergraph G with n >
n0(α, l) vertices and α

(
n
l

)
edges contains a large complete l-equipartite subgraph. This

implies that any sufficiently large G with density α > 0 contains a large subgraph with
density at least l!/ll.

In this note we study a similar problem for l-uniform hypergraphs Q with a weak
quasi-random property (i.e. with edges uniformly distributed over the sufficiently large
subsets of vertices). We prove that any sufficiently large quasi-random l-uniform hy-

pergraph Q with density α > 0 contains a large subgraph with density at least (l−1)!
ll−1−1 .

In particular, for l = 3, any sufficiently large such Q contains a large subgraph with
density at least 1

4 which is the best possible lower bound.
We define jumps for quasi-random sequences of l-graphs and our result implies that

every number between 0 and (l−1)!
ll−1−1 is a jump for quasi-random l-graphs. For l = 3

this interval can be improved based on a recent result of Glebov, Král’ and Volec. We
prove that every number between [0, 0.3192) is a jump for quasi-random 3-graphs.
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1 Introduction

For fixed l > 2, an l-graph G = (V,E) is an l-uniform hypergraph with vertex set V and
edge set E ⊆

(
V
l

)
, or a subset of the l-tuples of V . For K ⊆ V and |K| = k, we denote the

l-subgraph of G induced by K as G[K] = (K,E ∩
(
K
l

)
). The density of such an l-graph G is

defined by d(G) = |E|/
(|V |
l

)
.

Let G = {Gn}∞n=1 be a sequence of l-graphs with Gn = (Vn, En) such that |Vn| → ∞ as
n → ∞. We define the density d(G) of a sequence G as d(G) = limn→∞ d(Gn) (if the limit
exists). We will consider only graph sequences for which the limit d(Gn) exists as n→∞.

Setting
σk(G) = max

n
max
K∈(Vn

k )
d(Gn[K]),

a simple averaging argument yields that {σk(G)}∞k=2 is a non-increasing non-negative sequence
and so the limit d(G) = lim

k→∞
σk(G) exists. We call this limit d(G) the upper density of G.

The result we present in this note are motivated by a theorem of Erdős from [2]:

Theorem 1.1. For every ε > 0, l > 2 and t, there exists n such that any l-graph with n
vertices and εnl edges contains a complete l-partite l-graph K

(l)
t,t,...,t. Consequently, for any

sequence G of l-graphs with d(G) > 0, d(G) > l!/ll.

In this note we are interested in a similar problem if we restrict to quasi-random l-graphs.

Definition 1.2. Given ε > 0 and α > 0, we define an (α, ε)-quasi-random hypergraph to
be an l-graph Q = (V,E) with the property that for all W ⊆ V , d(Q[W ]) = α(1± ε) for
|W | > εn where |V | = n. A sequence Q = {Qn}∞n=1 of (α, εn)-quasi-random l-graphs is
quasi-random if εn is decreasing and εn → 0 as n→∞.

Note that for l = 2 quasi-random graphs must contain arbitrarily large cliques as εn → 0
and thus any quasi-random sequence of 2-graphs with d(Q) > 0 necessarily satisfies d(Q) = 1.
In this note we prove a related result for l > 3:

Theorem 1.3. For a sequence Q of quasi-random l-graphs with d(Q) > 0,

(i) d(Q) > (l−1)!
ll−1−1 and

(ii) when l = 3 there exists a quasi-random sequence of 3-graphs with d(Q) = 1
4
.

For l > 3, however, we do not know if d(Q) > (l−1)!
ll−1−1 could not be replaced by a larger

number. Our results for l = 3 are shown in the Section 2.1 and a similar construction may
be applied to generalize the result for all l-graphs, proving Theorem 1.3( i).

A number α is a jump if there exists a constant c = c(α) such that given any sequence
of l-graphs G = {Gn}∞n=1 if d(G) > α, then d(G) > α + c. It follows from the Erdős-Stone
Theorem that all non-negative numbers less than 1 are jumps for graphs and it follows
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from Theorem 1.1 that all non-negative numbers less than l!
ll

are jumps for l-graphs. Erdős
conjectured that, analogous to graphs, all numbers less than 1 are jumps for l-graphs as
well. This conjecture was disproved by Frankl and Rödl in [5] who showed that there are an
infinite number of non-jumps for all l > 3. However, these non-jumps were found to occur
at relatively large densities. While the smallest case of determining whether l!

ll
is a jump is

still open and likely a difficult problem, our result shows that under the further assumption
of quasi-randomness that l!

ll
is indeed a jump for all l > 3.

We extend the concept of jumps to sequences of quasi-random l-graphs:

Definition 1.4. A number α is a jump for quasi-random l-graphs if there exists a constant
c = c(α) such that given any sequence of quasi-random l-graphs G = {Gn}∞n=1 if d(G) > α,
then d(G) > α + c.

Theorem 1.3(i) implies that every number between 0 and (l−1)!
ll−1−1 is a jump for quasi-

random l-graphs. Further we will show that for l = 3 this interval can be improved from
[0, 1

4
) to [0,0.3192) given the following question of Erdős [3] is answered positively:

Question 1.5. Let c > 0 and Q = {Qn}∞n=1 be a quasi-random sequence of 3-graphs. If

d(Q) = 1
4

+ c, then does each Qn contain K
(3)
4 − e as n→∞?

More formally, we prove in Section 3:

Theorem 1.6. A positive answer to Question 1.5 implies that any quasi-random sequence
Q with d(Q) > 1

4
satisfies d(Q) > 0.3192.

Very recently, Glebov, Král’ and Volec in [6] proved Question 1.5 in the positive using
Razborov’s flag-algebra method [10]. This result confirms our assertion in Theorem 1.6.

We include our remarks and questions for future study for quasi-random l-graphs with
l > 3 and other possibilites for jumps for quasi-random 3-graphs in Section 4.

2 Proof of Theorem 1.3

2.1 The lower bound

Our proof is based on the following lemma proved in [1] and [9]:

Lemma 2.1. For all α > 0 and ε > 0, there exists δ > 0, m > 0 and n0 > 0 such that
if Q = (V,E) is an (α, δ)-quasi-random l-graph with |V | = n > n0 vertices then Q[M ] is
(α, ε)-quasi-random for at least 1

2

(
n
m

)
m-sets M ∈

(
n
m

)
.

Going forward in this subsection, we restrict to l = 3 for simplicity. Essentially the same
statements may be applied to general l-graphs.

Given a 3-graph F , α > 0 and ε > 0, we write (α, ε) → F to denote the fact that
every (α, ε)-quasi-random 3-graph R contains F . Let F and H be 3-graphs. For F , H, and
v ∈ V (F ), we define F v

H to be the 3-graph as follows:
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(i) V (F v
H) = V (F ) ∪ V (H)− v and

(ii) E(F v
H) = E(F − v) ∪ E(H) ∪

⋃
u∈V (H)

{{a, b, u} : {a, b, v} ∈ E(F )}

In other words, to obtain F v
H from F , replace v with V (H) and add all the edges in H as

well as the edges of type {a, b, u} where u ∈ V (H) and {a, b, v} ∈ E(F ). In this construction
we will assume that F and H are vertex disjoint and thus |V (F v

H)| = |V (F )| + |V (H)| − 1
and |E(F v

H)| = |E(F )|+ |E(H)|+ |V (H)− 1||{e ∈ E(F ), v ∈ e}|.

Using the notation stated above, we observe the following:

Lemma 2.2. For all α > 0, ε > 0, γ > 0 and 3-graphs F and H, there exists δ = δ(α, ε, γ) >
0 such that if (α, ε)→ F and (α, γ)→ H, then (α, δ)→ F v

H .

Proof. Let |V (F )| = f and let v ∈ V (F ). Given α > 0 and ε > 0 such that (α, ε) → F ,
let δL(2.1) and m = m(α, ε) be the constants ensured by Lemma 2.1. Consider an (α, δ)-
quasi-random hypergraph Q on n vertices. Set δ 6 min (δL(2.1),

γ
2mf ). We want to show

that Q must contain F v
H . By Lemma 2.1, R = Q[M ] is (α, ε)-quasi-random for at least

1
2

(
n
m

)
M ’s. By assumption ((α, ε) → F ) each such (α, ε)-quasi-random Q[M ] contains a

copy of F . Consequently, the number of Q[M ]’s with each containing a copy of F is at
least 1

2

(
n
m

)
. On the other hand, each copy of F is in at most

(
n−f
m−f

)
different Q[M ]’s. Thus,

we have at least 1
2

(
n
m

)
/
(
n−f
m−f

)
=

(n
f)

2(m
f )

> 1
2
( n
m

)f = cnf distinct copies of F in Q, where

c = c(m(α, ε), f) = 1
2mf . Set V (F ) = {u1, u2, . . . , uf−1, v} and let F copy = F c be a copy of F

in Q with V (F c) = {uc1, uc2, . . . , ucf−1, vc} so that ui → uci for i = 1, 2, . . . , f − 1 and v → vc

is an isomorphism.

For each of the cnf copies F c of F , consider an ordered (f − 1)-tuple (uc1, u
c
2, . . . , u

c
f−1).

Since the total number of (f − 1)-tuples of vertices of Q is bounded by n(n − 1) . . . (n −
(f − 1)) 6 nf−1 we infer that there exists an (f − 1)-tuple of vertices u1, u2, . . . , uf−1 of
Q contained in cnf/nf−1 ∼ cn copies F c of F . Consider a set S, |S| = cn = n

cmf , of
vertices v each of which together with u1, u2, . . . , uf−1 induces a copy F c of F . Due to the
(α, δ)-quasi-randomness of Q and the fact that δ 6 γ

2mf = cγ, Q[S] is (α, γ)-quasi-random
and, therefore, due to the assumption of Lemma 2.2, contains a copy of H with vertex set
V (H) = {v1, . . . , v|V (H)|}. Since each vi (1 6 i 6 |V (H)|) together with u1, u2, . . . , uf−1 span
a copy F c of F , we infer that {u1, u2, . . . , uf−1, v1, . . . , v|V (H)|} spans a copy of F v

H . Thus,
(α, δ)→ F v

H .

Before we prove Theorem 1.3(i) for l = 3, we construct an auxilliary sequence of 3-
graphs G = {Gi}∞i=1 with density tending to 1

4
. We will then show that Gi is in Qn for n

large enough. Let G1 be a 3-graph with three vertices and one edge. For i > 1, let Gi be
the 3-graph obtained by taking 3 vertex disjoint copies of Gi−1, and adding all edges with
exactly one vertex in each copy. For instance, G2 has 9 vertices and 3 + 33 = 30 edges.
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Figure 1: Three applications of Lemma 2.2 prove Claim 2.3

Since |V (Gi)| = 3|V (Gi−1)| = 3i and |E(Gi)| = |V (Gi−1)|3 + 3|E(Gi−1)| = 33(i−1)(1 + 1
9

+

. . . 1
9i−1 ) = 3i−1 (3

i−1)(3i+1)
8

, the density of Gi as i→∞ is

lim
i→∞

d(Gi) = lim
i→∞

3i−1 (3
i−1)(3i+1)

8(
3i

3

) = lim
i→∞

1

4

(
3i + 1

3i − 2

)
=

1

4
.

Consider an arbitrary sequence of (α, δn)-quasi-random 3-graphs Q = {Qn}∞n=1 with
d(Qn) = α(1 ± δn) > 0 where δn ∈ (0, 1), δn is decreasing and δn → 0 as n → ∞. We will
show that there exists n1 < n2 < n3 < . . . such that for n > ni, Qn contains Gi. Based on
our density calculation of Gi above, d(Q) > 1

4
.

Since Qn contains G1 whenever δn < α, it remains to show the following claim by induc-
tion on i:

Claim 2.3. Assuming (α, δni
)→ Gi, there exists ni+1 such that (α, δni+1

)→ Gi+1

Proof. Our goal is to find ni+1 so that (α, δn)→ Gi+1 for all n > ni+1. This will be achieved
in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F ′,
F ′′, F ′′′ with Gi ⊆ F ′ ⊆ F ′′ ⊆ F ′′′ = Gi+1 and n′, n′′, n′′′ with ni < n′ < n′′ < n′′′ = ni+1

such that
(α, δn)→ F (i) for all n > n(i) (*)

Set V (G1) = {a, b, c}, H = Gi, and γ = δni
. Below we will describe appropriate choices

of F , ε and v to obtain graphs F (i), i = 1, 2, 3 satisfying (*).

a) Set F = G1, ε = δ1 and v = a. Since (α, δ1) → G1 and (α, δni
) → Gi, by Lemma 2.2

there exists δ′ = δ(α, δ1, δni
) such that (α, δ′)→ F a

Gi
.

b) Set F ′ = F a
Gi

, ε = δ′ and v = b. Since (α, δ′) → F ′ and (α, δni
) → Gi, by Lemma 2.2

there exists δ′′ = δ(α, δ′, δni
) such that (α, δ′′)→ F ′bGi

.

c) Set F ′′ = F ′bGi
, ε = δ′′ and v = c. Since (α, δ′′) → F ′′ and (α, δni

) → Gi, by Lemma 2.2
there exists δ′′′ = δ(α, δ′′, δni

) such that (α, δ′′′)→ F ′′cGi
.

Observe that F ′′′ = F ′′cGi
= Gi+1. Consequently (α, δn)→ Gi+1 for all n with δn 6 δ′′′.
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In a similar way to Claim 2.3 one can show a slightly more general fact stated below as
Proposition 2.5. First we define the lexicographic product of two 3-graphs:

Definition 2.4. The lexicographic product of two 3-graphs F and H with vertex set U and W
respectively is a 3-graph F ·H with vertex set U×W and with {(u1, w1), (u2, w2), (u3, w3)} ∈
E(F ·H) if {u1, u2, u3} ∈ E(F ) or if u1 = u2 = u3 and {w1, w2, w3} ∈ E(H).

Proposition 2.5. For all α > 0, ε > 0, γ > 0 and 3-graphs F and H there exists δ =
δ(α, ε, γ) > 0 such that (α, ε)→ F and (α, γ)→ F implies (α, δ)→ F ·H.

2.2 The upper bound for l=3

It remains to show there exists a sequence of quasi-random 3-graphs with upper density 1
4
.

Proof. Consider a random tournament Tn on n vertices in which pairs are assigned arc
direction with probability 1

2
. Let Rn be a 3-graph with V (Rn) = V (Tn) and E(Rn) consisting

of vertex sets of all directed 3-cycles (this 3-graph was first considered by Erdős and Hajnal
in [4] in the context of Ramsey theory).

It is well known (see [3]) that Rn is (1
4
, δn)-quasi-random with δn → 0 as n→∞. On the

other hand it follows from the well known result of Kendall and Babington Smith [7] that
any tournament on n vertices has at most 1

24
(n3 − n) directed 3-cycles (cf. [8]) and so no

subgraph of any Rn has density larger than 1
4

+o(1). Thus the upper density of the sequence
R = {Rn}∞n=1 is at most 1

4
+ o(1) establishing (ii) of Theorem 1.3.

3 Proof of Theorem 1.6

For l = 3, Theorem 1.3(i) implies that every number in [0, 1
4
) is a jump for quasi-random

3-graphs. In this section, we prove that 1
4

is a jump as well and, more precisely, any number
in [1

4
, 0.3192) is a jump for quasi-random 3-graphs given Question 1.5 is answered positively.

To this end, we use a recent result of Glebov, Král’ and Volec who in [6] confirmed Question
1.5 using a computer aided proof based on Razborov’s flag-algebra method [10].

Proof. Given a sequence of quasi-random 3-graphsQ = {Qn}∞n=1 with d(Q) > 1
4
, any Qn with

n > n0 contains K
(3)
4 − e by [6]. In a way similar to the proof of Theorem 1.3(i) we will first

construct a sequence of 3-graphs F = {Fn}∞n=1 such that Fn ⊆ Qn and limn→∞ d(Fn) = 3
10

.
Subsequently we will alter it to a sequence of 3-graphs G = {Gn}∞n=1 in which limn→∞ d(Gn) ≈
0.3192.

Let F1 = K
(3)
4 − e with V (F1) = {a1, a2, a3, b} and E(F1) = {{a1, a2, b}, {a1, a3, b},

{a2, a3, b}}. Let Ai (1 6 i 6 3) and B be copies of K
(3)
4 − e. We obtain F2 by taking four

vertex disjoint copies of F1, with vertex set Ai, 1 6 i 6 3, and B and adding edges of type
{ai, aj, b} where ai ∈ Ai, aj ∈ Aj, b ∈ B, 1 6 i < j 6 3. Note that |V (F2)| = 42 = 16
and |E(F2)| = 3(4) + 43(3). In other words F2 = F1 · F1 is the lexicographic product of
two copies of F1. We continue in this fashion to construct the sequence F . For i > 1,
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let Fi = F1 · Fi−1 be the 3-graph obtained by taking four vertex disjoint copies of Fi−1,
and adding edges in a similar way as described above. Since |V (Fi)| = 4|V (Fi−1| = 4i and

|E(Fi)| = 3|V (Fi−1)|+43|E(Fi−1)| = 3 ·4i−1(1+42 + . . .+42(i−1)) = 4i−1

5
(16i−1), the density

of Fi as i→∞ is

lim
i→∞

d(Fi) = lim
i→∞

4i−1

5
(16i − 1)(

4i

3

) =
3

10
.

In a similar way as in the proof of Theorem 1.3(i), one can show that for all i there
exists n such that Fi is contained in Qn. Thus, every number between 0 and 3

10
is a jump

for quasi-random 3-graphs.

One can improve 3
10

to 0.3192 by considering conveniently chosen “blow ups” of Fi.
We will describe this in more detail now. Setting V (Fi) = {1, 2, . . . , νi}, we first observe
(similarly as in Lemma 2.2) that for each i, there exists an ni so that 3-graphs Qn, n > ni,
contain ci|V (Qn)|νi copies of Fi. Hence by Theorem 1.1, Qn contains a t-blowup Fi ∗ t of

Fi, more precisely, a graph with vertex set
⋃νi
j=1Wj, |W1| = · · · = |Wνi | = t and {ã, b̃, c̃} ∈

E(Fi ∗ t) if {a, b, c} ∈ E(Fi). In order to maximize the density, we consider graphs Fi with
different vertices “blown up” to sets of different cardinalities.

More precisely, set α = 2
5
(4
√

6− 9) ≈ 0.2154 and to each vertex x = (x1, . . . , xi) ∈ V (Fi)
assign a weight w(x) = (1 − 3α)jαi−j where j represents the number of b’s among entries
of x and for t large consider a blow-up Gi of Fi with each vertex x “blown-up” by w(x) ∗ t
vertices. Using this iterated construction, one can calculate that every number between 0
and 1

19
(9− 2

√
6) ≈ 0.3192, where 1

19
(9− 2

√
6) = limi→∞ d(Gi), is a jump for quasi-random

3-graphs.

4 Other remarks and questions

In Section 2.2 we considered R = {Rn}∞n=1, a sequence of quasi-random 3-graphs formed
by random tournaments Tn, and observed that d(R) = d(R) = 1

4
. There are other quasi-

random sequences of 3-graphs with density equal to upper density. Consider the quasi-
random sequences Q = {Qn}∞n=1 described in [11]: Let χ be a random (k − 1)-coloring of
pairs of {1, . . . , n} and define the edges of Qn to be all triples {i, u, v} such that χ({i, u}) 6=
χ({i, v}). It can be shown that d(Q) = d(Q) = 1 − 1

k−1 . In summary, if α ∈ {1
4
, 1
2
, 2
3
, . . .},

then there is a sequence of quasi-random 3-graphs with d(Q) = d(Q). Are there any others?

We proved that a sequence of quasi-random l-graphs Q with d(Q) > 0 has d(Q) > (l−1)!
ll−1−1 .

In particular, we showed that this bound is the best possible when l = 3. For l = 4, it is not
clear to the authors if there exists a quasi-random sequence of 4-graphs with upper density
equal to 3!

43−1 = 2
21

.

Theorem 1.3(i) implies that every quasi-random sequence of l-graphs with positive den-

sity has upper density at least (l−1)!
ll−1−1 . For l = 3 this is the best possible, but we were
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unable to show an analogous fact for l > 3. One can observe that (l−1)!
ll−1−1 cannot be replaced

by a number larger than (l−1)!
(l−1)l−1 . In order to see this, consider the quasi-random sequence

Q = {Qn}∞n=1 with vertex set V (Qn) = {1, . . . , n} = [n]. Let χ be a random (l− 1)-coloring
of pairs of [n]. Define the edge set {i, v1, . . . , vl−1} ∈ E(Qn) if and only if all pairs {i, v1},
. . . , {i, vl−1} have different color. One can observe that d(Q) = d(Q) = (l−1)!

(l−1)l−1 .
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[3] P. Erdős. Problems and results on graphs and hypergraphs: Similarities and differences.
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