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Abstract

We evaluate combinatorially certain connection coefficients of the symmetric
group that count the number of factorizations of a long cycle as a product of three
permutations. Such factorizations admit an important topological interpretation in
terms of unicellular constellations on orientable surfaces. Algebraic computation
of these coefficients was first done by Jackson using irreducible characters of the
symmetric group. However, bijective computations of these coefficients are so far
limited to very special cases. Thanks to a new bijection that refines the work of
Schaeffer and Vassilieva in [17] and Vassilieva in [18], we give an explicit closed
form evaluation of the generating series for these coefficients. The main ingredient
in the bijection is a modified oriented tricolored tree tractable to enumerate. Finally,
reducing this bijection to factorizations of a long cycle into two permutations, we
get the analogue formula for the corresponding generating series.

Keywords: Connection Coefficients; Factorizations; Cacti; Symmetric Group

1 Introduction

1.1 Generating series for connection coefficients

In what follows, we denote by λ = (λ1, λ2, . . . , λk) ` n an integer partition of n and
`(λ) = k the length or number of parts of λ. We also write λ = [1n1(λ), 2n2(λ), . . .] where
ni(λ) is the number of parts i in λ.

Let Sn be the symmetric group on n elements, and Cλ be the conjugacy class in Sn of
permutations with cycle type λ, where λ ` n. Given λ(1), λ(2), . . . , λ(r), µ ` n, let kµ

λ(1),...,λ(r)
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be the number of ordered factorizations in Sn of a fixed permutation γ ∈ Cµ as a product
α1 · · ·αr of r permutations αi ∈ Cλ(i) . These numbers are called connection coefficients of
the symmetric group. The problem of computing these coefficients has received significant
attention and a good account of its history and references can be found in [9]. We focus
on the cases knλ,µ and knλ,µ,ν : i.e. when r = 2 and 3, µ = (n) and γ is the long cycle
γn = (1, 2, . . . , n).

In addition, for λ ` n we use the monomial symmetric function mλ(x) on indetermi-
nates x = (x1, x2, . . .) which is the sum of all different monomials obtained by permuting
the variables of xλ11 x

λ2
2 · · · , and the power symmetric function pλ(x), defined multiplica-

tively as pλ = pλ1pλ2 · · · where pn(x) = mn(x) =
∑

i x
n
i . Also, if λ = [1n1(λ), 2n2(λ), . . .],

let Aut(λ) =
∏

i ni(λ)!.
Our combinatorial results can be stated as follows:

Theorem 1.1. The numbers knλ,µ,ν of factorizations of the long cycle γn into an ordered
product of three permutations of types λ, µ, and ν respectively satisfy:

∑

λ,µ,ν`n

knλ,µ,νpλ(x)pµ(y)pν(z) =
∑

λ,µ,ν`n

n!2M
(n−1)
`(λ),`(µ),`(ν)(

n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)mλ(x)mµ(y)mν(z), (1.2)

where:

M
(n−1)
`(λ),`(µ),`(ν) =

(
n− 1

`(ν)− 1

)∑

g>0

(
n− `(µ)

`(λ)− 1− g

)(
n− `(ν)

g

)(
n− 1− g
n− `(µ)

)
.

Corollary 1.3. [15] The numbers knλ,µ of factorizations of the long cycle γn into an ordered
product of two permutations of cycle types λ and µ respectively satisfy:

∑

λ,µ`n

knλ,µpλ(x)pµ(y) =
∑

λ,µ`n

n(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))!
mλ(x)mµ(y), (1.4)

We will see in Section 2 that the coefficients on the right hand sides of (1.2) and (1.4)
are non-negative integers.

Remark 1.5. Equations (1.2) and (1.4) can be obtained algebraically using the irreducible
characters of the symmetric group, the Murnaghan-Nakayama rule, and symmetric func-
tion identities (see [12]). Here, we derive these equations through a bijection.

1.2 Background

In the setting of the connection coefficients kn
λ(1),··· ,λ(r) , we define the genus g(λ(1), . . . , λ(r))

of the partitions λ(i) by the equation

`(λ(1)) + · · ·+ `(λ(r)) = (r − 1)n+ 1− 2g(λ(1), · · · , λ(r)). (1.6)
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We can take g to be a non-negative integer, since otherwise it is easy to show that
kn
λ(1)···λ(r) = 0.

Except for special cases there are no closed formulas for the connection coefficients
kn
λ(1),...,λ(r)

. For instance, using an inductive combinatorial argument Bédard and Goupil

[1] found a formula for knλ,µ in the case g(λ, µ) = 0. This was extended by Goulden and

Jackson [6] to evaluate kn
λ(1),...,λ(r)

in the case g(λ(1), . . . , λ(r)) = 0 via a bijection with
a set of ordered rooted r-cacti on n r-gons. Later, using characters of the symmetric
group and a combinatorial development, Goupil and Schaeffer [9] derived an expression
for connection coefficients of arbitrary genus as a sum of positive terms (see Biane [3] for
a succinct algebraic derivation; Poulalhon and Schaeffer [16] and Irving [11] for further
generalizations). As a general rule, these developments are quite intricate and the formulas
obtained are rather complicated.

Interestingly, if we consider the generating series for the coefficients kn
λ(1),··· ,λ(r) as in

the LHS of (1.2), the coefficients of their expansion in the basis of monomial symmetric
functions, as in the RHS of (1.2), can be computed in closed form thanks to a result
by Jackson [12] obtained algebraically using the theory of the irreducible characters of
the symmetric group. There are direct bijections for a variant of the case of two factors
(i.e. r = 2) like the celebrated Harer-Zagier formula [10]: see Lass [14], Goulden and
Nica [8], and Bernardi [2]. In this paper we follow this approach and introduce the
notion of partitioned tricolored (bicolored) 3-cacti (maps) of given type, refining the work
of Schaeffer and Vassilieva in [17] and Vassilieva in [18], and use a purely combinatorial
argument to derive the explicit generating series for knλ,µ,ν and knλ,µ in Equations (1.2) and
(1.4) respectively.

1.3 Outline of paper

The paper is organized as follows: in Section 2 we introduce the partitioned 3-cacti and
the cactus trees (the enumeration of the latter is postponed to Section 4) and relate them
via a bijection Θ described in Section 3. Finally, in Section 5 we prove Corollary 1.3.

2 Combinatorial reformulation

2.1 Cacti and partitioned cacti

Factorizations in the symmetric group counted by knλ,µ,ν admit a direct interpretation in
terms of unicellular 3-constellations also named 3-cacti with white, black, and grey vertices
of respective degree distribution λ, µ, and ν. Within a topological point of view, 3-cacti
are specific maps which in turn are 2−cell decompositions of an oriented surface into a
finite number of vertices (0−cells), edges (1−cells) and faces (2−cells) homeomorphic to
open discs (see [13] for more details about maps and their applications). Maps are defined
up to a homeomorphism of the surface that preserves its orientation, the type of cells,
and incidences in the graph. 3-cacti are maps with black faces and one white face (thus
the term unicellular) such that: (i) each edge separates a black face and the white face
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and (ii) all the black faces are triangles each composed of exactly a white, a black, and a
grey vertex following each other in clockwise order. As a consequence, the degree of the
white face is a multiple of 3. Often, cacti refer to planar maps (embedded in an orientable
surface of genus 0). In this paper we assume that they can be embedded in an orientable
surface of any genus. Besides, we consider only rooted cacti, i.e. cacti with a marked black
face. We assume as well that each black triangle is labeled with an index in {1, 2, . . . , n}
with the convention that the marked triangle is labeled 1. In what follows, we define the
degree of a vertex in a cactus as the number of triangles it belongs to, and the degree
distribution of the vertices of a given color is the integer partition of n formed by the
degrees of all the vertices of this color.

The next classical result (see [13]) relates rooted 3-cacti with factorizations of the long
cycle γn = (1, 2, . . . , n).

Proposition 2.1. Rooted 3-cacti with n black triangles are in bijection with 3-tuples (α1,
α2, α3) of permutations in Sn such that α1α2α3 = γn. Under this bijection the white
(black and grey, resp.) vertices correspond to cycles of π1 (π2 and π3, resp.).

A sketch of the proof of this classical result can be found in [18]. Each white, black,
or grey vertex of a given 3-cacti corresponds to a cycle of permutation α1, α2, or α3

respectively, and the cycle is encoded by the local counter-clockwise order of the triangles
around the vertex. The fact that α1α2α2 = γn corresponds to saying that traversing the
map starting on the white vertex of the triangle labeled 1 and keeping the white face on
the right we visit, in order, the white-black edges belonging to triangles labeled 1, 2, . . . , n.
A consequence of Proposition 2.1 is that for integer partitions λ, µ, ν of n, the number
of 3-cacti of degree distribution λ, µ, ν is the number knλ,µ,ν of factorizations defined in
Section 1.1. Moreover, by the Euler-characteristic, the genus of the underlying surface
of the 3-cacti of degree distribution λ, µ, ν is given by Equation 1.6. Figure 1 shows a
3-cactus embedded on the sphere (genus 0) and a 3-cactus embedded on a torus (genus 1).

Figure 1: Two examples of rooted 3-cacti embedded in a surface of genus 0 (left) and
genus 1 (right)
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Example 2.2. The cactus on the left hand side in Figure 1 can be associated to the three
permutations:

α1 = (1)(24)(3)(5) (2.3)

α2 = (1)(23)(45) (2.4)

α3 = (15)(2)(3)(4) (2.5)

The degree distribution of this cactus is λ = [13, 21], µ = [11, 22], ν = [13, 21].
The cactus on the right hand side corresponds to the three permutations:

α1 = (1236)(4)(5) (2.6)

α2 = (153)(2)(4)(6) (2.7)

α3 = (134)(2)(5)(6) (2.8)

The degree distribution of this cactus is λ = [12, 41], µ = [13, 31], ν = [13, 31].

Partitioned 3-cacti
Cacti with a given vertex degree distribution are in general non-planar and non-recursive
objects, and no direct bijection is known to compute their cardinality. However, we
provide an interpretation of the formal power series

∑
λ,µ,ν`n k

n
λ,µ,νpλ(x)pµ(y)pν(z) as a

generating function for partitioned cacti. We are able to give an explicit formula for
this generating function by introducing a new bijective mapping for partitioned cacti.
Intuitively, partitioned cacti are rooted 3-cacti where the set of vertices of each color
are partitioned into blocks. Such objects have also been widely studied, for instance by
Lass [14] and Bernardi [2] under the term of colored maps; and by Goulden and Nica [8],
Schaeffer and Vassilieva in [17], and Vassilieva in [18] as partitioned maps or cacti.

To define partitioned cacti we use π to denote a set partition of a set of n elements
with blocks {π1, . . . , πp}. The type of a set partition, type(π) ` n, is the integer partition
of n obtained by considering the cardinalities of the blocks of π. We are now ready for
the definition:

Definition 2.9. (Partitioned 3-cactus) A partitioned 3-cactus is a 4-tuple (π1, π2, π3, κ)
such that κ is a rooted 3-cactus with n triangles, and π1, π2 and π3 are set partitions on
the set of white, black, and grey vertices respectively. By abuse of notation, hereinafter
we view π1, π2, and π3 as set partitions on {1, 2, . . . , n} where a block is composed of
the labels of the triangles incident to the vertices contained in the block. In what follows,
the blocks of π1, π2, and π3 are denoted π

(i)
1 , π

(j)
2 , and π

(k)
3 with the only restriction that

1 ∈ π(`(λ))
1 .

For λ, µ, ν ` n, we let C(λ, µ, ν) be the set of partitioned cacti (π1, π2, π3, κ) where
the set partitions π1, π2, and π3 of {1, 2, . . . , n} have type λ, µ, and ν respectively. Let
C(λ, µ, ν) = |C(λ, µ, ν)|.

Remark 2.10. Following Proposition 2.1, we can interpret the cactus κ as a 3-tuple of
permutations (α1, α2, α3) where α3 = α−12 ◦ α−11 ◦ γn. As a result, partitioned cacti in
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C(λ, µ, ν) can be seen as 5-tuples (π1, π2, π3, α1, α2) where π1,π2, and π3 are set partitions
of {1, 2, . . . , n} of types λ, µ, and ν respectively with the property that: for k = 1, 2, 3, if
an integer l of a given cycle c of αk belongs to a given block of πk then all the integers in
the cycle c also belong to this block.

Example 2.11. Take the cactus on the right hand side of Figure 1 and add partitions
π1 = {π(1)

1 , π
(2)
1 }, π2 = {π(1)

2 , π
(2)
2 }, π3 = {π(1)

3 , π
(2)
3 , π

(3)
3 }, where π

(1)
1 = {4, 5}, π(2)

1 =

{1, 2, 3, 6}; π(1)
2 = {1, 3, 4, 5}, π(2)

2 = {2, 6}; π(1)
3 = {1, 3, 4, 6}, π(2)

3 = {2}, π(3)
3 = {5}.

This gives a partitioned cactus (π1, π2, π3, α1, α2) ∈ C([21, 41], [21, 41], [12, 41]) depicted in
Figure 2. Similarly to [17], we associate a particular shape to each of the blocks of the
partitions.

blocks π1:

blocks π2:

blocks π3:

Figure 2: Illustration of the Partitioned 3-Cactus from Example 2.11.

Link between cacti and partitioned cacti
Consider the partial order on integer partitions given by refinement. That is λ � µ if and
only if the parts of µ are unions of parts of λ, and we say that µ is coarser than λ. If
λ � µ let Rλ,µ be the number of ways to coarse λ to obtain µ. For example, if λ = [12, 22]
and µ = [1, 2, 3] then Rλ,µ = 4. It is well known that pλ =

∑
µ�λAut(µ)Rλ,µmµ [19, Prop.

7.7.1].
We use this partial order on integer partitions to obtain an immediate relation between

C(λ, µ, ν) and knλ,µ,ν .

Proposition 2.12. For partitions ρ, δ, ε ` n we have:

C(ρ, δ, ε) =
∑

λ�ρ,µ�δ,ν�ε

RλρRµδRνεk
n
λ,µ,ν . (2.13)

Proof. Let (π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε). If α1 ∈ Cλ, α2 ∈ Cµ, and α3 = α−12 α−11 γn ∈ Cν
then by the definition of the partitioned cacti, we have that type(π1) = ρ � λ, type(π2) =
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δ � µ, and type(π3) = ε � ν. Thus, if we further refine C(ρ, δ, ε) by the cycle types of the
permutations, i.e. if

Cλ,µ,ν(ρ, δ, ε) = {(π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε) | (α1, α2, α
−1
2 α−11 γn) ∈ Cλ × Cµ × Cν},

then C(ρ, δ, ε) =
⋃
λ�ρ,µ�δ,ν�ε Cλ,µ,ν(ρ, δ, ε) where the union is disjoint. Finally, if

Cλ,µ,ν(ρ, δ, ε) = |Cλ,µ,ν(ρ, δ, ε)|

then it is easy to see that Cλ,µ,ν(ρ, δ, ε) = RλρRµδRνεk
n
λ,µ,ν .

Using pλ =
∑

µ�λAut(µ)Rλ,µmµ Proposition 2.12 is equivalent to:

∑

λ,µ,ν`n

knλ,µ,νpλ(x)pµ(y)pν(z) =
∑

λ,µ,ν`n

Aut(λ)Aut(µ)Aut(ν)C(λ, µ, ν)mλ(x)mµ(y)mν(z)

(2.14)
In the special case when we have partitions ρ, δ and ε of n where `(ρ) + `(δ) + `(ε) =

2n+ 1, the following proposition holds:

Proposition 2.15 ([6]). For partitions ρ, δ and ε of n where `(ρ) + `(δ) + `(ε) = 2n+ 1
we have that C(ρ, δ, ε) = knρ,δ,ε = n2(`(ρ)− 1)!(`(δ)− 1)!(`(ε)− 1)!/Aut(ρ)Aut(δ)Aut(ε).

Proof. Let (π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε) with `(ρ) + `(δ) + `(ε) = 2n + 1, and α3 =
α−12 α−11 γn. If α1 ∈ Cλ, α2 ∈ Cµ, α3 ∈ Cν , then `(λ) + `(µ) + `(ν) = 2n+ 1− 2g(λ, µ, ν) 6
2n + 1. But `(λ) > `(ρ), `(µ) > `(δ), and `(ν) > `(ε) therefore ρ = λ, δ = µ, and
ε = ν; and π1, π2, and π3 are the underlying set partitions in the cycle decompositions
of α1, α2, and α3 respectively. Thus C(δ, ρ, ε) = knρ,δ,ε. But, as shown in [6, Thm. 2.2],
knρ,δ,ε = n2(`(ρ)−1)!(`(δ)−1)!(`(ε)−1)!/Aut(ρ)Aut(δ)Aut(ε) since the genus g(ρ, δ, ε) = 0.
As a result, C(ρ, δ, ε) = n2(`(ρ)− 1)!(`(δ)− 1)!(`(ε)− 1)!/Aut(ρ)Aut(δ)Aut(ε)

As mentioned before, explicit computation of the right hand side of equation (2.14)
is made possible thanks to a new bijective description of partitioned cacti of given type
which is a refinement of a bijection in [17] and [18]. Partitioned cacti are indeed in one-
to-one correspondence with particular sets of cactus trees (and three additional simple
combinatorial objects), which are recursive planar objects whose number one can compute
with classical methods like Lagrange inversion. Next we define such trees, in Section 4 we
compute the number of such trees.

2.2 Cactus trees

Before we state the actual definition of the tree structure used as the main ingredient in
the proof of Theorem 1.1, we give preparatory explanations. Ordered trees are non cyclic
graphs usually defined recursively as a root vertex v and an ordered sequence (possibly the
empty set) of ordered trees, called descending trees, each having its root vertex connected
to v by an edge. The root of a descending vertex is called a descending vertex. The root
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vertices of the descending trees of a given vertex are considered as its children. Although
it follows the same kind of recursive definition, the tree structure we introduce has the
following differences:

• vertices are of three different colors, say white, black and grey;

• the ordered sequence of children of a given vertex is not composed of vertices con-
nected to it through an edge. A child can be: (i) a thorn or half edge, i.e an edge,
connecting this given vertex to no other (as a result, no descending tree is attached
to this kind of child), (ii) a full edge, i.e. an edge connecting the given vertex to a
descending one with the restriction that only a black (resp. grey, white) vertex can
be connected this way to a white (resp. black, grey) one, (iii) a triangle connect-
ing the given vertex to two descending ones with the restriction that only a black
and grey (resp. grey and white, white and black) can be connected this way to a
white (resp. black, grey) one. Triangles are made of three edges connecting the two
descending vertices to the ascending one and the two descending vertices between
themselves. The two descending vertices are the roots of two descending trees. The
three kinds of children are illustrated on Figure 3.

Figure 3: Example of three types of possible children, the ordered sequence of children
attached to the white vertex is: edge, thorn, triangle, thorn, triangle

We are now ready to state the definition of the cactus trees:

Definition 2.16 (Cactus Tree). Let C̃T (p1, p2, p3, g, w, b) be the set of cactus trees τ̃
with p1 white vertices, p2 black vertices, and p3 grey vertices, g triangles children of grey
vertices, w triangles children of white vertices, and b triangles children of black vertices
such that:

(i) the root of τ̃ is a white vertex,

(ii) the ordered set of children of each white (resp. black, grey) vertex consists of three
kinds of objects: thorns; full edges connecting this white (resp. black, grey) vertex
to a black (resp. grey, white) one; triangles connecting this white (resp. black, grey)
vertex to both a black and a grey (resp. grey and white, white and black) one,

(iii) the edge connecting a white (resp. black, grey) vertex to the black (resp. grey, white)
one in a descending triangle comes before the one connecting it to the grey (resp.
white, black) vertex according to the ordering of the children of this white (resp.
black, grey) vertex.
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Within a cactus tree, the degree of a vertex v is defined by:

deg(v) = c+ ε, (2.17)

where c is the number of children (that can be either thorns, edges or triangles) and ε
is 1 for a non-root vertex, 0 otherwise. With this definition of degree, we write the set
C̃T (p1, p2, p3, g, w, b) as the disjoint union

C̃T (p1, p2, p3, g, w, b) =
⋃

`(λ)=p1,`(µ)=p2,`(ν)=p3

C̃T (λ, µ, ν, g, w, b).

where C̃T (λ, µ, ν, g, w, b) is the set of cactus trees in C̃T (p1, p2, p3, g, w, b) with degree
distribution λ, µ, ν ` n of the white, black, and grey vertices respectively.

In what follows we will denote by CT (p1, p2, p3, g, w, b) the set of cactus trees similar to

those in C̃T (p1, p2, p3, g, w, b) but without thorns. We define CT (λ, µ, ν, g, w, b) similarly.
Moreover, we will use the expression tricolored tree when only full edges are allowed in
the set of children of each vertex. Finally, we may use the integers (1, 2, . . . , p1) (resp.
(1, 2, . . . , p2), (1, 2, . . . , p3)) to label the white (resp. black, grey) vertices of a given
cactus tree or tricolored tree. The resulting object is called labeled cactus tree or labeled
tricolored tree respectively.

Example 2.18. The cactus tree in Figure 4 belongs to

C̃T ([12, 21, 41], [11, 31, 41], [11, 22, 31], 1, 1, 1)

Figure 4: Example of a Cactus Tree. The white vertex in the bottom is the root of the
tree. The tree has p1 = 3 white vertices, p2 = 3 black vertices and p3 = 4 grey vertices,
and three triangles each children of white, black, and grey vertices respectively.

Proposition 2.19. The number of cactus trees is:

|C̃T (λ, µ, ν, g, w, b)| = n · (`(λ)− 1)!(`(µ)− 1)!(`(ν)− 1)!

Aut(λ)Aut(µ)Aut(ν)

(g(w − `(ν)) + `(µ)`(ν))

(n+ 1− `(λ)− `(µ) + g)
×

×
(

n− `(λ)

w, `(µ)− g − w

)(
n− `(µ)

b, `(ν)− w − b

)(
n− `(ν)

g, `(λ)− 1− g − b

)
. (2.20)

The proof of this proposition is carried out using the Lagrange inversion theorem (see
e.g. [7, 1.2.13]) and it is postponed to Section 4.
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2.3 Reformulation of the main theorem

Let OP(m)
r be the set of all ordered r-subsets of [m]. By definition |OP(m)

r | = (m)r =
m(m− 1) · · · (m− r + 1). We have the following proposition:

Proposition 2.21. Theorem 1.1 is equivalent to:

C(λ, µ, ν) =
∑

g,w,b>0

|C̃T (λ, µ, ν, g, w, b)| |Sn+1−`(λ)−`(ν)+b| |Sn−`(µ)−`(ν)+w| |OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b |

(2.22)

Proof. According to Equation 2.14, Theorem 1.1 is equivalent to the equality

C(λ, µ, ν) =
n!2

Aut(λ)Aut(µ)Aut(ν)

1(
n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)M (n−1)
`(λ),`(µ),`(ν)

After basic simplifications on the binomial coefficients, a summand in the RHS of Equation
(2.22) reduces to:

(n− 1)!2(`(µ)`(ν) + g(w − `(ν)))(
n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)
Aut(λ)Aut(µ)Aut(ν)

(
n

w, g, b, `(λ)− 1− g − b, `(µ)− g − b, `(ν)− w − b

)

Then we sum over g, w, and b the terms depending on these parameters. Arranging
properly the terms depending on w and b, and simplifying sums on these two parameters
thanks to the Vandermonde’s convolution formula, we obtain:

∑

g,w,b

(`(µ)`(ν) + g(w − `(ν)))

(
n

w, g, b, `(λ)− 1− g − b, `(µ)− g − b, `(ν)− w − b

)

= n2

(
n− 1

`(ν)− 1

)∑

g

(
n− `(µ)

`(λ)− 1− g

)(
n− `(ν)

g

)(
n− 1− g
n− `(µ)

)
.

Which leads directly to the desired result.

As a direct consequence of Proposition 2.21, Theorem 1.1 reduces to:

Theorem 2.23. There is an explicit bijection Θn
λ,µ,ν between partitioned 3-cacti in

C(λ, µ, ν) and tuples (τ̃ , σ1, σ2, χ), where

τ̃ ∈ C̃T (λ, µ, ν, g, w, b),

σ1 ∈ Sn+1−`(λ)−`(ν)+b,

σ2 ∈ Sn−`(µ)−`(ν)+w,

χ ∈ OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b

for some g, w, b > 0.

The next section is devoted to proving this theorem by describing the bijection Θn
λ,µ,ν .

the electronic journal of combinatorics 20(2) (2013), #P6 10



3 Description of the bijection

3.1 Additional definitions

Before we get to the description of Θn
λ,µ,ν , we need two additional ingredients: a linear

order on the white (black and grey, resp.) vertices and their children (as defined in the
beginning of Section 2.2) which we call white reverse level traversal (RLT) (black and
grey reverse level traversal, resp.), and partial permutations.

Definition 3.1 (reverse level traversals (RLT)). For trees τ̃ ∈ C̃T (λ, µ, ν, g, w, b) (or
for τ ∈ CT (λ, µ, ν, g, w, b)), we define the white Reverse Levels Traversal (RLT) as the
following linear order in τ̃ of the white vertices and their children.

We divide the white vertices of τ̃ into levels depending on their height from the root
(where the height is defined as the number of edges in the shortest path with vertex sequence
white-grey-black-white-. . . to the root). So the first level consists of the root, the second
level consists of the white vertices at height 3 from the root, etc. The white RLT is a
traversal of all the white vertices and their children (thorns, edges, triangles) from left to
right, first at the level of maximum height, then the level of second maximum height,. . . up
to the root vertex. The children of each white vertex are traversed from left to right before
the vertex itself 1

The black and grey RLT are defined similarly with respect to black vertices and their
children, and grey vertices and their children. Figure 5 depicts the three RLT for the
cactus tree in Example 2.18.

1
2

3 4 

65 
7

8
9 

(a)

1

2 3

4

5
6

7

8

(b)

1

2 

3

4 5

6 7

8 

(c)

Figure 5: Examples of (a) white, (b) black, and (c) grey reverse level traversals (RLT) on
the cactus tree of Example 2.18.

Definition 3.2 (Partial permutations). Given two sets X and Y and a non negative
integer m, let PP(X, Y,m) be the set of bijections from any m-subset of X to any m-subset
of Y These bijections are called partial permutations. Then |PP(X, Y,m)| =

(|X|
m

)(|Y |
m

)
m!.

1In words, the white RLT can be viewed as a reverse breadth first traversal of the white vertices and
their children.
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3.2 Bijective mapping Θ for 3-cacti that preserves type

We proceed with the description of Θ:

Θn
λ,µ,ν : C(λ, µ, ν)

∼→ C̃T (λ, µ, ν)×Sn+1−`(λ)−`(ν)+b ×Sn−`(µ)−`(ν)+w ×OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b .

Within the construction, we use

(p1, p2, p3) := (`(λ), `(µ), `(ν)).

3.2.1 The cactus tree τ̃

Let (π1, π2, π3, α1, α2) ∈ C(λ, µ, ν). We construct a cactus tree τ̃ ∈ C̃T (λ, µ, ν, g, w, b)
following the procedure below.
(i) Cactus tree: The first step is to construct the cactus tree τ and relabeling permutations
in the same way as in [18]. For completeness, we also include here the construction.

Let m
′(j)
2 (1 6 j 6 p2) be the maximal element of α−13 α−12 (π

(j)
2 ) and m

(j)
i for i = 1, 3

(1 6 j 6 pi) be the maximal element of the block π
(j)
i .

We first construct the labeled tricolored tree T with p1 white, p2 black, and p3 grey
vertices satisfying: the root of T is the white vertex with label p1 and the incidence
relations and order of children are given in Table 1.

Incidence relations Order of children
for 16j6p2

i

j

if m′
(j)
2 ∈ α−13 α−12 (π

(i)
1 )

j1 j2

if α2α3(m
′(j1)
2 ) < α2α3(m

′(j2)
2 )

for 16k6p3

j

k

if m
(k)
3 ∈ α−13 (π

(j)
2 )

k1 k2

if α−13 α−12 α3(m
(k1)
3 ) < α−13 α−12 α3(m

(k2)
3 )

for 16i6p1−1

k

i

if m
(i)
1 ∈ π(k)

3

i1 i2

if α−13 (m
(i1)
1 ) < α−13 (m

(i2)
1 )

Table 1: Incidence relations and order of children of the labeled tricolored tree T . Each
row of the table shows the incidence relations and order of children of the white, black
and grey vertices respectively.

Lemma 3.3 ([18]). The procedure above defines a labeled 3-colored tree T .
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We construct the labeled cactus tree Υ from T by forming triangles children of the
different vertices following the rules in Table 2.

Rules for adding triangles

for 16i6p1−1, 16j6p2

i

j

if α2α3(m
′(j)
2 ) = m

(i)
1

for 16j6p2, 16k6p3

j

k

if α−13 α−12 α3(m
(k)
3 ) = m′

(j)
2

(i.e. α3(m
(k)
3 ) = α2α3(m

′(j)
2 ))

for 16k6p3, 16i6p1−1

k

i

if α−13 (m
(i)
1 ) = m

(k)
3

(i.e. m
(i)
1 = α3(m

(k)
3 ))

Table 2: Rules for forming triangles children of white, black and grey vertices in the
labeled tricolored tree T in order to obtain the labeled tricolored cactus tree Υ.

Finally, we remove the labels of Υ to obtain a cactus tree τ .

Example 3.4. The construction of T , Υ, and τ for the partitioned cactus in Example
2.11 is depicted in Figure 6.

blocks π1:

blocks π2:

blocks π3:

Figure 6: tricolored tree T and cactus trees Υ and τ associated to Example 2.11. The
tree T is the 3-colored labeled tree built following rules in Table 1. The labeled cactus
tree Υ is obtained from T by forming triangles following the rules in Table 2. The cactus
tree τ is obtained from Υ′ by removing the labels of the vertices.

(ii) Relabeling permutations : These permutations θ1, θ2, and θ3 are defined by considering
the reverse labeled cactus tree Υ′ resulting from the labeling of τ , based on three inde-
pendent reverse-labeling procedure for white, black, and grey vertices. We do a white
RLT and label the white vertices only (as they are traversed) with the labels 1, 2, . . . , p1.
Similarly, we do a black RLT and label the black vertices only with labels 1, 2, . . . , p2, and
do a grey RLT to label the grey vertices only with labels 1, 2, . . . , p3. Next, we reindex the
blocks of π1, π2 and π3 using the new indices from Υ′: if a white vertex is labeled i in T
and i′ in Υ′, we set πi

′
1 = π

(i)
1 (and mi′

1 = m
(i)
1 ). Black and grey blocks are reindexed in a
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similar fashion. Let ui, vj, wk be the strings obtained by writing the elements of πi1, π
j
2, π

k
3

respectively in increasing order. Denote u = u1 · · ·up1 , v = v1 · · · vp2 , w = w1 · · ·wp3
the concatenations of the strings defined above. We define θ1 ∈ Sn by setting u as the
first line and [n] as the second line of the two-line representation of this permutation.
Similarly, we define the relabeling permutations θ2 and θ3 from v and w respectively.

Example 3.5. Following up on Example 3.4, we construct the relabeling permutations
θ1, θ2, and θ3. We have:

θ1 =

(
4 5 1 2 3 6
1 2 3 4 5 6

)
, θ2 =

(
1 3 4 5 2 6
1 2 3 4 5 6

)
, θ3 =

(
5 2 1 3 4 6
1 2 3 4 5 6

)
.

We define the multisets:

S1 =
{
θ1(m

i
1)
}p1−1
i=1
∪
{
θ1(α2α3(m

′j
2))
}p2
j=1
⊂ [n],

S2 =
{
θ2(m

′j
2)
}p2−1
j=1
∪
{
θ2(α

−1
3 α−12 α3(m

k
3))
}p3
k=1
⊂ [n− 1],

S3 =
{
θ3(m

k
3)
}p3−1
k=1
∪
{
θ3(α

−1
3 (mi

1))
}p1−1
i=1
⊂ [n− 1].

They are multisets since we allow some elements to be repeated once when there are
triangles in Υ′. Note that the sizes of the underlying sets of S1, S2, and S3 are p1 +
p2 − 1 − g, p2 + p3 − 1 − w, and p1 + p3 − 2 − b respectively. We use these multisets to
label the vertices, the edges and triangles of the cactus tree τ with three types of labels:
circle for θ1, square for θ2, and triangle for θ3 (represented as labels i , i , and: i as
illustrated in Figure 7). We assign θ1(m

i
1) to the white vertices indexed i in Υ′, θ2(m

′j
2)

to the black vertices indexed j in Υ′, and θ3(m
k
3) to the grey vertices indexed k in Υ′.

Children of a white vertex (edges and triangles) are labeled θ1(α2α3(m
′j
2)) if the black

vertex at the end of the edge or within the triangle is indexed by j in Υ′. The children of
the black and grey vertices are labeled in a similar fashion with

{
θ2(α

−1
3 α−12 α3(m

k
3))
}p3
k=1

and
{
θ3(α

−1
3 (mi

1))
}p1−1
i=1

respectively.
Let Υ′′ be the resulting cactus tree with these new additional labels.
Let Si (for i = 1, 2, 3) be the ordered multiset obtained by arranging the elements of

Si in non-decreasing order (for i = 1, 2, 3).

Lemma 3.6. Let d = (d1, . . . , dp1+p2−1) (d′ = (d′1, . . . , d
′
p2+p3

), and d′′ =
(d′′1, . . . , d

′′
p1+p3−1) resp.) be the ordered set of labels of the first type (second and third

type resp.) obtained by traversing Υ′′ up to, but not including the root vertex according to
the white RLT (black and grey RLT resp.) defined in Section 3. We have:

d = S1, d′ = S2, d′′ = S3.

Proof. Let θ1(m
0
1) = 0. By construction, if θ1(α2α3(m

′j
2)) in Υ′′ is the label of a child of

a white vertex with label θ1(m
i
1), 1 6 i 6 p1, then α2α3(m

′j
2) ∈ πi1 and α2α3(m

′j
2) 6 mi

1.
As θ1 is increasing among the blocks and within them then:

θ1(m
i−1
1 ) < θ1(α2α3(m

′j
2)) < θ1(m

i
1),
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Now, if two children of the same white vertex have respective labels θ1(α2α3(m
′j1
2 )) and

θ1(α2α3(m
′j2
2 )) in Υ′′, and black vertex j1 is to the left of j2; then by construction we

have α2α3(m
′j1
2 ) < α2α3(m

′j2
2 ). Again, since θ1 is increasing within blocks of π1 then

θ1(α2α3(m
′j1
2 )) < θ1(α2α3(m

′j2
2 )). Finally, the white RLT of the circle labels in Υ′′ (up to

but not including the root) yields S1. Similarly, black and grey RLTs of the square and
triangle labels in Υ′′ yield S2 and S3 respectively.

(iii) Thorns : Recall the definition of d,d′, and d′′ in Lemma 3.6. We add thorns to the
white vertices for each missing element of [n] in d, and add thorns to black and grey
vertices for each missing element of [n − 1] in d′ and d′′, respectively. More specifically,
we add n + 1 − p1 − p2 + g thorns to the white vertices, n − p2 − p3 + w thorns to the
black vertices, and n + 1 − p1 − p3 + b thorns to the grey vertices of Υ′′ in the following
fashion:

1. If d1 > 1 and d1 is the label of a (white) vertex, we connect d1− 1 thorns to it. If a
child of a white vertex has label d1, we connect d1−1 thorns to the ascending white
vertex on the left of child d1.

2. For 1 < l < p1 + p2 − 1, if dl > dl−1 + 1 we follow one of the four following cases:
(a) dl and dl−1 are both the label of white vertices in Υ′′, white vertex dl (short for
vertex corresponding to dl) has no child and it is the white vertex following dl−1 in
the white RLT of Υ′′. If so, we connect dl − dl−1 − 1 thorns to dl.
(b) dl is the first label of a child and dl−1 is the first label of a white one, then dl is
the leftmost child of the white vertex following dl−1. If so, we connect dl − dl−1 − 1
thorns to the ascending white vertex of dl on its left
(c) dl is the first label of a white vertex and dl−1 is the first label of a child, then
dl−1 is the rightmost child of dl. If so, we connect dl − dl−1 − 1 thorns to dl on the
right of dl−1
(d) Finally, if dl and dl−1 are both the first label of children, they have the same
white ascending vertex. We connect dl − dl−1 − 1 thorns to the ascending white
vertex between them.

3. If dp1+p2−1 < n, we connect n− dp1+p2−1 − 1 thorns to the root vertex on the right
of its rightmost child.

Again, we can think of this as adding a thorn to the the white vertices for each element
of [n] not included in d.

A similar construction is applied to add thorns to the black and grey vertices following
the sequence of integers d′ and d′′. Finally we remove all the labels to get the cactus tree
τ̃ .

Example 3.7. Figure 7 depicts the construction of the cactus tree τ̃ corresponding to the
partitioned cactus in Example 2.11.

The next two lemmas show that τ̃ preserves the type of the partitioned cacti, and that
Υ′′ can be recovered from τ̃ via white, black, and grey RLTs.
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blocks π1:

blocks π2:

blocks π3:

1 

2 

1 

3 

2 

2 1 

2 

5 6 

4 6 

3 
5 

1 2 6 

Figure 7: Construction of the cactus tree τ̃ associated to Example 2.11

Lemma 3.8. τ̃ as defined above belongs to C̃T (λ, µ, ν, g, w, b) where g, w, b are the number
of triangles in τ̃ rooted in grey, white, and black vertices respectively.

Proof. We check the vertex degrees of τ̃ . If we take two successive white vertices i − 1
and i according to white RLT of Υ′′ with labels θ1(m

i−1
1 ) and θ1(m

i
1), (i < p1), a thorn

is connected to i for any missing integer of the interval [θ1(m
i−1
1 ), θ1(m

i
1)− 1] in d. This

number of missing integers is equal to θ1(m
i
1)− 1− θ1(mi−1

1 )− fi where fi is the number
of children of i. As i is not the root vertex, there is an edge between i and its ancestor so
that the resulting degree deg for i (as defined in (2.17)) is:

deg(i) = fi+
(
θ1(m

i
1)− 1− θ1(mi−1

1 )− fi
)

+ 1 = θ1(m
i
1)− θ1(mi−1

1 ), ∀i ∈ [p1−1], (3.9)

Furthermore, n − θ1(mp1−1
1 ) − fp thorns are connected to the root vertex (since εp1 = 0)

so that:
deg(p1) = n− θ1(mp1−1

1 ) (3.10)

But, according to the construction of θ,

θ1(π
1
1) = [θ1(m

1
1)] (3.11)

θ1(π
i
1) = [θ1(m

i
1)] \ [θ1(m

i−1
1 )], (2 6 i 6 p1 − 1) (3.12)

θ1(π
p1
1 ) = [n] \ [θ1(m

p1−1
1 )] (3.13)

Subsequently:
deg(i) = |πi1|, ∀i ∈ [p1]. (3.14)

And λ = type(π) is the white vertex degree distribution of τ̃ . In a similar fashion, µ and
ν are the black and grey vertex degree distribution of τ̃ .

Lemma 3.15. Assign circle labels 1, 2, . . . , n to the white vertices and their children (in-
cluding thorns) in τ̃ in increasing order according to the white RLT, add two other sets
of labels 1, 2, . . . , n (square and triangle) to the black and grey vertices and their children
in increasing order according to the black and grey RLT. The labeling of the vertices and
children that are not thorns is the same as in Υ′′.

Proof. According to the construction of τ̃ , we add thorns to Υ′′ when integers are missing
in its RLTs so that the thorns would take these missing integers as labels when traversing
the cactus tree. As a result, the labels of the vertices in the RLTs of τ̃ are still d,d′, and
d′′ and since they still appear in the same order, we have the desired result.
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3.2.2 The permutations σ1 and σ2 and the ordered set χ and the

In the previous subsection we explained how to obtain the cactus tree τ̃ from the parti-
tioned 3-cactus in C(λ, µ, ν). We now move on to explain how to obtain the permutations

σ1 in Sn+1−`(λ)−`(ν)+b and σ2 in Sn−`(λ)−`(ν)+b, and the ordered set χ inOP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b .

(i) Permutations σ1, σ2: Let E and F be the following sets:

E = [n]
∖({

θ1(m
i
1)
}p1−1
i=1
∪
{
θ1(α3(m

k
3))
}p3−1
k=1

)
,

F = [n]
∖({

θ1(α2α3(m
′j
2)
}p2
j=1
∪
{
θ1(α3(m

k
3))
}p3−1
k=1

)
.

We define partial permutations σ̃1 and σ̃2 in the following way:

σ̃1 : E → [n− 1]\S3

u 7→ θ3α
−1
3 θ−11 (u)

σ̃2 : F → [n− 1]\S2

u 7→ θ2α
−1
3 α−12 θ−11 (u).

Let σ1 ∈ Sn+1−p1−p3+b and σ2 ∈ Sn−p2−p3+w be the order isomorphic permutations
corresponding to σ̃1 and σ̃2 respectively.

(ii) Ordered set χ: We define the ordered set χ̃ =
{
θ1(α3(m

k
3)) | θ1(α3(m

k
3)) /∈ S1

}p3
k=1

.
Then, let ρ : [n] \ S1 ` [n − |S1|] be the indexing permutation associating to any
integer i ∈ [n] \ S1 its position in [n] \ S1 where [n] \ S1 is the ordered (increasing)
set of [n] \ S1. The ordered set χ is defined as follows:

χ = ρ(χ̃) (3.16)

As |S1| = n−(`(λ)−1)−`(µ)+g and
∣∣{θ1(α3(m

k
3)) | θ1(α3(m

k
3)) /∈ S1

}∣∣ = `(ν)−w−b,
χ belongs to the set OP(n+1−`(λ)−`(µ)+g)

`(ν)−w−b .

Example 3.17. Getting back to Example 2.11, computing the partial permutations leads
to:

σ̃1 =

(
1 3 5
4 5 3

)
, σ̃2 =

(
3 1
1 2

)
,

and

σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2
2 1

)
.

For the ordered set we have: χ̃ = (4) and χ = (3).
In summary, the map Θn

λ,µ,ν applied to (π1, π2, π3, α1, α2) in C([21, 41], [21, 41], [12, 41]) from
Example 2.11 gives the 4-tuple (τ̃ , σ1, σ2, χ) depicted in Figure 8.
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Θn
λ,µ,ν :

,

(
1 2 3
2 3 1

)
,

(
1 2
2 1

)
, (3)7−→

( )

Figure 8: Summary of ouput (τ̃ , σ1, σ2, χ) of the map Θn
λ,µ,ν applied to the partitioned

3-cactus from Example 2.11.

3.3 Showing the map Θ is a bijection

To show that Θn
λ,µ,ν is a one-to-one correspondence we take any element (τ̃ , σ1, σ2, χ) in

C̃T (λ, µ, ν, g, w, b)×Sn+1−`(λ)−`(ν)+b ×Sn−`(µ)−`(ν)+w ×OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b

and show that there is a unique element (π1, π2, π3, α1, α2) in C(λ, µ, ν) such that
Θn
λ,µ,ν(π1, π2, π3, α1, α2) = (τ̃ , σ1, σ2, χ). Let p1 = `(λ), p2 = `(µ), and p3 = `(ν). We

proceed with a two step proof:

(i) The first step is to notice that (τ̃ , σ1, σ2, χ) defines a unique cactus tree τ belonging
to CT (p1, p2, p3, g, w, b), unique multisets {Si}16i63, as well as a unique ordered set χ̃

belonging toOP(n+1−p1−p2+g)
p3−w−b . Labeling each vertex and children of τ with 1, 2, . . . , n

in increasing order according to the three reverse levels traversals and removing the
three sets of thorns (together with their labels) gives a labeled cactus tree Υ′′ that
leads to τ̃ according to Θ. This labeled cactus tree is the unique one that can lead
to τ̃ since within Θ, τ̃ , and Υ′′ have the same underlying cactus tree structure τ ,
and according to Lemma 3.15, τ̃ determines the labels of Υ′′.
Then, using Lemma 3.6, the three series of labels (except the root’s) in Υ′′ are
by construction the three sets {Si}16i63. The knowledge of S1 and χ uniquely
determines χ̃. As a result, exactly one 7-tuple (τ, S1, S2, S3, σ1, σ2, χ̃) is associated
to (τ̃ , σ1, σ2, χ) by the final steps of the mapping Θ.

(ii) The bijection Θn,p1,p2,p3 in [18] is identical to the first steps (up to the construction
of τ, S1, S2, S3, σ1, σ2 and χ̃) of Θn

λ,µ,ν . Therefore by [18, Sec. 6] there is a unique 5-
tuble (π1, π2, π3, α1, α2) in C(p1, p2, p3, n) =

⋃
`(λ)=p1,`(µ)=p2,`(ν)=p3

C(λ, µ, ν) mapped

to the 7-tuple (τ, S1, S2, S3, σ1, σ2, χ̃) by Θn,p1,p2,p3 and equivalently by the first steps
of Θn

λ,µ,ν .
According to [18], the types of π1, π2, and π3 are directly recovered from {Si}16i63

and τ . Furthermore, using Lemma 3.8, the vertex degree distribution of τ̃ is equal to
the type of the partitions encoded by the elements in {Si}16i63 corresponding to the
relabeling of the maximum elements of the blocks. Finally, as the vertex degree dis-
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tribution in τ̃ is (λ, µ, ν), so is the type of (π1, π2, π3). Therefore, (π1, π2, π3, α1, α2)
belongs to C(λ, µ, ν) as desired.

4 Proof of Proposition 2.19: computation of the

number of cactus trees

In this section we prove Proposition 2.19 where we compute the cardinality of the set
C̃T (λ, µ, ν, g, w, b). To do this, we consider its generating function F :

F =
∑

λ,µ,ν`n

∑

g,w,b>0

|C̃T (λ, µ, ν, g, w, b)|x`(λ)1 x
`(µ)
2 x

`(ν)
3 xg4x

w
5 x

b
6t

n(λ)un(µ)vn(ν). (4.1)

That is, the white, black, and grey vertices are marked respectively by indeterminates
x1, x2 and x3. Triangles children of a grey, white, and black vertex are marked respectively
by x4, x5, and x6. Furthermore, ti, uj, and vk mark respectively white vertices of degree
i, black vertices of degree j and grey vertices of degree k. And t = (t1, t2, . . .), u =
(u1, u2, . . .), v = (v1, v2, . . .) and n(ε) = (n1(ε), n2(ε), . . .) for ε ` n where ni(ε) is the
number of i parts of ε.

The evaluation of F is performed thanks to the multivariate Lagrange inversion
theorem (see e.g. [7, 1.2.13]). We propose a recursive decomposition of the desired set of
cactus trees sharing similar ideas with [6].

In a similar fashion as in [6], we introduce W , B, and G as the generating functions
of the sets W , B, and G of non empty planted cactus trees with respectively white, black,
and grey root vertices. Construction rules for these sets of cactus trees are identical
to those of C̃T (λ, µ, ν, g, w, b) with the only exception that an additional planted edge
is connected to the root vertex on the left of the leftmost child (vertex or thorn). We
take this additional edge into account in the root’s degree. Finally, let Tg, Tw, and Tb
be respectively the generating functions of triangles children of a grey, white, and black
vertices. Immediately:

Tg = x4 (4.2)

Tw = x5 (4.3)

Tb = x6 (4.4)

Any cactus tree in C̃T (λ, µ, ν, g, w, b) can be decomposed in a tuple of planted cactus
trees in W , B, and G. The rule for the decomposition is based on the nature of the
leftmost child of the white root in a given cactus tree τ of C̃T (λ, µ, ν, g, w, b):

(i) If the leftmost child is a thorn then τ is equivalent to the cactus tree in W with the
planted edge instead of this leftmost thorn.

(ii) If the leftmost child is an edge connected to black vertex v, then τ is equivalent to
the pair (τ1, τ2) in W × B where τ2 is the cactus tree descending from v with v as
the root and the edge linking v to the root of τ replaced by the planted edge. τ1 is
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the remaining cactus tree descending from the root of τ with the edge linking it to
v as the planted edge.

(iii) If the leftmost child is a triangle containing black vertex v1 and grey vertex v2 then τ
is equivalent to the tuple (τ1, τ2, τ3, tw) inW×B×G×TTw (TTw is the singleton set
composed of the triangle child of a white vertex) where τ2 and τ3 are the descending
trees from v1 and v2 with the edge linking τ ’s root and v1 and the edge linking v1
and v2 replaced by a planted edge. τ1 is the remaining descending cactus tree from
its root with the leftmost triangle replaced by the planted edge.

One can check easily that the numbers of triangles, white, black, and grey vertices and
their degree distribution are stable by the bijective transformation described above. The
complicated case above is case (iii) where the edges linking v1 and v2, and the edge linking
the white root of τ and v2 are replaced by nothing in (respectively) τ2 and τ1. However
in Definition 2.17 of the degree of a vertex in τ , these edges were already not taken into
account for the degree of respectively v1 and the root vertex. As a consequence:

F = W +W ·B +W ·B ·G · Tw (4.5)

This decomposition is illustrated in Figure 9.

Figure 9: Illustration of the decomposition into planted trees

To determine F, we show that W,B,G, Tg, Tw, and Tb satisfy a system of functional
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equations. Namely, as shown in Figure 10 any planted cactus tree inW , τ can be decom-
posed into:
• its white root,
• the cactus trees rooted in a black vertex descending from the root,
• a triple composed of a black rooted cactus tree, a grey rooted cactus tree, a triangle

for each triangle descending from the root,
• the positions of the triangles in the list of children.

Figure 10: Decomposition of a white rooted planted cactus tree

Let i denote the degree of the root vertex (of degree i+1), j the number of black children
not belonging to a triangle and k the number of descending triangles. The vectors j and
k give the positions of the j black vertices and k triangles within the i children. Using
the decomposition above, we have:

W = x1
∑

i>0

ti+1

∑

06j+k6i

∑

j,k

Bj(B ·G · Tw)k (4.6)

Then:

W = x1
∑

i>0

ti+1

∑

06j+k6i

(
i

j, k

)
Bj(B ·G · Tw)k

W = x1
∑

i>0

ti+1 (1 +B +B ·G · Tw)i

Similarly,

B = x2
∑

i>0

ui+1 (1 +G+G ·W · Tb)i

G = x3
∑

i>0

vi+1 (1 +W +W ·B · Tg)i

Finally:
(W,B,G, Tg, Tw, Tb) = xΦ(W,B,G, Tg, Tw, Tb) (4.7)
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where x = (x1, x2, x3, x4, x5, x6) and Φ = (Φi)16i66 with:

Φ1(W,B,G, Tg, Tw, Tb) =
∑

i>0

ti+1 (1 +B +B ·G · Tw)i (4.8)

Φ2(W,B,G, Tg, Tw, Tb) =
∑

i>0

ui+1 (1 +G+G ·W · Tb)i (4.9)

Φ3(W,B,G, Tg, Tw, Tb) =
∑

i>0

vi+1 (1 +W +W ·B · Tg)i (4.10)

Φi = 1 for 4 6 i 6 6 (4.11)

Using the multivariate Lagrange inversion formula for monomials (see [7, 1.2.9]), we find:

k1k2k3k4k5k6 [xk] W r1Br2Gr3T r5w =∑

{µij}

|| δijkj − µij ||
∏

16i66

[W µi1Bµi2Gµi3T µi4g T µi5w T µi6b ]Φki
i (4.12)

where || · || denotes the determinant, k = (k1, k2, k3, k4, k5, k6), δij is the Kronecker delta
function and the sum is over all 6× 6 integer matrices {µij} such that:

• µ11 = µ14 = µ16 = µ22 =
µ24 = µ25 = µ33 = µ35 =
µ36 = 0
• µij = 0 for i > 4
• µ21 + µ31 = k1 − r1
• µ12 + µ32 = k2 − r2
• µ13 + µ23 = k3 − r3
• µ34 = k4
• µ15 = k5 − r5
• µ26 = k6

i.e. µ =




0 ∗ ∗ 0 ∗ 0
∗ 0 ∗ 0 0 ∗
∗ ∗ 0 ∗ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Looking for zero contribution terms in expression (4.12), we notice that G and Tw
have necessarily the same degree in the formal power series expansion of Φ1. Hence, a
non zero contribution of

[W µ11Bµ12Gµ13T µ141 T µ152 T µ163 ] Φk1
1

implies µ13 = µ15 = k5−r5. Similar remarks give non zero contributions only for µ21 = k6
and µ32 = k4. As a result, only that one matrix µ yields a non zero contribution.
For this particular µ,

1

k4k5k6
|| δijkj − µij || = r1 (k2k3 − (k3 − k5)k4)

+ r2 (k6k3 + (k6 + r1 − k1)(r3 + k4 − r5 − k3))
+ r3 (k4k6 − k2(k6 + r1 − k1)) (4.13)

=
1

k4k5k6
∆(k, r). (4.14)
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Let co(k) denotes the set of sequences of non negative integers of total sum k. The next
step is to notice that:

Φk1
1 =

∑

s∈co(k1)

(
k1
s

)∏

i>0

[
ti+1 (1 +B +B ·G · Tw)i

]si

Φk1
1 =

∑

s∈co(k1)

(
k1
s

)∏

i>0

tsii+1

∑

a1,a2

( ∑
i isi

a1 − a2, a2

)
Ba

1(GTw)a2 . (4.15)

As a result, the coefficient in W µ11Bµ12Gµ13T µ14g T µ15w T µ16b is equal to

∑

s∈co(k1)

(
k1
s

)∏

i>0

tsii+1

( ∑
i isi

k5 − r5, k2 − k4 − k5 − r2 + r5

)
. (4.16)

Similarly, we have:

[W µ21Bµ22Gµ23T µ24g T µ25w T µ26b ] Φk2
2 =

∑

s∈co(k2)

(
k2
s

)∏

i>0

usii+1

( ∑
i isi

k6, k3 − k5 − k6 − r3 + r5

)
(4.17)

[
W µ31Bµ32Gµ33T µ34g T µ35w T µ36b

]
Φk3

3 =
∑

s∈co(k3)

(
k3
s

)∏

i>0

vsii+1

( ∑
i isi

k4, k1 − k4 − k6 − r1

)
. (4.18)

Putting everything together gives:

[x
`(λ)
1 x

`(µ)
2 x

`(ν)
3 xg4x

w
5 x

b
6t

n(λ)un(µ)vn(ν)] W r1Br2Gr3T r5w =

∆(`(λ), `(µ), `(ν), g, w, b, r)

`(λ)`(µ)`(ν)

(
`(λ)

n(λ)

)( ∑
i ini+1(λ)

w − r5, `(µ)− g − w − r2 + r5

)
×

×
(
`(µ)

n(µ)

)( ∑
i ini+1(µ)

b, `(ν)− w − b− r3 + r5

)

×
(
`(ν)

n(ν)

)( ∑
i ini+1(ν)

g, `(λ)− g − b− r1

)
. (4.19)

Noticing that for ε ` n
∑

i>0

ini+1(ε) =
∑

i>0

(i+ 1)ni+1(ε)−
∑

i>0

ni+1(ε) = n− `(ε). (4.20)

And summing for r ∈ {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 1)} gives the desired result.
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5 Proof of Corollary 1.3 and restriction of bijection

Θ when ν = [1n]

We look more closely at the case when one of the partitions, say ν, is [1n]. We need the
following definitions:

Definition 5.1 (Partitioned bicolored map). Given partitions λ, µ ` n, let C(λ, µ) be the
set of triples (π1, π2, α) such that α ∈ Sn, π1, π2 are set partitions of [n] with type(π1) = λ
and type(π2) = µ, and each block of π1 and π2 is a union of cycles of α and β = α−1γn
respectively. The elements of C(λ, µ) are called unicellular partitioned bicolored maps of
type λ and µ. Let C(λ, µ) = |C(λ, µ)|.

Definition 5.2 (Ordered rooted bicolored thorn trees). For λ, µ ` n such that `(λ) +

`(µ) 6 n+1, we define B̃T (λ, µ) as the set of ordered rooted bicolored trees with `(λ) white
vertices, `(µ) black vertices, n+ 1− `(λ)− `(µ) thorns connected to the black vertices and
n+ 1− `(λ)− `(µ) thorns connected to the white vertices. The white (respectively black)
vertices’ degree distribution (accounting the thorns) is specified by λ (respectively µ). The
root is a white vertex.

Again, adapting the Lagrange inversion developed in [6], we get:

|B̃T (λ, µ)| = n

Aut(λ)Aut(µ)

(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))! 2
.

We now prove Corollary 1.3:

Proof. We have C(λ, µ, [1n]) = C(λ, µ), the number of unicellular partitioned bicolored
maps of type λ and µ. Indeed, as the cycles of α3 refine the blocks of π3, if ν = [1n]
then π3 = {{1}, {2}, . . . , {n}} and α3 = ι, the identity permutation. Then extracting the
coefficient of m1n(z) to both sides of (2.14) we obtain

∑

λ,µ`n

Aut(λ)Aut(µ)Aut(1n)C(λ, µ)mλ(x)mµ(y) = [m1n(z)]
∑

λ,µ,ν`n

knλ,µ,νpλ(x)pµ(y)pν(z)

=
∑

ν`n,ν�1n
Aut(1n)Rν,1n

∑

λ,µ`n

knλ,µ,νpλ(x)pµ(y)

Since Rν,1n = 1 if ν = 1n and zero otherwise, we obtain

∑

λ,µ`n

Aut(λ)Aut(µ)C(λ, µ)mλ(x)mµ(y) =
∑

λ,µ`n

knλ,µ,1npλ(x)pµ(y),

where knλ,µ,1n = knλ,µ.

Next, we say what the bijection Θn
λ,µ,ν of Theorem 2.23 does in this case (ν = [1n]). This

matches the bijection in [15] which in turn matches the bijection in [6] when g(λ, µ) = 0
and is a refinement of a bijection in [17].
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Table 3: Local rules for reducing cactus tree τ̃ when ν = [1n].

Corollary 5.3. There is a bijection between partitioned bicolored maps C(λ, µ, n) and

pairs (t̃, σ) where t̃ ∈ B̃T (λ, µ) and σ ∈ Sn+1−`(λ)−`(µ).

Proof. From above we have that C(λ, µ, [1n]) = C(λ, µ). Let

(τ̃ , σ1, σ2, χ) := Θn
λ,µ,[1n](π1, π2, [1

n], α1, α
−1
1 γ)

for (π1, π2, α1) ∈ C(λ, µ). We know that `(µ) = n forces α3 = ι, the identity permutation.

In this case m′
(j)
2 is the maximal element of α−12 (π

(j)
2 ). But α2 preserves the blocks of

π2, thus m′
(j)
2 is just the maximal element of π

(j)
2 , call this m

(j)
2 . First, we show that in

this case τ̃ can be reduced to a tree t̃ ∈ B̃T (λ, µ). Then, we show that σ1, σ2 are trivial
permutations and that χ can be regarded as a permutation in Sn+1−`(λ)−`(µ).

From the incidence rules in Table 1, we see that each black vertex j has |πj2| children
(one for each element of the block). And `(λ)− 1 of the grey vertices have one child (one

for each m
(i)
1 , 1 6 i 6 `(λ) − 1), the other grey vertices have none. Recall w, b, g count

the number of triangles in τ̃ children of white, black, and grey vertices respectively. From
the rules in Table (2) for adding triangles children of the different vertices, we see that
w = `(µ). And if a grey vertex has a white child, then these two vertices are part of a
triangle child of a black vertex, so b = `(λ)− 1. For triangles children of grey vertices, if

α2(m
(j)
2 ) = m

(i)
1 for some i and j (1 6 i 6 `(λ) − 1 and 1 6 j 6 `(µ)), then m

(i)
1 ∈ π(j)

2

and m
(i)
1 6 m

(j)
2 (α2 preserves blocks of π2). But α1(m

(i)
1 ) 6 m

(i)
1 (α1 preserves blocks of

π1), so γ(m
(j)
2 ) 6 m

(j)
2 . This only happens if m

(j)
2 = n which means 1 = γ(n) ∈ π(i) and

i = `(λ), a contradiction. Thus g = 0; there are no triangles children of a grey vertex.
In terms of the thorns, the cactus τ̃ has n+ 1− `(λ)− `(µ) thorns connected to white

vertices and since n− `(µ)− `(ν) +w = 0 and n+ 1− `(λ)− `(ν) + b = 0, τ̃ has no thorns
connected to black and grey vertices.

From above we see that each grey vertex is either: (i) within a triangle child of a
black vertex, (ii) a vertex of a triangle child of a white vertex, and (iii) a leaf (note that
there are n− (`(λ)− 1)− `(µ) of these). Then depending on the case we do the following
reductions: (i) and (ii) triangle to the edge linking the white and the black vertex, (iii)
leaf to thorn connected to a black vertex. We summarize this reduction graphically in
Table 3:

The outcome is an ordered bicolored tree t̃ with `(λ) white vertices and `(µ) black
vertices. This tree t̃ has n + 1 − `(λ) − `(µ) thorns connected to white vertices and
n+ 1− `(λ)− `(µ) thorns connected to black vertices. Moreover, this reduction τ̃ → t̃ is
reversible.
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In addition, since τ̃ had no thorns connected to black and grey vertices (n+1− `(λ)−
`(ν) + b = 0 and n− `(µ)− `(ν) +w = 0), then σ1 and σ2 are trivial permutations. Since
`(ν)−w− b = n+ 1− `(λ)− `(µ) = n+ 1− `(λ)− `(µ) + g, then we see that χ is just a
permutation σ in Sn+1−`(λ)−`(µ).

In summary, we have a bijection from (λ, µ, n) to the desired pair (t̃, σ).

Example 5.4. Let α1 = (189 10)(25)(3467), α2 = (15427)(3)(6)(8)(9)(10),
α3 = ι (α1α2 = α1α2α3 = γ10), π1 = {{3, 4, 6, 7}, {1, 2, 5, 8, 9, 10}},
π2 =

{
{1, 2, 4, 5, 7, 10}, {3, 9}, {6, 8}

}
, π3 = {{1}, {2}, . . . , {10}}. Then

Θn
λ,µ,[1n](π1, π2, π3, α1, α2) = (τ̃ , ∅, ∅, 251364) where τ̃ and its reduction t̃ are depicted below:

Figure 11: Example of reduction of a cactus tree to a bicolored thorn trees when ν = [110].
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