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Abstract

Let a, b, c, d be four vertices in a graph G. A K4-minor rooted at a, b, c, d consists
of four pairwise-disjoint pairwise-adjacent connected subgraphs of G, respectively
containing a, b, c, d. We characterise precisely when G contains a K4-minor rooted
at a, b, c, d by describing six classes of obstructions, which are the edge-maximal
graphs containing no K4-minor rooted at a, b, c, d. The following two special cases
illustrate the full characterisation: (1) A 4-connected non-planar graph contains a
K4-minor rooted at a, b, c, d for every choice of a, b, c, d. (2) A 3-connected planar
graph contains a K4-minor rooted at a, b, c, d if and only if a, b, c, d are not on a
single face.

1 Introduction

Let G and H be graphs1. An H-minor 2 in G is a set {Gx : x ∈ V (H)} of pairwise
disjoint connected subgraphs of G indexed by the vertices of H, such that if xy ∈ E(H)
then some vertex in Gx is adjacent to some vertex in Gy. Each subgraph Gx is called a
branch set of the minor. A complete graph Kt-minor in G is rooted at distinct vertices
v1, . . . , vt ∈ V (G) if v1, . . . , vt are in distinct branch sets. For brevity, we say that a Kt-
minor rooted at {v1, . . . , vt} is a {v1, . . . , vt}-minor. Rooted minors are a significant tool
in Robertson and Seymour’s graph minor theory [18], and a number of recent papers have
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1We consider finite, simple, undirected graphs.
2This definition of minor is a more concrete version of the standard definition: H is a minor of G if

H is isomorphic to a graph obtained from a subgraph of G by contracting edges.
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studied rooted minors in their own right [9, 12, 28, 29]. Rooted minors are analogous to
H-linked graphs for subdivisions; see [2–6, 13–15]. This paper considers the question:

When does a given graph contain a K4-minor rooted at four given vertices?

The four given vertices will henceforth be called nominated. Robertson, Seymour
and Thomas considered this question in their proof of Hadwiger’s Conjecture for graphs
with no K6-minor; see (2.6) of [20, page 288], where a K4-minor rooted at {a, b, c, d} is
called a cluster traversing {a, b, c, d}. They proved a partial answer, by showing that if
a graph G contains no K4-minor rooted at {a, b, c, d}, then G has a particular type of
(6 3)-separation, or G is planar with a, b, c, d on the outerface.

This paper establishes a complete characterisation of graphs that have a K4-minor
rooted at four nominated vertices. In particular, Theorem 15 describes six classes of
obstructions, which are the edge-maximal graphs containing no K4-minor rooted at four
nominated vertices. The flavour of this result is best introduced by first considering the
3- and 4-connected cases, which are addressed in Sections 3 and 4. First, we survey some
definitions and results from the literature that will be employed later in the paper.

2 Background

The question of when does a graph contain a K3-minor rooted at three nominated vertices
was answered by Wood and Linusson [29].

Lemma 1 ([29]). For distinct vertices a, b, c in a graph G, either:

• G contains an {a, b, c}-minor, or

• for some vertex v ∈ V (G) at most one of a, b, c are in each component of G− v.

Note that in this lemma it is possible that v ∈ {a, b, c}.
For distinct vertices s1, t1, s2, t2 in a graph G, an (s1t1, s2t2)-linkage consists of an s1t1-

path and an s2t2-path that are disjoint. Seymour [21] and Thomassen [24] independently
proved that there is essentially one obstruction for the existence of a linkage, as we now
describe; see [7, 8, 10, 11, 16, 22, 23, 25, 27] for related results.

For a graph H, let H+ denote a graph obtained from H as follows: for each triangle
T of H, add a possibly empty clique XT disjoint from H and adjacent to each vertex
in T . We consider H+ to be implicitly defined by the graph H and the cliques XT .
An (a, b, c, d)-web is a graph H+, where H is an embedded planar graph with outerface
(a, b, c, d), such that each internal face of H is a triangle, and each triangle of H is a face.
An {a, b, c, d}-web is an (a, b, c, d)-web for some linear ordering (a, b, c, d). That is, in an
{a, b, c, d}-web the vertex ordering around the outerface is not specified.

Lemma 2 ([21, 24]). For distinct vertices s1, t1, s2, t2 in a graph G, either:

• G contains an (s1t1, s2t2)-linkage, or

• G is a spanning subgraph of an (s1, s2, t1, t2)-web.
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Lemma 2 implies the following result, first proved by Jung [10].

Lemma 3 ([10]). For distinct vertices s1, s2, t1, t2 in a 4-connected graph G, either:

• G contains an (s1t1, s2t2)-linkage, or

• G is planar and s1, s2, t1, t2 are on some face in this order.

Lemma 3 makes sense since every 3-connected planar graph has a unique planar em-
bedding up to the choice of outerface [26]. We implicitly use this fact throughout the
paper.

We now describe our first obstruction for a graph to contain a rooted K4-minor.

Lemma 4. Every (a, b, c, d)-web G contains no {a, b, c, d}-minor.

First proof. Since G is an (a, b, c, d)-web, G contains no (ac, bd)-linkage [21, 24]. But
if G contains a K4-minor A,B,C,D respectively rooted at a, b, c, d, then some ac-path
(contained in A∪C) is disjoint from some bd-path (contained in B∪D). Thus G contains
no {a, b, c, d}-minor.

Second proof. Suppose G contains an {a, b, c, d}-minor. Since G is connected, we may
assume that every vertex is in some branch set. Contracting each edge with both endpoints
in the same branch set produces an outerplanar K4, which is a contradiction.

We will need the following result by Dirac [1].

Lemma 5 ([1]). For every set S of k vertices in a k-connected graph G, there is a cycle
in G containing S.

3 The 4-Connected Case

The following result characterises when a 4-connected graph contains a rooted K4-minor.
It is analogous to Lemma 3, and can also be concluded from the results of Robertson
et al. [20].

Theorem 6. For distinct vertices a, b, c, d in a 4-connected graph G, either:

• G contains an {a, b, c, d}-minor, or

• G is planar and a, b, c, d are on a common face.

Proof. Lemma 4 implies that if G contains an {a, b, c, d}-minor, then the second outcome
does not occur. To prove the converse, assume that G is non-planar, or if G is planar
then a, b, c, d are not on a common face. Since G is 4-connected, by Lemma 5, G contains
a cycle C through a, b, c, d. Without loss of generality, a, b, c, d appear in this order in C.
By Lemma 3, G contains an (ac, bd)-linkage. The result follows from Lemma 7 below.
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Lemma 7. Let C be a cycle in a graph G containing vertices a, b, c, d in this order. If G
contains an (ac, bd)-linkage, then G contains an {a, b, c, d}-minor.

Proof. Let G be a counterexample firstly with |V (G)| minimum and then with |E(G)|
minimum. If V (G) = {a, b, c, d}, then G ∼= K4. Now assume that |V (G)| > 5, and the
result holds for graphs with less than |V (G)| vertices, or with |V (G)| vertices and less
than |E(G)| edges.

Let P be an ac-path disjoint from some bd-path Q. Let Rab be the ab-path contained
in C avoiding c and d. Similarly define Rbc, Rcd and Rda. If some vertex or edge x is not
in P ∪Q∪C, then G−x is not a counterexample, and thus contains an {a, b, c, d}-minor.
Now assume that G = P ∪ Q ∪ C. We show that contracting some edge gives a graph
that satisfies the hypothesis.

Suppose that some vertex v has degree 2. For at least one edge e incident to v,
the endpoints of e are not both in {a, b, c, d}. Thus the contraction G/e satisfies the
hypothesis, and G/e and hence G contains an {a, b, c, d}-minor. Now assume that every
vertex has degree at least 3. Thus V (G) = V (C) = V (P ∪Q).

Colour P red, and colour Q blue. Suppose that consecutive vertices u and v in C
receive the same colour. Then G/uv satisfies the hypothesis, as illustrated in Figure 1 in
the case that u and v are red. By the choice of G, G/uv and thus G contains an {a, b, c, d}-
minor. Now assume that the colours alternate around C. In particular, |V (P )| = |V (Q)|.
If P = ac, then Q = bd and we are done. Now assume that P contains some internal
vertex.

Figure 1: If consecutive vertices u and v in C receive the same colour, then contract uv.

Let v be the neighbour of a in P , and let w be the neighbour of c in P . If v is in
Rda∪Rab, then G/av satisfies the hypothesis, as illustrated in Figure 2. By the choice of G,
G/av and thus G contains an {a, b, c, d}-minor. Now assume that v ∈ Rbc∪Rcd. Similarly,
w ∈ Rda∪Rab. Since P and Q are disjoint, v ∈ Rbc∪Rcd\{b, d} and w ∈ Rda∪Rab\{b, d}.
Thus v 6= w. That is, P (and Q also) contains at least two internal vertices. Label v and
a by “a”. Label every other vertex in P by “c”.

Let x be the neighbour of v between v and c in Rbc ∪ Rcd. Let y be the neighbour of
a between w and a in Rda ∪Rab. Since the colours around C alternate, x and y are in Q.
Without loss of generality, b, x, y, d appear in this order in Q. Label the yd-subpath of
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Figure 2: If v is in Rda ∪Rab, then contract av.

Q by “d”, and label the remaining vertices in Q (including x) by “b”. Thus x, which is
labelled “b”, is adjacent to some vertex in Q labelled “d”. The neighbours of x in C are
labelled “a” and “c”, and the neighbours of y in C are labelled “a” and “c”. The sets of
vertices labelled “a”,“b”,“c”,“d” form pairwise disjoint subpaths of P or Q respectively
containing a, b, c, d. Thus contracting the vertices with the same label into a single vertex
gives an {a, b, c, d}-minor in G, as illustrated in Figure 3.

Figure 3: Construction of a rooted K4-minor in Lemma 7.

4 The 3-Connected Case

We have the following characterisation for 3-connected graphs.

Theorem 8. The following are equivalent for distinct vertices a, b, c, d in a 3-connected
graph G:

1. G contains an {a, b, c, d}-minor,

2. G is not a spanning subgraph of an {a, b, c, d}-web,
3. G contains an (ab, cd)-linkage, an (ac, bd)-linkage, and an (ad, bc)-linkage.

the electronic journal of combinatorics 20(2) (2013), #P64 5



Proof. Lemma 4 implies (1) =⇒ (2). Lemma 2 implies (2) =⇒ (3). It remains to prove
(3) =⇒ (1). First suppose that some cycle C contains a, b, c, d. Without loss of generality
assume that the order of the vertices in C is (a, b, c, d). Since G contains an (ac, bd)-
linkage, by Lemma 7, G contains an {a, b, c, d}-minor. Now assume that no cycle contains
a, b, c, d. By Lemma 5, since G is 3-connected, G contains a cycle C through a, b, c. Colour
red the vertices in the ab-path in C that avoids c. Likewise colour blue the vertices in
the bc-path in C that avoids a. And colour green the vertices in the ca-path in C that
avoids b. Note that a, b and c each receive two colours. By Menger’s Theorem there exists
three paths from d to C, such that each path intersects C in one vertex, and any two
of the paths only intersect at d. Colour each path with the colour of its vertex in C. If
two paths receive the same colour, then we obtain a cycle through a, b, c, d, as illustrated
in Figure 4(a). Now assume that no two paths receive the same colour. In this case we
obtain an {a, b, c, d}-minor, as illustrated in Figure 4(b).

Figure 4: Finding a rooted K4-minor in a 3-connected graph.

Note that Theorem 8 does not hold for 2-connected graphs. For example, K2,3 with
colour classes {a, b, c} and {d, v} contains an (ab, cd)-linkage, an (ac, bd)-linkage, and an
(ad, bc)-linkage, but contains no {a, b, c, d}-minor.

Theorem 8 can be strengthened for 3-connected planar graphs.

Theorem 9. For distinct vertices a, b, c, d in a 3-connected planar graph G, either:

• G contains an {a, b, c, d}-minor, or

• a, b, c, d are on a common face.

Proof. If a, b, c, d are on a common face, then G is a spanning subgraph of an {a, b, c, d}-
web; thus G contains no {a, b, c, d}-minor by Lemma 4. For the converse, assume that
G contains no {a, b, c, d}-minor. By Theorem 8, G is a spanning subgraph of H+ for
some planar graph H with outerface {a, b, c, d}, such that every internal face of H is a
triangle. Suppose that for some triangular face T = (u, v, w) of H, at least two vertices
x, y ∈ XT are adjacent in G to each of u, v, w. Let z be a vertex of H outside of T . There
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is such a vertex since the outerface has four vertices. Since G is 3-connected, there are
three internally disjoint xz-paths, respectively passing through u, v, w. Thus G contains a
subdivision of K3,3 with colours classes {u, v, w} and {x, y, z}. This contradiction proves
that for each triangular face T = (u, v, w) of H, at most one vertex in XT is adjacent to
each of u, v, w in G. If there is such a vertex x ∈ XT , then move x into H. Observe that
H remains planar: the face uvw is replaced by the faces Tw = (u, v, x), Tv = (u,w, x) and
Tu = (v, w, x). Each remaining vertex in XT is now adjacent to at most two of u, v, w (and
possibly x). Assign such a vertex to one of XTu , XTv , XTw according to its neighbours in
T . Repeat this step until XT = ∅ for each triangle T of H. In this case, G is a spanning
subgraph of H (not H+), and a, b, c, d are on a common face of G.

Corollary 10. A planar triangulation contains an {a, b, c, d}-minor for all distinct ver-
tices a, b, c, d.

5 Reductions

This section describes a number of operations that simplify the search for rooted K4-
minors. The first motivates the definition of H+.

Lemma 11. Let a, b, c, d be distinct vertices in a graph H. For each graph H+, we have
H+ contains an {a, b, c, d}-minor if and only if H contains an {a, b, c, d}-minor.

Proof. Since H is a subgraph of H+, if H contains an {a, b, c, d}-minor, then so does H+.
For the converse, say A,B,C,D is a K4-minor in H+ rooted at a, b, c, d. Let A′ := A∩H.
Define B′, C ′, D′ similarly. Suppose that A′ intersects the clique XT associated with some
triangle T of H. Since T separates a and XT , A′ intersects T . Since the vertices in A∩ T
are pairwise adjacent, A∩H is a connected subgraph of H. If two branch sets, say A and
B, are adjacent in XT , then they both contain a vertex in T , and A′ and B′ are adjacent
in H. Thus A′, B′, C ′, D′ is a K4-minor in H rooted at a, b, c, d.

A separation of a graph G is an ordered pair (G1, G2) of subgraphs of G such that
G = G1

⋃
G2, and G1 6⊆ G2 and G2 6⊆ G1. In particular, there is no edge between G1−G2

and G2−G1. The order of (G1, G2) is |V (G1∩G2)|. If certain vertices in G are nominated,
and there are s nominated vertices in G1 and t nominated vertices in G2, then (G1, G2)
is an (s, t)-separation.

Lemma 12. Let a, b, c, d be four nominated vertices in a 2-connected graph G. Let
(G1, G2) be a (2, 2)-separation of G of order 2, such that a, b ∈ V (G1) and c, d ∈ V (G2).
Let {u, v} := V (G1) ∩ V (G2). Let G′i be the graph obtained from Gi by adding the edge
uv. Then G contains an {a, b, c, d}-minor if and only if G′1 contains an {a, b, u, v}-minor
or G′2 contains a {u, v, c, d}-minor.

Proof. Since G is 2-connected, G′2 can obtained from G by contracting G1 onto the edge uv,
and G′1 can obtained from G by contracting G2 onto uv. Thus, if G′1 contains an {a, b, u, v}-
minor or G′2 contains a {u, v, c, d}-minor, then G contains an {a, b, c, d}-minor. For the
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converse, assume that G contains a K4-minor A,B,C,D containing a, b, c, d respectively.
Grow the branch sets until u and v are in A∪B∪C∪D. Without loss of generality, u is in
A. Thus v separates b from {c, d} in G−A. Hence v is in B. Therefore A∩G2, B∩G2, C,D
is a {u, v, c, d}-minor of G2.

Lemma 13. Let G be a graph with four nominated vertices a, b, c, d, such that NG(a) =
NG(b) = {u, v} for some vertices u, v ∈ V (G) \ {a, b, c, d}. Let G′ be the graph obtained
from G by deleting a and b, and adding the edge uv. Then G contains an {a, b, c, d}-minor
if and only if G′ contains a {u, v, c, d}-minor.

Proof. If G′ contains a {u, v, c, d}-minor, then contracting the edges au and bv gives an
{a, b, c, d}-minor in G. For the converse, say A,B,C,D is a K4-minor in G respectively
rooted at a, b, c, d. Grow the branch sets until u and v are in A∪B ∪C ∪D. If u is in C,
then v separates {a, b} and D, implying v is in D, in which case A = {a} and B = {b},
and A and B are not adjacent. By symmetry, {u, v} ∩ (C ∪D) = ∅. Thus u, v ∈ A ∪ B.
If u, v ∈ A, then A separates b and C ∪ D. Thus u ∈ A and v ∈ B, without loss of
generality. Hence A− a,B − b, C,D is a {u, v, c, d}-minor in G′.

6 Obstructions

Consider the following classes of graphs, each of which contains no K4-minor rooted at the
four nominated vertices. Each graph in each class is called an obstruction; see Figure 5.

Class A: Let H be the graph consisting of an edge pq with p nominated, and three
nominated vertices adjacent to both p and q. Let A be the class of all graphs H+.

Class B: Let H be the graph consisting of an edge pq, and four nominated vertices adja-
cent to both p and q. Let B be the class of all graphs H+.

Class C: Let H be the graph consisting of a triangle uvw, plus two nominated vertices
adjacent to u and v, and two nominated vertices adjacent to v and w. Let C be the
class of all graphs H+.

Class D: Let H be a planar graph with an outerface of four nominated vertices, such that
every internal face is a triangle, and every triangle is a face. Let D be the class of
all graphs H+. (These are the webs.)

Class E : Let H be a planar graph with outerface (p, q, r, s) where p and q are nominated,
every internal face is a triangle, and every triangle is a face. Add to H two nominated
vertices v and w adjacent to r and s. Let E be the class of all graphs H+.

Class F : Let H be a planar graph with outerface (p, q, r, s) where every other face is a
triangle and every triangle is a face. Add to H two nominated vertices adjacent to
p and q, and two nominated vertices adjacent to r and s. Let F be the class of all
graphs H+.
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Figure 5: The obstructions. Nominated vertices are dark. Non-nominated vertices are
white. Shaded regions represent a web. Adjacent to each triangle is an undrawn (possibly
empty) clique.
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The type of a nominated vertex x in one of the above obstructions H+ is defined as
follows:

Type-1: H+ ∈ D ∪ E , and x is adjacent to some other nominated vertex in H.

Type-2: H+ ∈ A, and x has degree 4 in H.

Type-3: H+ ∈ A∪B ∪ C ∪ E ∪F , and x is neither type-1 nor type-2; such a vertex x has
degree 2 in H,

Lemma 14. Every graph in A ∪ B ∪ C ∪ D ∪ E ∪ F contains no K4-minor rooted at the
four nominated vertices.

Proof. Lemma 4 implies the result for a class D obstruction. Let H+ be an obstruction in
some other class. By Lemma 11, it suffices to prove that H contains no {a, b, c, d}-minor,
where a, b, c, d are the four nominated vertices.

If H+ ∈ A then H ∼= K1,1,3, in which case contracting an edge incident to the one
non-nominated vertex produces K4 − e or K1,3, neither of which are K4.

For H+ ∈ B∪C∪E∪F , Lemma 13 is applicable. In particular, NH(a) = NH(b) = {u, v}
for some vertices u, v ∈ V (H) \ {a, b, c, d}. Thus if H ′ is the graph obtained from H by
deleting a and b, and adding the edge uv, then H+ contains an {a, b, c, d}-minor if and
only if H contains an {a, b, c, d}-minor if and only if H ′ contains a {u, v, c, d}-minor.

If H+ ∈ B then H ′ ∼= K4 − e. Thus in each case, H ′ contains no {u, v, c, d}-minor,
implying that H contains no {a, b, c, d}-minor. If H+ ∈ C then H ′ ∈ A, which has no
{u, v, c, d}-minor as proved above. If H+ ∈ E then H ′ ∈ D, which has no {u, v, c, d}-
minor by Lemma 4. If H+ ∈ F then H ′ ∈ E , which has no {u, v, c, d}-minor as proved
above.

7 Main Theorem

We now state and prove the main result of the paper. It characterises when a given graph
contains a K4-minor rooted at four nominated vertices.

Theorem 15. For every graph G with four nominated vertices, either:

• G contains a K4-minor rooted at the nominated vertices, or

• G is a spanning subgraph of a graph in A ∪ B ∪ C ∪ D ∪ E ∪ F
Proof. Lemma 14 proves that both outcomes are not simultaneously possible. Suppose
on the contrary that for some graph G neither outcome occurs. That is, G contains no
K4-minor rooted at the nominated vertices, and G is not a spanning subgraph of a graph
in A∪B ∪ C ∪D ∪ E ∪F . Choose G firstly with |V (G)| minimum, and then with |E(G)|
maximum. Let a, b, c, d be the nominated vertices in G. If |V (G)| = 4 then G contains
an {a, b, c, d}-minor if and only if G ∼= K4. Otherwise, G is a subgraph of K4 minus an
edge, which is in class D. Now assume that |V (G)| > 5 and the result holds for every
graph G′ with |V (G′)| < |V (G)|, or |V (G′)| = |V (G)| and |E(G′)| > |E(G)|. We proceed
by considering the possible separations in G.
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• Suppose there is a (0, 4)-separation (G1, G2) of order 0: If G2 contains a K4-minor
rooted at the nominated vertices, then so does G. Otherwise, by the choice of G,
G2 is a spanning subgraph of an obstruction H+. Adding V (G1) to XT for some
triangle T of H, we obtain an obstruction containing G as a spanning subgraph, as
desired.

• Suppose there is a (1, 3)-separation (G1, G2) of order 0: Let a be the nominated
vertex in G1. Let b, c, d be the nominated vertices in G2. Thus G contains no ab-path.
Hence G contains no {a, b, c, d}-minor. Let H := K4 − ad with V (H) := {a, b, c, d}.
Let Xabc := V (G1) \ {a} and Xbcd := V (G2) \ {b, c, d}. Hence G is a spanning
subgraph of H+, a class D obstruction.

• Suppose there is a (2, 2)-separation (G1, G2) of order 0: Then as in the proof of the
previous case, G contains no {a, b, c, d}-minor and G is a spanning subgraph of a
class D obstruction.

Now assume that G is connected.

• Suppose that (G1, G2) is a (0, 4)-separation of order 1: Let {u} := V (G1 ∩ G2). If
G2 contains an {a, b, c, d}-minor, then so does G, and we are done. Otherwise, by
the choice of G, G2 is a spanning subgraph of an obstruction H+. Now, u is in
T ∪XT for some triangle T of H. Add V (G1) \ {u} to XT . The resulting graph H+

is in the same class as the original H+ and contains G as a spanning subgraph.

• Suppose that (G1, G2) is a (1, 3)-separation of order 1: Let {u} := V (G1 ∩ G2).
Let a be the nominated vertex in G1 − G2. If G2 contains an {u, b, c, d}-minor,
then adding G1 to the branch set that contains u gives an {a, b, c, d}-minor in G,
and we are done. Otherwise, by the choice of G, G2 is a spanning subgraph of an
obstruction H+, where u, b, c, d are nominated in G2.

If u is type-1, then u is in the outerface of H (as embedded in Figure 5). Let
x and y be the two neighbours of u in this outerface. Add a into the outerface
of H, adjacent to x, u and y. Thus axu and auy become internal faces of H. Let
Xaxu := V (G1)\{a, u}. The resulting graph H+ contains G as a spanning subgraph,
and is in the same class as the original H+.

If u is type-2, then H+ is in classA. Let x be the degree-4 neighbour of u in H. Add a
to H adjacent to u and x, thus creating the triangle axu. Let Xaxu := V (G1)\{a, u}.
The resulting graph H+ (with a nominated) is in class B, and contains G as a
spanning subgraph.

If u is type-3, then u is in a unique triangle uxy in H. In H, delete u, add a adjacent
to x and y, thus creating the triangle axy. Let Xaxy := V (Xuxy)∪V (G1)\{a}. The
resulting graph H+ (with a nominated) is in the same class as the original H+, and
contains G as a spanning subgraph.
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• Suppose that (G1, G2) is a (2, 2)-separation of order 1: Let {u} := V (G1 ∩ G2).
Without loss of generality, a, b ∈ V (G1) and c, d ∈ V (G2). Let H be the planar
graph with outerface (a, b, c, d), and one internal vertex u adjacent to a, b, c, d. Let
Xabu := V (G1) \ {a, b, u} and Xcdu := V (G2) \ {c, d, u}. The resulting graph H+ is
in class D, and contains G as a spanning subgraph.

• Suppose that (G1, G2) is a (1, 4)-separation of order 1: Without loss of generality,
a ∈ V (G1) and a, b, c, d ∈ V (G2). If G2 contains an {a, b, c, d}-minor, then so does
G. Otherwise, by the choice of G, G2 is a spanning subgraph of an obstruction H+.
Now, a is in some triangle T of H. Add V (G1) \ {a} to XT . The resulting graph
H+ is in the same class as the original H+, and contains G as a spanning subgraph.

• Suppose that (G1, G2) is a (2, 3)-separation of order 1: Without loss of generality,
a, b ∈ V (G1) and b, c, d ∈ V (G2). Let H := K4 − ad where V (H) := {a, b, c, d}. Let
Xabc := V (G1) \ {a, b} and Xbcd := V (G2) \ {b, c, d}. The resulting graph H+ is in
class D, and contains G as a spanning subgraph.

Now assume that G is 2-connected.

• Suppose there is a (0, 4)-separation (G1, G2) of order 2, or a (1, 4)-separation (G1, G2)
of order 2, or a (2, 4)-separation (G1, G2) of order 2: Let {u, v} := V (G1 ∩G2). Let
G′ be the graph obtained by contracting G1 onto the edge uv. (This is possible since
G is 2-connected.) If G′ contains an {a, b, c, d}-minor then so does G, and we are
done. Otherwise, by the choice of G, G′ is a spanning subgraph of an obstruction
H+. Since uv is an edge of G′, we have u, v ∈ T ∪XT for some triangle T of H. Add
V (G1) \ {u, v} to XT . The resulting graph H+ contains G as a spanning subgraph,
and is in the same class as the original H+.

• Suppose there is a (2, 3)-separation (G1, G2) of order 2: Without loss of generality,
a is the nominated vertex in G1 − G2, {u, b} = V (G1 ∩ G2), and c and d are the
nominated vertices in G2 − G1. Let G′ be the graph obtained by contracting G1

onto the edge ub, and nominating u, b, c, d. (This is possible since G is 2-connected.)

If G′ contains a {u, b, c, d}-minor, then adding G1 − b to the branch set containing
u gives an {a, b, c, d}-minor in G, and we are done. Otherwise, by the choice of G,
G′ is a spanning subgraph of some obstruction H+. Since ub is an edge of G′ and
both u and b are nominated in G′, H+ is in class A, D or E .

If u is type-1, then ub is in the outerface of H (as embedded in Figure 5). Let x be
the neighbour of u distinct from b in this outerface. Add a into the outerface of H
adjacent to u, b, x, and let Xa,u,b := V (G1) \ {a, b, u}. The resulting graph H+ is in
the same class as the original H+, and contains G as a spanning subgraph.

If u is type-2, then H+ ∈ A. Add a to H adjacent to u and b, thus creating the
triangle aub. Let Xaub := V (G1) \ {a, u, b}. The resulting graph H+ is in class E ,
and contains G as a spanning subgraph.
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Now assume that u is type-3. Thus ub is in one triangle ubx in H (since both u
and b are nominated in G′). In H, delete u, add a adjacent to x and b creating the
triangle axb, and let Xaxb := V (Xubx) ∪ V (G1) \ {a, b}. The resulting graph H+

contains G as a spanning subgraph and is in the same class as the original H+.

• Suppose there is a (3, 3)-separation (G1, G2) of order 2: Without loss of generality,
a ∈ V (G1−G2), {b, c} = V (G1∩G2), and d ∈ V (G2−G1). Let H := K4−ad where
V (H) := {a, b, c, d}. Let Xabc := V (G1)\{a, b, c} and Xbcd := V (G2)\{b, c, d}. The
resulting graph H+ is in class D, and contains G as a spanning subgraph.

• Suppose there is a (2, 2)-separation (G1, G2) of order 2: Let {u, v} := V (G1 ∩ G2).
Let G′i be the graph obtained from Gi by adding the edge uv. Since G is 2-connected,
by Lemma 12, if G′1 contains an {a, b, u, v}-minor or G′2 contains a {u, v, c, d}-minor,
then G contains an {a, b, c, d}-minor, and we are done. Otherwise, by the choice
of G, each G′i is a spanning subgraph of an obstruction H+

i . Since the nominated
vertices u and v are adjacent in G′1 and G′2, H

+
1 and H+

2 are class A, D or E .

Consider the case in which H+
1 ∈ D. Then the edge uv is either on the outerface of

H1 or is a diagonal of H1. If uv is a diagonal of H1, then H1
∼= K4 − ab since every

triangle of H1 is a face of H1. Similarly, if H+
2 ∈ D and uv is a diagonal of H2, then

H2
∼= K4 − cd.

Let H+ be the graph obtained by identifying u, v in H+
1 with u, v in H+

2 . Thus H+

contains G as a spanning subgraph. By adding gray edges to H+ as illustrated in
Figure 6, we now show that H+ is an obstruction. Consider the following cases:

(a) If H+
1 ∈ A and H+

2 ∈ A, then H+ ∈ C.
(b) If H+

1 ∈ A and H+
2 ∈ E , then H+ ∈ F .

(c) If H+
1 ∈ E and H+

2 ∈ E , then H+ ∈ F .

(d) Say H+
1 ∈ A and H+

2 ∈ D. If uv is on the outerface of H2, then H+ ∈ E .
Otherwise, uv is a diagonal of H2, and H+ ∈ C.

(e) Say H+
1 ∈ E and H+

2 ∈ D. If uv is on the outerface of H2, then H+ ∈ E .
Otherwise, uv is a diagonal of H2, and H+ ∈ F .

(f) Say H+
1 ∈ D and H+

2 ∈ D. If uv is on the outerface of H1 and uv is on the
outerface of H2, then H+ ∈ D. If uv is a diagonal of H1 and uv is on the
outerface of H2, then H+ ∈ E . Otherwise, uv is a diagonal of H1 and uv is a
diagonal of H2, and H+ ∈ B.

Now assume that G is 2-connected and every separation of order 2 is a (1, 3)-separation.
Before addressing this case it will be convenient to first eliminate a particular separation
of order 3.
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Figure 6: Constructions of new obstructions in the case of a (2, 2)-separation. Black
vertices are nominated. Gray vertices are the cut-pair. White vertices are not nominated.
Gray edges are inserted. Gray regions are webs.
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• Suppose there is a separation (G1, G2) of order 3 with no nominated vertices in
G2 −G1, such that |V (G2)| > 5:

Let {u, v, w} := V (G1 ∩ G2). We claim that G2 contains a {u, v, w}-minor. If not,
then by Lemma 1, there is a vertex x such that at most one of u, v, w is in each
component of G2 − x. Since |V (G2)| > 5 there is a vertex y ∈ V (G2) \ {u, v, w, x}.
If y is in the same component of G2 − x as u, then {u, x} is a cut-pair that forms a
(0, 4)-separation of order 2 in G. Thus y is not in the same component of G2 − x
as u. Similarly, y is not in the same component of G2 − x as v or w. Thus x is a
cut-vertex, which is a contradiction. Hence G2 contains a {u, v, w}-minor. Let G′

be the graph obtained from G1 by adding the triangle uvw. Thus G′ is a minor
of G, and |V (G′)| < |V (G)|. If G′ contains an {a, b, c, d}-minor, then so does G
and we are done. Otherwise, by the choice of G, G′ is a spanning subgraph of an
obstruction H+. The triangle uvw is contained in T ∪ XT for some triangle T of
H. Add V (G2)\{u, v, w} to XT . The resulting graph H+ contains G as a spanning
subgraph (since the neighbours of each vertex in G2 \ {u, v, w} are in G2) and is of
the same class as the original H+.

Now assume that if (G1, G2) is a separation of order 3 with no nominated vertices in
G2 −G1, then |V (G2)| = 4. We consider the following two types of (1, 3)-separations.

• Suppose there is a (1, 3)-separation (G1, G2) of order 2, such that |V (G1)| > 4, or
|V (G1)| = 3 and G1 6∼= K3:

Let a be the nominated vertex in G1 − G2. Let {u, v} := V (G1 ∩ G2). Let G′ be
the graph obtained from G2 by adding the edge uv if it does not already exist, and
by adding a new vertex a′ adjacent to u and v, where a′, b, c, d are nominated in G′.
Observe that |V (G′)| < |V (G)| or if |V (G′)| = |V (G)| then |E(G′)| > |E(G)|. Thus
by the choice of G, G′ contains an {a′, b, c, d}-minor, or G′ is a spanning subgraph
of an obstruction H+.

First suppose that G′ contains a K4-minor A′, B, C,D respectively rooted at a′, b, c, d.
Since a′ has degree 2 in G′, without loss of generality, u is in A′. Now G1 − v is
connected, as otherwise v is a cut-vertex in G. Thus A := (G1−v)∪A′ is connected
and is disjoint from B ∪C ∪D. We claim that A,B,C,D is an {a, b, c, d}-minor in
G. Clearly A,B,C,D respectively contain a, b, c, d. Since the edge uv was added to
G′, it may be that G′ is not a minor of G. So this claim is not immediate. However,
if uv is in G, then G′ is a minor of G, and A,B,C,D is a K4-minor in G, and we
are done. It remains to show that the edge uv is not needed for A,B,C,D to be a
K4-minor. Since u is in A, and A is connected, the only problem is if uv is the only
edge between A and some other branch set, say B. But, since G is 2-connected, v
has a neighbour in G1−u−v, which is a subgraph of A. This proves that A,B,C,D
is an {a, b, c, d}-minor in G.

Now assume that G′ is a spanning subgraph of some obstruction H+. Thus a′, u, v ∈
T ∪ XT for some triangle T of H, and a′ ∈ T . Rename a′ as a in H, and add
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V (G1) \ {a, u, v} to XT . The resulting graph H+ is in the same class as the original
H+ and contains G as a spanning subgraph.

Now assume that if (G1, G2) is a separation of order 2, then |V (G1)| = 3, the vertex
in G1 −G2 is nominated, and G1

∼= K3 (since G is 2-connected).

• Suppose there is a (1, 3)-separation (G1, G2) of order 2: Let a be the nominated
vertex in G1 − G2. Let {u, v} := V (G1 ∩ G2). Thus G1

∼= K3 with vertex set
{a, u, v}.
Let Gu be the graph obtained from G by contracting the edge au into u, and
nominating u. Let Gv be the graph obtained from G by contracting the edge av
into v, and nominating v. Each of Gu and Gv have four nominated vertices. Since
a has degree 2 in G, G contains an {a, b, c, d}-minor if and only if Gu contains a
{u, b, c, d}-minor or Gv contains a {v, b, c, d}-minor. Also observe that Gu

∼= Gv;
they only differ in one nominated vertex. For the time being, concentrate on Gu;
we will return to Gv later.

If Gu contains a {u, b, c, d}-minor, then G contains an {a, b, c, d}-minor, and we are
done. Otherwise, by the choice of G, Gu is a spanning subgraph of an obstruction
H+. Since a class A obstruction has a (2, 3)-separation, and a class B, C, E or F
obstruction has a (2, 2)-separation, H+ is in class D.

If |XT | > 2 for some triangle T of H, then (G − XT , T ∪ XT ) is a separation of
order 3 with no nominated vertices in XT , such that |V (T ∪ XT )| > 5, which is a
contradiction. Thus |XT | 6 1. If XT = {w} then move w out of XT into H; the
resulting graph H+ is in D and contains Gu as a spanning subgraph. Repeat this
step until XT = ∅ for each triangle T of H. Thus Gu is a spanning subgraph of H
(not H+), and Gu is planar. Since Gu was obtained from G by deleting a degree-2
vertex whose neighbours are adjacent, G is also planar.

Since H ∈ D, u is type-1. Let S be the set of degree-2 nominated vertices in G.
Thus a ∈ S ⊆ {a, b, c, d}. Observe that G is almost 3-connected in the sense that
the only cut-pairs are the neighbours of vertices in S, and in this case the cut-pair
are adjacent. As illustrated in Figure 7, let G∗ := G − S. A separation in G∗ is
a separation in G. Thus G∗ is 3-connected and planar. Hence G∗ has a unique
planar embedding. Moreover, every planar embedding of G is obtained from the
unique planar embedding of G∗ by drawing each vertex x ∈ S in one of the two faces
that contain the edge between the two neighbours of x. In the planar embedding of
Gu induced by the planar embedding of H, the nominated vertices u, b, c, d are on
the outerface. Moreover, the unique planar embedding of G∗ is obtained from this
embedding of Gu by deleting S \ {a}.
If the edge uv is on the outerface of Gu (as in Figure 7(a)), then draw a in the
outerface of Gu adjacent to u and v, and possibly add edges between a and other
nominated vertices to obtain an obstruction (in the same class as H) that contains
G as a spanning subgraph.
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Figure 7: Illustration of G with a (1, 3)-separation of order 2. Vertex a has degree 2, and
b, c, d might have degree 2.

Now assume that uv is not on the outerface of Gu (as in Figure 7(b)). Recall that
Gu
∼= Gv, and v, b, c, d are nominated in Gv. Consider this embedding of Gu to be

an embedding of Gv. The outerface of Gv contains b, c, d but not v.

For x ∈ {b, c, d}, if x ∈ S then choose a neighbour x′ of x, otherwise let x′ := x.
If x and y are distinct vertices in S, then NG(x) 6= NG(y), as otherwise G would
contains a (2, 2)-separation of order 2. Thus we may choose b′, c′, d′ so that they are
distinct. Each of b′, c′, d′ are on the outerface of Gv. So v, b′, c′, d′ are all distinct.

Consider v, b′, c′, d′ to be nominated vertices in G∗. Consider the embedding of G∗

formed from H. Then b′, c′, d′ are on the outerface of G∗, but v is not. In a 3-
connected planar graph, three vertices all appear on at most one face. Thus, no face
of G∗ contains all of v, b′, c′, d′. Thus by Theorem 9, G∗ contains a {v, b′c′, d′}-minor.
Given that G∗ can be obtained from G by contracting av, bb′, cc′ and dd′, G contains
an {a, b, c, d}-minor. (Here, if b = b′ then contracting bb′ does nothing.)

Now assume that G is 3-connected. The result follows from Theorem 8, since a web
is in class D.

8 Algorithmics

Robertson and Seymour [19] presented a O(n3) time algorithm that (for fixed t) tests
whether a given n-vertex graph contains a Kt-minor rooted at t nominated vertices. We
conjecture that for t = 4 there is a O(n) time algorithm for this problem; see [7, 11, 17, 27]
for related linear time algorithms.
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