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Abstract

We give an upper bound on the independence number of the cube of the odd
cycle C8n+5. The best known lower bound is conjectured to be the truth; we prove
the conjecture in the case 8n + 5 prime and, within 2, for general n.

1 Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The product of G1 and G2 is the graph
G1 ×G2 which has vertex set V1 × V2 and an edge between distinct vertices (x1, x2) and
(y1, y2) if and only if xi = yi or {xi, yi} ∈ Ei for i = 1, 2. For d > 1 the graph power Gd

is the product of G with itself d times. The Shannon capacity of G is

c(G) = sup
d

(
α
(
Gd
))1/d

where α(H) is the size of the largest independent set in graph H. This graph invariant was
introduced by Shannon in 1956 and gives a measure of the optimal zero-error performance
of an associated memoryless communication channel [19].
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Determining the Shannon capacity of an arbitrary graph is a notoriously hard problem.
Shannon himself gave an upper bound, which may be stated in graph thoretic notation
as c(G) 6 α∗(G), where α∗(G) is the fractional vertex packing number. (The latter is
a natural linear programming relaxation of the independence number; namely, α∗(G) is
the maximum, over all assignments of non-negative real weights to the vertices of G with
the property that the sum of weights over any clique is at most 1, of the sum of weights
of the vertices of G.) This upper bound was discussed in detail in [18]. A better upper
bound c(G) 6 θ(G) is given by the Lovász theta function [16]. Another upper bound,
which is not comparable with the former two, was given by Haemers [11]. (For a survey of
zero-error information theory see [15]. For recent progress on the sums of disjoint channels
using linear algebraic methods see [1], [2].)

Motivated in part by the problem of determining the Shannon capacities of graphs,
Berge introduced the notion of a perfect graph [4]. A graph G is perfect if ω(H) = χ(H)
for every induced subgraph H of G, where ω(H) is the size of the largest clique in H and
χ(H) is the chromatic number of H. Perfect graphs are known to satisfy c(G) = α(G).
Berge conjectured that a graph is perfect if and only if it does not contain an odd cycle of
length five or more, or the complement of such a graph, as an induced subgraph. This long
standing conjecture, known as the strong perfect graph conjecture, was recently proved by
Chudnovsky, Robertson, Seymour and Thomas [8] (for an overview of the proof, see [10]).
It follows from this result that the odd cycles of length five or more and their complements
are the minimal graphs for which the determination of the Shannon capacity is nontrivial.
The best known upper bounds on the Shannon capacities of these graphs are given by the
Lovász theta function. This upper bound suffices to establish the Shannon capacity of C5,
which is self complementary: c(C5) = c(C5) =

√
5. However, the Shannon capacities of

odd cycles and the complements of odd cycles on seven or more vertices remain unknown.
In this paper we focus on odd cycles (for recent progress on the complements of odd

cycles see [6]) and consider the following question: For fixed values of d and ` what
is α(Cd

2`+1)? This question was first addressed some time ago by Baumert, McEliece,
Rodemich, Rumsey, Stanley and Taylor [3] and Hales [12]. In [3] it is noted that this
question is equivalent to the following natural question: How many d-dimensional cubes
of side length 2 can we pack into a d-dimensional torus of side length 2`+ 1?

While there are a number of constructions (see [3], [5], [9], [12]) that give lower bounds
on α(Cd

2`+1), there are essentially no upper bounds that take into account the special
structure of odd cycles. We get an upper bound on α(Cd

2`+1) by appealing to either the
Lovász theta function,

α(Gd) 6 ϑ(G)d, (1)

or the well-known inequality (proved below in Section 2):

α(G×H) 6 α(G)α∗(H). (2)

The only choice of parameters d, ` for which we have an upper bound on α(Cd
2`+1) that is

better than that given by (1) and (2) (other than two specific small examples) is the case
d > 3 and ` ≡ 2d−2 mod 2d−1. Here Baumert et al. [3] proved that the independence
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number is at most the bound given by (2) minus 1. On the other hand, there are values
of parameters d, ` where (1) or (2) give the truth:

α
(
C2j

5

)
= 5j = ϑ(C5)

2j (3)

α
(
Cd
k2d+1

)
= k(k2d + 1)d−1 = 2d−1k

(
k2d + 1

2

)d−1
= α(Ck2d+1)α

∗
(
Cd−1
k2d+1

)
(4)

α
(
Cd
k2d+3

)
=
k(k2d + 3)d + 1

k2d + 1
=

⌊(
2k(k2d + 3)d−1 + 1

k2d + 1

)(
k2d + 3

2

)⌋
(5)

=
⌊
α
(
Cd−1
k2d+3

)
α∗(Ck2d+3)

⌋
Equation (3) was established in the celebrated paper of Lovász [16]. Hales [12] and
Baumert et al. [3] independently established (4), and Baumert et al. [3] proved (5).

Given this state of affairs, the first interesting case is α(C3
8n+5). Setting

tn = (8n+ 5)
(2n+ 1)(8n+ 5)− 1

2
,

we can summarize the current state of our understanding as follows:

tn 6 α
(
C3

8n+5

)
6 tn + 4n+ 1. (6)

The lower bound is given by construction [3],[5] (for the sake of completeness one of
these constructions is reproduced in Subsection 1.1 below). The upper bound is one less
than the bound given by (2) (as established in [3]). (For small values of n the Lovász
theta function gives a slightly better upper bound.) Baumert et al. [3] conjectured that
α(C3

8n+5) = tn for all n.
Now, we are ready to state our main results.

Theorem 1. If 8n+ 5 is prime then α
(
C3

8n+5

)
= tn.

This settles the above conjecture for an infinite sequence of cycle lengths. In particular,
it yields α(C3

13) = 247. (Codenotti et al. [9] used a computer search to establish the best
previously known upper bound of 251 for this value.) Natarajan [17] has recently settled
the conjecture for another infinite sequence; namely, he proved that if 2n + 1 is prime
then α

(
C3

8n+5

)
= tn. For general n, we obtain an upper bound which differs from the

conjectured value by 2.

Theorem 2. For all n,
α
(
C3

8n+5

)
6 tn + 2.

Our proofs are based on a dimension-reduction technique, which may be briefly ex-
plained as follows. We consider the two-dimensional slices of C3

8n+5, which we call ‘planes’.
Each of them consists of the vertices that have, in a given coordinate (the ‘direction’ of the
plane), one of two consecutive values, and arbitrary values in the other two coordinates.
Given an independent set S in C3

8n+5, its intersection with each plane projects onto an
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independent set in C2
8n+5. If S contains more than tn vertices, then a calculation shows

that in each direction there must be at least two planes for which this projection yields
a maximum independent set in C2

8n+5, and for most planes it yields independent sets of
size at least α(C2

8n+5) − 1. Now, the structure of maximum independent sets in C2
8n+5

is well understood (due to [3]). Our proof of Theorem 1 consists of showing that, when
8n + 5 is prime, six planes with this structure – two in each of the three directions –
cannot fit together. This is no longer true when 8n + 5 is composite, and therefore we
consider in the proof of Theorem 2 also those planes with α(C2

8n+5)− 1 vertices of S. We
have obtained a full characterization of these almost maximum independent sets. This
may be viewed as a stability result, essentially showing that all almost maximum inde-
pendent sets are slightly modified maximum ones. The proof of Theorem 2 then consists
of showing that many planes in every direction, each of them having the structure of a
maximum independent set or a slight modification of it, cannot fit together. Because the
statement of the above-mentioned stability result is complicated and its proof is tedious,
they do not appear in this version of the paper; only the relevant consequences for the
proof of Theorem 2 are stated. The interested reader is referred to the original, much
longer version of the paper (available from the first author’s home page). We emphasize
that the proof of Theorem 1 does not require this stability result; the proof of Theorem 1
is short and completely contained herein. For other applications of stability methods in
extremal combinatorics, in particular in the context of hypergraph Turán theory, see for
example [13], [14], [20].

Although our main results only deal with three dimensions and cycles of length
5( mod 8), we believe that the methods developed here are of interest for the more general
problem of giving upper bounds on the independence numbers of powers of odd cycles.
Good upper bounds for arbitrary powers of odd cycles (at least of certain lengths) would
lead to improved upper bounds on, or even a determination of, the Shannon capacities of
these graphs. This is the ultimate goal, yet it looks pretentious at this stage. While the
dimension-reduction technique described above is available in all dimensions, the struc-
tural information about the lower-dimensional objects is not (it could possibly be achieved
inductively). For many cycle lengths, there are not even good-looking constructions, the
optimality of which one could hope to prove; such is the case with C7. Still, we have
had some success applying similar methods to higher powers. In [7] we gave a complete
classification of all maximum independent sets in powers of odd cycles of the form Cd

k2d+1
.

In other (unpublished) work, we used stability results for large independent sets in C2
9

and C3
9 to establish the upper bound α(C4

9) 6 350. As α(C3
9) = 81 by (4), this shows

that (α(C4
9))1/4 < (α(C3

9))1/3, and thus offers some support for our conjecture that the
Shannon capacity of C9 is attained in the third power.

The remainder of this paper is organized as follows. In Subsection 1.1 we give a con-
struction that achieves the lower bound in (6). In Section 2 we introduce some preliminary
facts, including the classification of maximum independent sets in C2

4m+1. Theorem 1 is
proved in Section 3. The proof of Theorem 2 is described in Section 4, omitting the details
of the stability part (as explained above).
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1.1 Construction

The construction we give here is taken from [5].
We assume n > 1, and identify C8n+5 and Z8n+5 in the natural way. Define

J =
{

(x, y, z) ∈ Z3
8n+5 : 4x+ 2y + z = 0

}
,

where the operation is taken over Z8n+5. Note that J is an independent set as the difference
of a pair of distinct elements of J is in J and therefore not in the set {−1, 0, 1}3. We will
make use of the stronger property that no pair of distinct elements of J have difference
in the set [−2n, 2n]× {−1, 0, 1}2. This property allows us to form an independent set by
replacing each element a of J with a collection of vertices ‘centered’ at a. Let e1 be the
first standard basis vector and for i > 1 let

Pi = {(−i+ 1)e1, (−i+ 3)e1, . . . , (i− 3)e1, (i− 1)e1} .

Note that |Pi| = i and that Pi is an independent set. Define the parity of (x, y, z) ∈ J to
be the parity of z. Our independent set of size tn is the following:

I =

( ⋃
a∈J : a is even

a+ Pn

)
∪

( ⋃
a∈J : a is odd

a+ Pn+1

)
.

Since no pair of distinct elements of J have difference in [−2n, 2n] × {−1, 0, 1}2, if a, b
are distinct elements of J then no vertex in a + Pn is adjacent to a vertex in b + Pn or
in b+ Pn+1. So, we can restrict our attention to odd a, b with the same third coordinate
and second coordinate differing by 1. Such pairs of vertices differ by 4n + 2 in the first
coordinate.

2 Preliminaries

2.1 Proof of inequality (2)

We consider an independent set S in the product G × H of graphs G and H. To every
vertex y of H we assign the weight w(y) = |S ∩ (G × {y})|/α(G). If K is a clique in H
then the first coordinates of the vertices in S ∩ (G×K) must form an independent set in
G; therefore we have

∑
y∈K w(y) 6 1. Hence this is a fractional vertex packing, and thus

its total weight |S|/α(G) is a lower bound on α∗(H). Inequality (2) follows.
Although this inequality is well known, we included the proof because the consideration

of sets of the form G × K, where K is a clique in H, is the essence of our dimension-
reduction technique (see the concept of a slice, which we introduce below).

2.2 Notational conventions

Throughout the paper we discuss products and powers of odd cycles, in many cases
restricting attention to cycle lengths having certain residues modulo 4 or 8. In an attempt
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to reduce confusion, we use ` to write an arbitrary odd length as 2`+ 1, we use m when
we care about the residue modulo 4, e.g., 4m + 1, and we use n when we care about the
residue modulo 8, e.g., 8n+ 5.

We identify the vertices of C2`+1 with the elements of Z2`+1 throughout. Unless oth-
erwise noted, operations on vertices are taken over this ring.

We use the standard notation [d] = {1, . . . , d}.

2.3 Slices

Consider the graph G =
∏d

i=1C2`i+1. Given a set I ⊆ [d] and a vector x ∈
∏

i∈I Z2`i+1,
the slice of G given by I = {s1, . . . , sk} and x = (x1, . . . , xk) is the set of vertices

{(v1, . . . , vd) ∈ G : vsi ∈ {xi, xi + 1} for i = 1, . . . , k} .

Note that when we drop the coordinates in I this slice projects onto the graph
∏

i 6∈I C2`i+1.
Furthermore, if S is an independent set in G then S intersected with the slice maps onto
an independent set in

∏
i 6∈I C2`i+1 under this projection. The dimension of the slice given

by I and x is d− |I|. Here we will work extensively with two special cases of slices.

Definition 3. Consider the graph C3
2`+1. Let d ∈ [3] and y ∈ Z2`+1. We define the dual

plane
Py,d =

{
(x1, x2, x3) ∈ Z3

2`+1 : xd ∈ {y, y + 1}
}
.

If S ⊂ C3
2`+1 is an independent set then we set Sy,d = S ∩ Py,d. Note that we can view

Sy,d as an independent set in C2
2`+1 by simply dropping coordinate d.

Definition 4. Consider the graph G = C2`1+1 × C2`2+1 and S an independent set in G.
The rth dual row is the set of all (x, y) ∈ S so that y ∈ {r, r + 1}. Similarly, the cth
dual column is the set of all (x, y) ∈ S so that x ∈ {c, c + 1}. A dual line is a dual
row or a dual column.

2.4 Holes

The property of being an independent set may be defined by the system of constraints
requiring that at most one vertex be picked from every maximal (with respect to inclusion)
clique. In describing a particular independent set, it is useful to note which of these
constraints are satisfied as equalities and which of them are not. In the following definition
we focus on the latter.

Definition 5. Let G be a graph, and let S be an independent set in G. A set of vertices
K is a hole of S if K is a maximal clique in G and K ∩ S = ∅. We let H(S) denote the
set of holes of the independent set S. In G =

∏d
i=1C2`i+1 with `i > 2, the maximal cliques

are precisely the maximum cliques, namely they are of the form Kv := {v}+ {0, 1}d. By
a slight abuse of terminology, we say that v is a hole if Kv is. (In other words, a hole is
a d-dimensional cube, but by convention, we specify it using the coordinate values of its
lower-leftmost vertex.)
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Note that if S1 and S2 are independent sets in a product of odd cycles then H(S1) = H(S2)
if and only if S1 = S2. (To see this, consider the set of 1-dimensional slices through a
clique Kv that is not a hole. The holes in these slices determine the location of the one
vertex in S ∩Kv by parity.) Also note that the holes in a slice of an independent set S
correspond to holes in H(S).

The following facts concerning the parity of the number of holes in certain segments
are easy to check (using the observation that every element of S in the interior of the
segment accounts for exactly two non-holes).

Lemma 6. Let S be an independent set in C2`1+1 × C2`2+1.

(i) If (x1, y1), (x2, y2) ∈ S where x1 < x2 and y2 ∈ {y1, y1 + 1} then

|{(x, y1) ∈ H(S) : x ∈ [x1, x2]}| ≡ x2 − x1 mod 2.

(ii) If (x1, y1) ∈ H(S) and (x2, y2) ∈ S where x1 < x2 and y2 ∈ {y1, y1 + 1} then

|{(x, y1) ∈ H(S) : x ∈ (x1, x2]}| ≡ x2 − x1 mod 2.

By a similar argument, if S is an independent set in a product of two odd cycles then
every dual line has an odd number of holes; in particular, every line has a hole. If the size
of the independent set is near the maximum then most rows and most columns will have
only one hole – a few dual lines may contain more than one hole.

Definition 7. Let S be an independent set in C2`1+1 × C2`2+1. A dual line is k-bad (or
has badness k) in S if it has 2k + 1 holes in S. A dual line is full if it is 0-bad.

The following simple lemma will help prove that certain independent sets are signifi-
cantly below the maximum possible size:

Lemma 8. Let S be an independent set in C2`1+1 × C2`2+1, and suppose that (0, 0) and
(2k + 1, 1) are holes in S. Suppose further that dual rows 0 and 1 are both full. Then S
contains at most k vertices in row 1. Consequently, |S| 6 `1`2 + k.

Proof. Suppose that S contains (x, 1) for some x ∈ [2k+ 3, 2`1]. If x is odd, Lemma 6(ii)
applied to dual row 0 and the hole (0, 0) implies another hole in that row. If x is even,
Lemma 6(ii) applied to dual row 1 and the hole (2k + 1, 1) implies another hole in that
row. As we assume that both rows are full, we get a contradiction in either case, so S
contains no such vertices. Therefore, |{x : (x, 1) ∈ S}| 6 k. The final statement follows
by noticing that each dual row contains at most `1 vertices from S, and applying this
observation to even-numbered dual rows from 2 through 2`2.
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2.5 Maximum independent sets in C2
4m+1

Baumert et al. [3] characterized the maximum independent sets in C2
4m+1. Their charac-

terization may be stated in terms of the hole structure as follows.

Lemma 9 (Baumert et al.). Let S be a maximum independent set in C2
4m+1. Then

|S| = m(4m + 1). Furthermore, there exist α > 0 such that α | m, ε ∈ {±1} and
(t1, t2) ∈ Z2

4m+1 such that
H(S) = (t1, t2) + 〈(2εα, 1)〉 ,

where 〈(2εα, 1)〉 is the cyclic subgroup generated by (2εα, 1).

Proof. For the reader’s convenience, we sketch the proof. Suppose that S ⊂ C2
4m+1 is an

independent set of size m(4m + 1). Then it has exactly one hole in every dual line. An
inclusion-maximal subset of S of the form {(x, y), (x+ 2, y), . . . , (x+ 2j, y)} will be called
a thread of length j + 1 in row y. The intersection of S with any given row is the union
of some number of threads.

Now, assume without loss of generality that the holes in dual rows 0 and 1 are at (0, 0)
and (2k, 1) respectively, where k > 0. Let us compare the thread structure of rows 0 and 2.
It follows from Lemma 6 that {(2, 0), (4, 0), . . . , (2k, 0)} and {(1, 2), (3, 2), . . . , (2k− 1, 2)}
are threads of length k in these two rows, and the other threads in these two rows occupy
the same horizontal positions. Thus, the thread structure of row 2 is obtained from that
of row 0 by a unit shift of one thread. Now we consider the sequence of thread structures
of rows 0, 2, 4, . . . , 4m, 1, 3, . . . , 4m − 1, 0. By the above, each thread structure in this
sequence is obtained from its predecessor by a unit shift of one thread. Given that we
return to the original thread structure after 4m+ 1 steps, it must be the case that in the
whole process each thread is shifted to the position of the next thread (in some cyclic
order on the threads). It follows that all threads in all rows have the same length, say α,
and all rows have the same number of threads, say β. A calculation gives αβ = m, and
hence α | m. We get the statement of the lemma by observing that the k we started with
must be equal to α, and it must be the same for any choice of two adjacent dual rows.

Note that the independent set generated by (2εα, 1) is also generated by (1,−2εβ) where
αβ = m. So, the number of distinct (up to isomorphism) maximum independent sets in
C2

4m+1 equals the number of factorizations m = αβ where α 6 β. The class of a maximum
independent set S in C2

4m+1 is the positive integer α 6
√
m such that S is generated by

(±2α, 1) or (1,±2α). The orientation of S is determined by the coordinate in which this
generator has a 1. So, if α|m, α 6

√
m and γ ∈ {1, 2} then there are (up to translations)

two maximum independent sets in C2
4m+1 of class α and orientation γ. An example of a

maximum independent set in C2
25 of class 2 and orientation 1 is given in Figure 1.

3 Proof of Theorem 1

Let S be an independent set in C3
8n+5. The plane Px,d is full if Sx,d is a maximum

independent set in C2
8n+5. We begin with a simple counting observation.
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Figure 1: A maximum independent set in C2
25 of class 2. The holes are marked with x’s.

Lemma 10. Let S be an independent set in C3
8n+5 so that |S| = tn + k. Then, for each

d ∈ [3], there are at least 2k distinct values of x so that Px,d is full.

In other words, if the size of the independent set exceeds the best known lower bound
then there are (at least two) full planes ‘in each direction.’ Since each hole in C3

8n+5 is
a hole in three dual planes, we can use Lemma 9 to relate the structure of intersecting
full planes. To express this, we introduce notation that takes advantage of Lemma 9. For
each i ∈ [3], let ei be the ith standard basis vector.

Definition 11. Let S be an independent set in C3
8n+5, and suppose that Px,d is full. Let

{i, j} = [3] \ {d}. Then ∆x,d,i is defined to be the unique even integer (possibly negative)
such that if v = (x1, x2, x3) is a hole with xd = x then v + ei + ∆x,d,iej is also a hole.

Thus, ∆x,d,i corresponds to 2εα in the notation of Lemma 9. Note that ∆x,d,i is invertible
in Z8n+5 and ∆x,d,j = ∆−1x,d,i.

Let S be an independent set in C3
8n+5 such that P0,d is full for each d ∈ [3] and let

(x, 0, 0) be a hole in S. Then, it follows from Definition 11 that we have

(x, 0, 0) ∈ H(S) ⇒ (0,−∆0,3,1x, 0) ∈ H(S) ⇒
(0, 0,−∆0,1,2(−∆0,3,1x)) ∈ H(S) ⇒ (−∆0,2,3(−∆0,1,2(−∆0,3,1x)), 0, 0) ∈ H(S).
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Since P0,2 is full, (x, 0, 0) is the only hole in row 0 of S0,2, implying x = −∆0,2,3∆0,1,2∆0,3,1x.
We have proved the following.

Lemma 12. If S is an independent set in C3
8n+5, P0,d is full for each d ∈ [3] and (x, 0, 0)

is a hole in S then
−∆0,1,2∆0,2,3∆0,3,1x = x. (7)

In some very special cases this observation alone is enough to determine the independence
number of C3

8n+5.
Suppose, for example, that 8n + 5 and 2n + 1 are both prime (e.g., n = 1, 3, 6) and

that S is an independent set in C3
8n+5 such that |S| > tn. By Lemma 10, without loss

of generality P0,d is full for all d ∈ [3] and (x, 0, 0) is a hole for some x 6= 0 (here we use
the existence of at least two full planes for d = 1). Since 2n + 1 is prime, we also have
∆0,1,2,∆0,2,3,∆0,3,1 ∈ {±2,±(4n+ 2)}. Then Lemma 12 implies

8x = ±x or 2x = ±x. (8)

Since 8n+ 5 is prime, x is coprime to 8n+ 5, and we have a contradiction in either case.
When 2n+1 is not prime, we can no longer restrict ∆x,i,j to such a small set of values.

However, if 8n + 5 is prime, we need only ensure that the coefficient of x in (7) is not 1.
It turns out that this is the case.

Lemma 13. If xi is an even divisor of 4n+2 for each i ∈ [3] then x1x2x3 6≡ ±1 mod (8n+
5).

Proof. Assume for the sake of contradiction that x1x2x3 ≡ ±1 mod (8n+5). Without loss
of generality, xi > 0 for each i ∈ [3]. Let yi = (8n + 4)/xi for i ∈ [3]. Then yi = −(xi)

−1

in the ring Z8n+5, for each i ∈ [3]. Furthermore, for each i ∈ [3], yi is also an even divisor
of 4n+ 2. Therefore, for any distinct i, j, k ∈ [3], we have:

xixj ≡ ±yk mod (8n+ 5), (9)

xk ≡ ±yiyj mod (8n+ 5). (10)

For each i, either xi 6
√

8n+ 5 or yi 6
√

8n+ 5, so either two of the x’s or two of the y’s
are at most

√
8n+ 5. If two of the x’s (say, xi and xj) are at most

√
8n+ 5 we have either

xixj = yk or xixj = (8n + 5) − yk. The former case yields a contradiction because xixj,
being the product of two even numbers, is a multiple of four, whereas yk, dividing 4n+ 2,
is not a multiple of four. The latter case yields a contradiction because (8n + 5) − yk is
odd, and xixj is even. The case where two of the y’s are at most

√
8n+ 5 is handled

similarly, using (10).

Corollary 14. Let S be an independent set in C3
8n+5, and assume that P0,d is full for each

d ∈ [3], and (x, 0, 0) is a hole such that x 6= 0. Then gcd(x, 8n+ 5) > 1.

Proof. Lemma 12 implies that x(1 + ∆0,1,2∆0,2,3∆0,3,1) = 0. Lemma 13 implies that the
second factor is not 0, thus requiring that the first factor be a zero divisor in Z8n+5.

Note that Theorem 1 follows from Lemma 10 and Corollary 14.
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4 Proof of Theorem 2

So far, our techniques only utilize the positions of holes in full planes, and operate by
showing that there is no way to place these holes in a manner consistent with Lemma 9.
These techniques alone are insufficient when 8n+ 5 is not prime – for example, in C3

21 it
is possible, for each d ∈ [3], to have two values of x so that Px,d is full, and place the holes
in all of the full Px,d in a seemingly consistent manner. To prove Theorem 2, then, we will
look also at planes that are just short of being full. It turns out that the structure of such
planes is essentially governed by Lemma 9 as well, with certain types of modifications
allowed. Moreover, when such a plane lies right next to a full plane, then (subject to
certain provisions) the maximum independent sets underlying the two of them must be
of the same class and orientation, which in turn constrain the class and orientation of full
planes in the other directions. Very roughly speaking, these considerations will allow us to
derive a contradiction similar to that obtained in the previous section, without assuming
the primality of 8n+ 5, but we will need a larger number of full planes in each direction
(hence the +2 in the upper bound that we establish).

Motivated by this discussion, we introduce the following terminology. Let S be an
independent set in C3

8n+5. To each full plane Px,d we assign a class and orientation,
namely those of the maximum independent set Sx,d. The plane Px,d is almost full if
|Sx,d| = α(C2

8n+5)− 1. The plane Px,d is good if Px,d is full and Px−1,d or Px+1,d is full or
almost full; it is solid if Px,d is full and Px−1,d and Px+1,d are both full or almost full.

In the proof of Theorem 2, we consider a large independent set S in C3
8n+5, and

gradually establish facts about the number of good planes in each direction and their
classes, leading to a contradiction in the end. To facilitate the understanding of the
structure of the proof, we break it into several steps. The title of each subsection states,
rather informally, what is established in that step.

4.1 There are many good planes in each direction

Here we prove a refinement of Lemma 10, guaranteeing planes that are not only full but
actually good, and showing that their number must be even larger in certain circumstances
(namely, if some planes contain independent sets that are significantly smaller than the
maximum). The following function measures the size of the independent sets in the
various planes, normalized so that almost full planes get the value zero. For d ∈ [3] define
δS,d : Z8n+5 → Z by

δd(x) = δS,d(x) = |Sx,d| − α(C2
8n+5) + 1.

Lemma 15. Let S be an independent set in C3
8n+5 such that |S| = tn + k, and let d ∈ [3].

Then the number of good planes Px,d is at least

2k +
∑

x:δd(x)6−2

(−δd(x)− 1) + 1∃x such that δd(x)<0.

Before proving this lemma we state some definitions that will also be used below. Let
a δd-streak be a maximal interval I in Z8n+5 such that δd(x) 6= 0 for all x ∈ I, no
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two consecutive x, y ∈ I have δd(x) = δd(y) = 1, and no two consecutive x, y ∈ I have
δd(x), δd(y) < 0. A streak I is a singleton if |I| = 1 and δd(x) = 1 for x ∈ I, and a streak
I = [a, b] is positive if |I| > 1 and δd(a) = δd(b) = 1. Note that the set of streaks forms
a partition of the set of x ∈ Z8n+5 such that δd(x) 6= 0. Each singleton streak corresponds
to a solid plane. Each positive streak begins and ends with a good plane. Finally, note
that streaks that are neither positive nor singletons may have good planes at one end.

Proof of Lemma 15. Let s be the number of singleton streaks and p be the number of
positive streaks in the sequence δd(x). Since

∑
x∈Z8n+5

|Sx,d| = 2 |S|, we have

2k =
∑

x∈Z8n+5

δd(x) 6 s+ p+
∑

x:δd(x)6−2

(δd(x) + 1).

Note that the number of good planes is at least s+2p. We get the statement of the lemma
by noting that if there is an x such that δd(x) < 0 then there is at least one streak that
is not a singleton. This streak gives an additional good plane (beyond the accounting
already presented).

Define

X = XS = {x ∈ Z8n+5 | Px,1 is good} ,
Y = YS = {y ∈ Z8n+5 | Py,2 is good} ,
Z = ZS = {z ∈ Z8n+5 | Pz,3 is good} .

Note that Lemma 15 implies that if |S| > tn + 3 then each of these sets has cardinality
at least 6.

4.2 A good plane of class 1 implies a high ratio between the
numbers of good planes in the other directions

Supposing that there is a good plane of class 1, we apply here Lemma 8 to show that some
planes in one of the other directions are significantly underused, and hence by Lemma 15
the number of good planes in that direction must be very large to compensate for that.

Lemma 16. Let S be an independent set in C3
8n+5 such that |S| > tn + 3. If P0,1 is good

and ∆0,1,2 = 4n+ 2 then
|Y | > (n− 1)(|Z| − 4) + 7. (11)

Before proving Lemma 16, we make (as usual) some preliminary definitions and observa-
tions. Let f+

S , f
−
S : Z → Z8n+5 be defined by

f+(z) = f+
S (z) = −2z + ∆z,3,1,

f−(z) = f−S (z) = −2z −∆z,3,1.

Define Y + = Y +
S to be the range of f+

S and Y − = Y −S to be the range of f−S . Note that
if S is an independent set so that P0,1 is full with ∆0,1,2 = 4n + 2, (0, 0, 0) is a hole, and
z ∈ Z then (0,−2z, z), (1, f+

S (z), z), and (−1, f−S (z), z) are holes.
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Lemma 17. Suppose P0,1 is full so that ∆0,1,2 = 4n+ 2, (0, 0, 0) is a hole, and z ∈ Z. If
column 1 is full in Pf+(z),2 then:

∣∣Sf+(z),2

∣∣ 6 (2n+ 1)(8n+ 4) +
|∆z,3,1| − 2

4
= α(C2

8n+5)− ((2n+ 1)− (|∆z,3,1| − 2)/4).

In particular,
∣∣Sf+(z),2

∣∣ 6 α(C2
8n+5) − (n + 1). The analogous result holds for Sf−(z),2, if

column -1 is full in Pf−(z),2.

Proof. As noted above, (1, f+(z), z) is a hole. On the other hand, by the definition of
f+ and ∆0,1,2, (0, f+(z), z − ∆z,3,1/2) is also a hole. Noting that |∆z,3,1/2| is odd, we
then apply Lemma 8 to Pf+(z),2 to get the first inequality. The second one follows from
|∆z,3,1| 6 4n+ 2. The proof for Sf−(z),2 is similar.

Lemma 18. Suppose P0,1 is full so that ∆0,1,2 = 4n + 2, and (0, 0, 0) is a hole. Let
y ∈ Y +, and suppose that column 1 is k-bad in Py,2. Then:∣∣{z ∈ Z | f+(z) = y

}∣∣ 6 k + 1.

A similar result holds for column -1, using f− instead of f+.

Proof. Let z1, z2 ∈ (f+)−1({y}). We have −2z1+∆z1,3,1 = −2z2+∆z2,3,1, whence z2−z1 =
(∆z2,3,1 − ∆z1,3,1)/2. Now, ∆z2,3,1 and ∆z1,3,1 are both congruent to 2 modulo 4, so it
follows that z2 − z1 is even. We order the elements z1, . . . , zj of (f+)−1({y}) so that
z1 6 . . . 6 zj and zi+1 − zi is even for i = 1, . . . , j − 1. As noted above, (1, y, zi) is a hole
for each i = 1, . . . , j. Consequently, by Lemma 6, each interval [zi, zi+1] in column 1 of
Py,2 contains an additional hole. Since this column is k-bad, we get 2j − 1 6 2k + 1, or
j 6 k + 1.

Proof of Lemma 16. We assume without loss of generality that (0, 0, 0) is a hole and that
P1,1 is full or almost full. Since P1,1 has at most two column badnesses, it follows from
Lemma 18 that there are at most four z ∈ Z such that f+(z) has the property that
column 1 is bad in Pf+(z),2 (note that column 1 in Pf+(z),2 is column f+(z) in P1,1). Let:

Z∗ :=
{
z ∈ Z | column 1 is full in Pf+(z),2

}
.

We have |Z∗| > |Z| − 4. Note that f+, when restricted to Z∗, is one-to-one. Lemma 17
then implies ∑

y:δ2(y)6−2

(−δ2(y)− 1) > (n− 1)|Z∗| > (n− 1)(|Z| − 4).

Appealing to Lemma 15, we have (11).
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4.3 Handling the case 2n+ 1 prime

If 2n+1 is prime and S is an independent set in C3
8n+5 so that |S| > tn+3, then every full

plane is of class 1 and we get three instances of (11) (one in each ‘direction’). Applying
two of these in succession we have

max{|X|, |Y |, |Z|} > (n− 1)(2n+ 1) + 7.

For n > 5 this is a contradiction, because the lower bound exceeds 8n + 5. As we may
assume, by Theorem 1, that 8n + 5 is composite, the only case left is n = 2. In this
case, the lower bound gives 12 good planes in some direction. Applying Corollary 14 with
some fixed full planes in the other two directions and each of these 12 full planes, we get
a contradiction because Z21 has only 9 elements that are divisible by 3 or 7.

Thus, we may assume from now on that 2n + 1 and 8n + 5 are both composite. We
will not use this assumption as such, but only its consequence that n > 10.

4.4 Many good planes of classes > 1 in different directions can
fit together only if they are of the same class (with few
exceptions)

Now we turn to the good planes that are not of class 1. In order to explore the relationships
among them, we define an auxiliary graph.

Definition 19. The tripartite directed graph GS is defined as follows. For each d ∈ [3],
let

Vd := {x ∈ Z8n+5 | Px,d is good and not of class 1} .

Set V (GS) :=
⋃3
d=1 Vd. For any xi in Vi and xj in Vj, with i 6= j, let (xi, xj) be an arc if

|∆xi,i,j| 6
∣∣∆xj ,j,i

∣∣.
The relevant feature of GS is that each node has a large out-degree to each of the other
parts of the tripartition.

Lemma 20. Let S be an independent set in C3
8n+5, n > 8, such that |S| > tn + 3. Let

x ∈ Vi, and j ∈ [3] with j 6= i. Then there are at most three y ∈ Vj so that (x, y) is not
an arc in GS. Furthermore, if there is an A ⊆ Vj so that |A| = 3 and (x, y) is not an arc
for all y ∈ A then there is a y ∈ A so that y + 1 ∈ A.

The proof of Lemma 20 is based on a stability result for almost maximum independent
sets in C2

4m+1 and some fine machinery applying this result to independent sets in C3
8n+5,

n > 8, all developed in the original, long version of this paper. We refer the interested
reader to that version, and give here only a very rough idea. We consider a full plane,
say P0,1, and an adjacent almost full plane, say P1,1. The structure of S1,1 must be a
slight modification of the well-understood structure given in Lemma 9. The modification
may significantly affect only a few dual columns of P1,1; their numbers are collected in the
exceptional set A in the statement of the lemma. For any full plane Py,2 whose intersection
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with P1,1 is not one of the exceptional columns, we have a good grasp of how its 0 and 1
columns look like (as they are in P0,1 and P1,1). This allows us to identify enough of the
structure of Sy,2 to deduce that |∆y,2,1| > |∆0,1,2|. For these reconstruction arguments to
work, we need to rule out planes of class 1 and small values of n.

Corollary 21. Let S be an independent set in C3
8n+5, n > 8, such that |S| > tn + 3. Let

i, j ∈ [3], i 6= j, satisfy |Vi| > 4, |Vj| > 4. Then there exist subsets Ui ⊆ Vi and Uj ⊆ Vj
with |Ui| > |Vi| − 3, |Uj| > |Vj| − 3, so that the numbers |∆xi,i,j| for xi ∈ Ui and |∆xj ,j,i|
for xj ∈ Uj are all equal.

Proof. Consider the induced directed graph GS[Vi ∪ Vj]. Within any strongly connected
component of it, the desired equalities hold by the definition of the arc set. One of these
components, say C, has no arcs to the other components. It follows from Lemma 20 that
|C ∩ Vi| > |Vi| − 3 and |C ∩ Vj| > |Vj| − 3.

4.5 There is a good plane of class 1 in some direction

Here we use the previous step to get a contradiction if there are at least 5 good planes
of classes > 1 in each direction. Since the total number of good planes in each direction
is at least 6, it will follow that there is a good plane of class 1 (in fact, two of them) in
some direction.

Lemma 22. Let S be an independent set in C3
8n+5, n > 8, such that |S| > tn + 3. Then

there exists a d ∈ [3] so that |Vd| 6 4.

Proof. An observation that we use repeatedly below is that if plane Px,d is full and {i, j} =
[3] \ {d} then ∆x,d,i∆x,d,j = −(8n + 4), and therefore |∆x,d,i| 6

√
8n+ 4 if and only if

|∆x,d,j| >
√

8n+ 4. We start with a technical claim similar to Lemma 13.

Claim. If P0,i is full for each i and ∆0,i,j ∈
{
±
√

8n+ 4
}

for all well-defined choices of i
and j, then (0, 0, 0) is a hole.

Proof. By Lemma 12, it is sufficient to show that for all n, ±
√

8n+ 4
3 ± 1 is coprime to

8n+5. First, notice that
√

8n+ 4
2

= 8n+4 ≡ −1 mod (8n+5). Therefore, it is sufficient
to show that ±

√
8n+ 4± 1 is coprime to 8n+ 5. We have (

√
8n+ 4 + 1)(

√
8n+ 4− 1) =

8n+ 3, which is coprime to 8n+ 5. Therefore,
√

8n+ 4 + 1 and
√

8n+ 4− 1 are coprime
to 8n+ 5.

Assume for the sake of contradiction that |Vd| > 5 for each d ∈ [3].

Case 1: For all d ∈ [3], x ∈ Vd implies x+ 1 /∈ Vd.

By Lemma 20, each vertex has arcs leading to all but at most two vertices in
each of the other Vi.

Suppose, without loss of generality, that there are three x ∈ V1 so that
|∆x,1,2| 6

√
8n+ 4, and let T1 be the set of all such nodes in V1.

the electronic journal of combinatorics 20(3) (2013), #P10 15



Lemma 20 implies that each y ∈ V2 is the tail of some arc directed into T1.
Thus, for each y ∈ V2, |∆y,2,1| 6

√
8n+ 4. Let x0 ∈ T1. Then there are at

least three z ∈ V3 so that (x0, z) is an arc – let T3 be any set of exactly three
such z. Lemma 20 implies that for each y ∈ V2 there is a z ∈ T3 so that (y, z)
is an arc. There are thus five arcs from V2 to T3, each from a different vertex
in V2. Then there is a z0 ∈ T3 so that there are two y ∈ V2 so that (y, z0) is
an arc – let T2 be the set of all y ∈ V2 so that (y, z0) is an arc.

We have |∆x0,1,3| >
√

8n+ 4 and |∆y,2,3| >
√

8n+ 4 for each y ∈ V2. These
imply, respectively, that |∆z0,3,1| >

√
8n+ 4 and |∆z0,3,2| >

√
8n+ 4. Thus,

|∆z0,3,2| = |∆z0,3,1| =
√

8n+ 4. It then follows that |∆x0,1,3| = |∆y,2,3| =√
8n+ 4 for each y ∈ T2. This contradicts the claim – one of the intersections

of three planes Px0,1 ∩ Py,2 ∩ Pz0,3 such that y ∈ T2 is not a hole.

Case 2: There is d ∈ [3] and x ∈ Z8n+5 so that x, x+ 1 ∈ Vd.

The proof in this case is based on similar ideas, but requires additional ma-
chinery developed in the original version of this paper. The interested reader
is again referred to that version.

We henceforth assume, without loss of generality, that |V1| 6 4, P0,1 is good and ∆0,1,2 =
4n+ 2.

4.6 All good planes in the other two directions are of classes > 1

Here we consider an independent set S in C3
8n+5, n > 10, such that |S| > tn + 3, and

the assumptions made at the end of the previous subsection hold. Then inequality (11)
applies and gives severe restrictions on the cardinalities of Y and Z. The general idea
is that we cannot afford a good plane of class 1 in another direction, because then the
combined restrictions would become untenable. We proceed with several observations,
and keep track of the cardinality restrictions that they imply.

Lemma 23. There is no y so that Py,2 and Py+1,2 are both full.

Proof. Assume for the sake of contradiction that there exists y so that Py,2 and Py+1,2 are
full. Choose z0 so that (0, y, z0) is a hole. Then (0, y + 1, z0 + (4n + 2)) is a hole, as is
((4n+ 2)∆y,2,3, y, z0 + (4n+ 2)). Since Py,2 and Py+1,2 are both full, rows y and y + 1 are
full in Pz0+(4n+2),3. Furthermore, (4n + 2)∆y,2,3 is a divisor of 2n + 1. Lemmas 8 and 15
imply that |Z| > n+ 6 > 16. This in turn implies, by (11), that |Y | > 12n− 5 > 8n+ 5,
a contradiction.

It follows from Lemma 23 and (11) that we have

2n+ 5 6 |Y | 6 4n+ 2 and 6 6 |Z| 6 7. (12)

(Note that we have proved |S| 6 tn + 3.)
We now consider X.
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Lemma 24. None of the good planes Px,1 of class 1 is solid.

Proof. Suppose for the sake of contradiction that P0,1 is solid and (0, 0, 0) is a hole (with-
out loss of generality). Since P1,1 and P−1,1 each have at most two column badnesses,
Lemma 18 implies that there are at least two y ∈ Y + such that column y is full in P1,1

(equivalently column 1 is full in Py,2) and there are at least two y ∈ Y − such that column
y is full in P−1,1.

We first show that no y ∈ Y +∩Y − gives a full column in both P−1,1 and P1,1. Suppose
that there is y ∈ Y + ∩Y − so that both columns −1 and 1 are full in Py,2. Then the proof
of Lemma 17 implies that there exist z, a and b so that Py,2 has holes at (−1, z+a), (0, z),
and (1, z + b), where a and b are odd numbers in the interval [−(2n + 1), 2n + 1]. These
are the only holes in these three columns, and trying to place the vertices of Sy,2 leads to
a contradiction by parity (i.e., Lemma 6).

Therefore, there are at least four y ∈ Y + ∪ Y − that have the property that column 1
or column −1 is full in Py,2. It follows that there are at least four values of y such that
δ2(y) 6 −n. So, we have |Y | > 4(n− 1) + 7. This contradicts (12).

Let sX and pX be the numbers of singleton and positive streaks, respectively, in the
sequence δ1(x). Lemma 24 implies that all good planes of class 1 in X are in streaks of
length at least 2. Since we assume |V1| 6 4, we have sX 6 4. Since pX + sX > 6 we have
pX > 2 and

|X| > 8. (13)

Now we consider the classes of the good planes in Y and Z.

Lemma 25. We have Y = V2 and Z = V3.

Proof. We can immediately conclude that Z = V3: If Z contains a plane of class 1 then
‘rotating’ the argument above we have |Y | 6 7 or |X| 6 7, which is not the case. Next,
suppose Y contains a plane Py,2 of class 1. Then we may assume that ∆y,2,1 = 4n + 2
(if it has the other orientation then the argument above yields |X| 6 7, which is not the
case). Since Z = V3, we have |∆z,3,2| 6 4n+2

3
for all z ∈ Z. So, it follows from Lemmas 17

and 18 that there are two values of x such that δ1(x) 6 −5n+1
3

. Thus, we have

sX + pX > 2

(
5n+ 1

3
− 1

)
+ 6 =

10n+ 14

3
.

On the other hand, a simple volume argument gives pX 6 8n+5
3

, and therefore

sX + pX 6
8n+ 17

3
.

We have a contradiction. Therefore Y = V2.
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4.7 This configuration is impossible

Based on all the information we have on the number and classes of good planes, and using
Corollary 21, we will reach a contradiction. Indeed, we know by (12) and Lemma 25 that
|V2| > 2n + 5 > 25 and |V3| > 6. Applying Corollary 21 to V2 and V3, and picking four
elements y1, y2, y3, y4 of the set U2 and an element z of U3, we have

|∆z,3,2| = |∆y1,2,3| = |∆y2,2,3| = |∆y3,2,3| = |∆y4,2,3| .

Let (0, y′, z) be the unique hole in the intersection of P0,1 and Pz,3. Lemma 12 implies

0 = (∆yi,2,3∆z,3,1∆0,1,2 + 1)(y′ − yi) = (±(4n+ 2) + 1)(y′ − yi)

for i = 1, 2, 3, 4. But there are at most three values of yi that satisfy this condition,
because 4n+ 3 is co-prime to 8n+ 5, and

(4n+ 1)(y′ − yi) = 0 ⇒ 3(y′ − yi) = 0.

This contradiction completes the proof of Theorem 2.
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