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Abstract

A graph is d-bounded if its maximum degree is at most d. We apply the Ore–
Ryser Theorem on f -factors in bipartite graphs to obtain conditions for the exten-
sion of a 2-bounded subgraph to a 2-factor in a bipartite graph. As consequences,
we prove that every matching in the 5-dimensional hypercube extends to a 2-factor,
and we obtain conditions for this property in general regular bipartite graphs. For
example, to show that every matching in a regular n-vertex bipartite graph extends
to a 2-factor, it suffices to show that all matchings with fewer than n/3 edges extend
to 2-factors.

1 Introduction

Haggvist [10] posed the following general question: Given a subgraph F consisting of
disjoint paths in a graph G, what conditions on G and F guarantee that F extends to a
spanning cycle in G? The question was studied for the case where F is a matching in [2]
and [22]. Another approach has been to place connectivity constraints and/or degree-sum
constraints on F (see [3, 11, 12, 19]). In general, a disjoint union of paths is a linear forest.

Haggvist’s question has been studied also when G is the d-dimensional hypercube Qd.
Dvořák [4] showed that if a linear forest F in Qd has at most 2d−3 edges, then F extends
to a spanning cycle in Qd. Ruskey and Savage [17] asked whether every matching in
Qd extends to a spanning cycle. Fink [6, 7] proved the conjecture of Kreweras [15] that
the answer is yes when F is a perfect matching (the question remains open for general
matchings).

We ask whether a weaker conclusion holds. Let G be a graph, and let H be a spanning
subgraph of G whose components are paths and cycles. Edmonds and Johnson [5] defined
a b-matching in G to be a subgraph of G in which every vertex has degree at most b; in
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their terminology H is a 2-matching. Since we are studying extensions of subgraphs to
spanning subgraphs (factors) with specified properties, we define a d-bounded factor to
be a spanning subgraph with maximum degree at most d; hence H is a 2-bounded factor.
We ask for conditions guaranteeing that a 2-bounded factor extends to a 2-factor of G,
restricting to the case where G is bipartite.

A vertex weight f assigns nonnegative integers to the vertices of a graph G. Given a
vertex weight f , an f -factor in a graph G is a spanning subgraph H such that dH(v) = f(v)
for v ∈ V (G). The Ore–Ryser Theorem gives a necessary and sufficient condition for the
existence of an f -factor in a bipartite graph. This elegant result and its history are not
sufficiently well known. It appears to have been proved first by Ore [16]. Katerinis [14]
called it the Ore–Ryser Theorem, without providing a reference to Ryser’s work. Later
authors continued to call it the Ore–Ryser Theorem.

The simplest of several ways to state the theorem parallels Hall’s Theorem for bipartite
matching. We recall standard terminology and notation. The neighborhood of a vertex x
in a graph G is denoted NG(x) or simply N(x). Let NA(y) = N(y)∩A, and let NG(A) or
simply N(A) denote

⋃
x∈A N(x)−A. An (X, Y )-bigraph is a bipartite graph with partite

sets X and Y . For a vertex weight f and a set S ⊆ V (G), let f(S) =
∑

v∈S f(v).

Theorem 1. Let G be an (X, Y )-bigraph. If f is a vertex weight on G, then G has an
f -factor if and only if f(X) = f(Y ) and, for all A ⊆ X,

f(A) 6
∑

y∈N(A)

min{f(y), |NA(y)|}. (1)

When |X| = |Y | and f(v) = 1 for all v, the condition reduces to Hall’s Condition for
a perfect matching in G. In general, the condition is obviously necessary. Sufficiency can
be proved from Tutte’s f -Factor Theorem. When studying bipartite graphs, however, we
seek elementary direct proofs, in light of the relative simplicity of matchings and factors in
bipartite graphs. One such proof of the Ore–Ryser Theorem appears in Tutte [20], where
Tutte describes it as “Ore’s Theorem”. The outline of a proof using network flow appears
in [9]. One can also deduce the Ore–Ryser Theorem from the theorem of Folkman and
Fulkerson [8] on (g, f)-factors in bipartite graphs, an elementary proof of which appears
in [13] and in [1]. Finally, the Ore–Ryser Theorem can also be proved inductively like
Hall’s Theorem.

Motivated by seeking regular bipartite graphs in which all matchings extend to 2-
factors, we begin by obtaining properties of a minimal violation for extension of 2-bounded
factors. To extend a 2-bounded factor H to a 2-factor of G, we need an fH-factor in G,
where fH(v) = 2 − dH(v) for v ∈ V (G). We seek conditions for a minimal 2-bounded
factor H and a minimal set A such that the inequality in the Ore–Ryser Theorem for an
fH-factor in G − E(H) fails at A. We do this first for a general 2-bounded factor H in
Section 2 and then obtain further conditions in Section 3 when H is a matching.

If no H and A can satisfy these properties, then every matching in G extends to a
2-factor. From this we obtain some applications. In a small step toward the Ruskey–
Savage question on extending matchings to spanning cycles, we prove in Section 4 that
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every matching in Q5 extends to a 2-factor. Whether all matchings in larger hypercubes
extend to 2-factors remains open.

For a general k-regular bipartite graph G, we show in Section 3 that “large” matchings
need not be checked. For k ∈ {3, 4}, it suffices to check that M extends when DM 6 k−2,
where DM is the maximum degree of the subgraph of G induced by the vertices of M . For
a general n-vertex regular bipartite graph, it suffices to show that every matching with
fewer than n/3 edges extends.

2 Applying the Ore–Ryser Theorem

Let G be a d-regular bipartite graph with bipartition (X, Y ), and let H be a 2-bounded
factor in G. Let G′ = G − E(H). For i ∈ {0, 1, 2}, let Xi = {x ∈ X : dH(x) = 2 − i};
that is, Xi is the set of vertices in X that need i additional edges when extending H to a
2-factor in G. Partition Y into {Y0, Y1, Y2} similarly.

Definition 1. For A ⊆ X, the sets A0, A1, A2 and B0, B1, B2 associated with A are defined
by Ai = A ∩Xi and Bi = N(A) ∩ Yi. In addition, partition B2 into B1

2 and B2
2 by

B1
2 = {y ∈ B2 : |NG′(y) ∩ A| = 1} and B2

2 = {y ∈ B2 : |NG′(y) ∩ A| > 1}.

For another set Â ⊆ X, we denote the sets associated with Â as Â0, B̂0, etc.

The characterization in the Ore–Ryser Theorem for extendibility to 2-factors in bi-
partite graphs can now be restated as follows:

Theorem 2. If H is a 2-bounded factor in a regular (X, Y )-bigraph G, then H extends
to a 2-factor in G if and only if for every A ⊆ X,

|A1|+ 2|A2| 6 |B1|+ |B1
2 |+ 2|B2

2 |. (*)

From this characterization we derive properties of a minimal 2-bounded factor H
that fails to extend to a 2-factor in G. These properties remain requirements when we
restrict our attention to matchings in the next section; in that special case we obtain
further requirements. The notion of a minimal factor that does not extend is well defined,
because if H extends to a 2-factor, then every subgraph of H extends to a 2-factor.

Theorem 3. Let G be a regular n-vertex bipartite graph, and let H be a minimal 2-
bounded factor in G that fails to extend to a 2-factor. Let A be a minimal subset of X
whose associated sets violate (*). Let G′ = G−E(H). The sets associated with A satisfy
the following:

(a) A0 = A1 = ∅, and every edge of H is incident to B0 ∪B1.

(b) 2|A2| = 1 + |B1|+ |B1
2 |+ 2|B2

2 |.

(c) In G′, every vertex of B1 has at least two neighbors in A2.

the electronic journal of combinatorics 20(3) (2013), #P11 3



(d) Vertices of A2 have at most one neighbor in B2 that has at most two neighbors in
A2. Consequently, vertices of A2 have at most one neighbor in B1

2 .

(e) |A2| 6 n/2− 1
2
(|B1|+ 2|B0|).

Proof. Consider xy ∈ E(H). By the minimality of H, the sets associated with A in H−xy
satisfy (*). We show that this requires (a) through (c).

(a): Deleting xy from H moves xy into G′. If x /∈ A and y /∈ NG′(A), then this does
not change the sets associated with A, since y does not move into NG′(A). Thus (*) would
also fail for A in H−xy. We conclude that every edge of H is incident with A or NG′(A).
Also no edge of H is incident with A2 ∪B2, by definition, so x ∈ A0 ∪A1 or y ∈ B0 ∪B1.

Satisfying (*) in H − xy requires the right side to increase or the left side to decrease
compared to H. Consider the right side. Location of a vertex in the partition of NG′(A)
changes only for the vertex y. Possibly y enters NG′(A) if x ∈ A0 ∪A1; this requires that
y has no other neighbor in A, so y enters B1 ∪ B1

2 , and the right side increases by 1. If
already y ∈ NG′(A), then y now needs one additional edge, so y moves from Bj to Bj+1

for some j with j 6 1, and the right side increases by at most 1.
If x ∈ Ai with i 6 1, then removing xy moves x from Ai to Ai+1, adding 1 to the left

side of (*). Since the right side gains most 1, (*) cannot become satisfied. Hence no edge
of H is incident to A0∪A1, which by definition yields A0∪A1 = ∅, and then y ∈ B0∪B1.

(b) and (c): By (a), x /∈ A, and the left side of (*) does not change when xy moves
from H to G′. Hence the right side must increase by 1. Since (*) fails for H, it fails
by exactly 1, which yields (b). Furthermore, if y ∈ B1, then moving xy from H to G′

increases the right side only if y moves to B2
2 and thus has at least two neighbors in A.

(d) Now we use the minimality of A, without deleting an edge of H. Since (*) holds
when A = ∅, we may choose x ∈ A2. Let r be the number of neighbors of x in B2

2

having exactly one other neighbor in A2, and let s = |NG′(x) ∩B1
2 |. Let Â = A − x, so

|Â2| = |A2| − 1.
By (c), in G′ each vertex of B1 has at least two neighbors in A2. Thus each vertex of

B1 has a neighbor in A2−x, which yields B1 ⊆ NG′(Â2). Since H has not changed, these
vertices still need one incident edge, so B̂1 = B1. Also r and s have been defined to measure

the changes when A is replaced with Â; we have |B̂2
2 | = |B2

2 |− r and |B̂1
2 | = |B1

2 |+(r−s).
By the minimality of A,

2|Â2| 6 |B̂1|+ 2|B̂2
2 |+ |B̂1

2 |.
Rewritten in terms of A, this becomes

2(|A2| − 1) 6 |B1|+ 2(|B2
2 | − r) + (|B1

2 |+ r − s).

Using (b) to cancel the sets in the partition of A∪B simplifies the inequality to r+s 6 1,
which is the claim in (d).

(e) For j 6 1, every vertex y ∈ B1 has 2 − j incident edges in H whose other
endpoints are in X − A2. Each vertex in X − A2 can absorb at most two of these
edges, since H is 2-bounded. Thus 2 |X − A2| > |B1|+ 2 |B0|. With |X| = n/2, we have
|A2| 6 n/2− 1

2
(|B1|+ 2|B0|).
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3 Extending Matchings to 2-Factors

It is well known (by induction on d) that every edge in a d-regular bipartite graph lies in
a perfect matching. Similar arguments extend any matching of size 2 to a 2-factor.

Proposition 4. For d > 2, in a d-regular bipartite graph G every matching with at most
two edges extends to a 2-factor.

Proof. Every regular bipartite graph decomposes into perfect matchings. If in such a
decomposition the matchings containing the two specified edges are different, then their
union is the desired 2-factor. If they lie in the same matching M , then the union of M
with any perfect matching in the (d− 1)-regular bipartite graph G−M suffices.

It is somewhat surprising that this easy result is sharp.

Proposition 5. For d > 2, there exists a d-regular bipartite graph with a matching of
size 3 that does not extend to a 2-factor.

Proof. Construct G from two disjoint copies of Kd−1,d by adding a matching M joining
the partite sets of size d. A 2-factor F of G has 4d− 2 edges. The 2d− 2 vertices of the
smaller partite sets in the two copies of Kd−1,d are incident to a total of 4d − 4 edges in
F . Thus F contains at most two edges of M , and any matching consisting of three edges
from M does not extend to a 2-factor in G.

Thus to guarantee extension of matchings to 2-factors in regular bipartite graphs, we
must place restrictions on the host graph G. Every matching is a 2-bounded factor, so the
characterization of extendibility in Theorem 2 applies. When H is a matching, the sets A0

and B0 associated with A are automatically empty, since each vertex is the endpoint of at
most one edge in H. Hence the associated sets are just A1, A2, B1, B2, B

1
2 , B

2
2 . Statements

(a) through (e) in the next theorem specialize the corresponding statement in Theorem 3,
except that (e) here strengthens (e) there.

For a matching M , let UM denote the set of endpoints of edges in M .

Theorem 6. In a regular n-vertex bipartite graph G, let M be a minimal matching that
does not extend to a 2-factor. If A ⊆ X is a minimal set whose associated sets violate (*)
for M , then the following hold:

(a) A1 = ∅, and every edge of M is incident to B1 (and hence B1 = UM ∩ Y ).

(b) 2|A2| = 1 + |B1|+ |B1
2 |+ 2|B2

2 |.

(c) In G−M , every vertex of B1 has at least two neighbors in A2.

(d) Vertices of A2 have at most one neighbor in B2 that has at most two neighbors in
A2.

(e) |A2| = |A| 6 n/2− |B1|.

the electronic journal of combinatorics 20(3) (2013), #P11 5



(f) 2|A2| > |NG−M(A2)|.

(g) Any subset U of UM ∩X is incident to at least |U |+ 1 edges in G whose endpoints
in Y are outside B1 ∪B2

2 .

(h) The subgraph of G−M induced by UM has at most d
2
(|M | − 1)− |M | edges.

Proof. Since a minimal matching that does not extend to a 2-factor is a minimal 2-
bounded subgraph that does not so extend, statements (a) through (d) were proved in
Theorem 3.

(e) Each vertex of B1 is incident to one edge of M , and edges of M are not incident
to A. Each vertex outside A is incident to at most one such edge, since M is a matching.

(f) This follows immediately from (b) and NG−M(A2) = NG−M(A) = B.
(g) Let U = {u1, . . . , us}, with uiyi ∈M for i ∈ [s]. Let M̂ = M − {yiui : i ∈ [s]} and

Â = A ∪ U . By the minimality of M , the sets associated with Â in G − M̂ satisfy (*).
Adding U to A increases the left side of (*) by 2s, since U ⊆ Â2. By part (c), each yi
moves from B1 to B̂2

2 , which increases the right side of (*) by s. Other vertices of B1∪B2
2

have the same position in the partition of B̂. Vertices outside B1∪B2
2 must increase their

contribution to the right side of (*) by at least s + 1. Each edge from U to such a vertex

increases the contribution by at most 1, either by moving a vertex from Y −N(A) to B̂1
2

or from B1
2 to B̂2

2 . Hence there must be at least s + 1 such edges.
(h) Let t be the number of edges of G−M induced by UM , and let m = |M |. By part

(a), |B1| = m. Exactly d|A2| edges join A to B. Among these, exactly |B1
2 | are incident to

B1
2 , and at most (d−1)m− t are incident to B1. Thus d|A2| 6 (d−1)m− t+ |B1

2 |+d|B2
2 |.

Combining this with part (b) yields

1

2
(m + 1 + |B1

2 |) + |B2
2 | 6

d− 1

d
m− 1

d
t +

1

d
|B1

2 |+ |B2
2 |.

This inequality simplifies to (d − 2)|B1
2 | + 2t 6 (d − 2)m − d. Since |B1

2 | > 0, we have
t 6 d

2
(m− 1)−m.

We prove some consequences of Theorem 6. For 3-regular graphs, the content of the
first corollary is that all matchings extend to 2-factors if matchings whose vertices induce
no additional edges extend to 2-factors.

Corollary 7. Let G be a k-regular bipartite graph, where k ∈ {3, 4}. Every matching in
G extends to a 2-factor if and only if every matching M in G with DM 6 k − 2 extends
to a 2-factor, where DM is the maximum degree of the subgraph of G induced by UM .

Proof. If some matching fails to extend, then choose M and A whose associated sets
satisfy the properties in Theorem 6. By part (a), B1 = UM ∩ Y .

If G is 3-regular, then parts (a) and (c) imply that the vertices incident to M induce
no edge other than M , so DM = 1.

If G is 4-regular, then part (c) implies that no vertex in B1 has more than two neighbors
in UM ∩X. Part (g) states that every vertex in UM ∩X has at least 2 neighbors outside
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B1 ∪ B2
2 . Hence these vertices also have degree at most 2 in the subgraph induced by

UM .

Theorem 6 also restricts the size of the smallest matching in a regular bipartite graph
that does not extend to a 2-factor.

Corollary 8. Let G be a regular n-vertex bipartite graph. If every matching in G with
fewer than n/3 edges extends to a 2-factor, then every matching in G extends to a 2-factor.

Proof. Let M be a smallest matching that fails to extend to a 2-factor in G. There exists
A ⊆ X satisfying the properties obtained in Theorem 6. In particular, |A| = |A2| and
|B1| = |M |, so |A| 6 n/2− |M | and 2|A| = |M |+ 2|B2

2 |+ |B1
2 |+ 1. Thus

n > 3|M |+ 2|B2
2 |+ |B1

2 |+ 1 > 3|M |+ 1,

and hence |M | < n/3.

The bound of Corollary 8 is sharp when n = 10. The graph for d = 3 in Proposition 5
has 10 vertices and has a matching of size 3 that does not extend to a 2-factor.

4 Extending Matchings in Q5 to 2-Factors

Although it is unknown whether all matchings in the hypercube extend to 2-factors, we
can prove this for the 5-cube, using Theorem 6 and an extended version of a result by
Somani and Peleg [18]. We proved this extension in [21] and include a proof here for
completeness. (Somani and Peleg considered only the case |S| 6 d + 1, and in this range
the conclusion is sharp.) Recall that N(S) =

⋃
v∈S N(v)− S; the exclusion of S makes a

difference now that we consider sets not confined to one partite set.

Lemma 9. If S ⊆ V (Qd) with S 6= ∅, then |N(S)| > d|S| −
(|S|+1

2

)
.

Proof. We use induction on d. If |S| = 1, then |N(S)| = d > d|S| −
(|S|+1

2

)
. When d = 1

and |S| = 2, we have |N(S)| = 0 > d|S| −
(|S|+1

2

)
. Hence we may assume |S| > 1 and

d > 1.
Since S has at least two vertices, we can split Qd into (d− 1)-dimensional hypercubes

Q1 and Q2 that each contain some vertex of S. Let Si = S ∩ V (Qi). By the induction
hypothesis, |NQi(Si)| > (d− 1)|Si| −

(|Si|+1
2

)
+ 1. These neighborhoods are disjoint, so

|N(S)| > (d− 1)(|S1|+ |S2|)−
[(
|S1|+ 1

2

)
+

(
|S2|+ 1

2

)]
+ 2.

With |S1|+ |S2| fixed,
(|S1|+1

2

)
+
(|S2|+1

2

)
is maximized by maximizing ||S1| − |S2||. Thus

|N(S)| > d|S| − |S| −
[(

(|S| − 1) + 1

2

)
+

(
1 + 1

2

)]
+ 2 = d|S| −

(
|S|+ 1

2

)
+ 1. 2

Lemma 9 guarantees 11 neighbors for a 6-vertex set S in Q5 contained in one partite
set (by the theorem, a 5-vertex subset S ′ of S has 11 neighbors, and |N(S)| > |N(S ′)|
when S is in one partite set). However, we will need one more neighbor.
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Corollary 10. Any six vertices from one partite set in Q5 have at least 12 neighbors.

Proof. Otherwise, let S be such a set having only 11 neighbors. Let X and Y be the
partite sets, with S ⊆ X. Let T = Y −N(S), so |T | = 5. By Lemma 9, |N(T )| > 11. By
definition, N(T ) and S are disjoint subsets of X, but |S|+ |N(T )| > 6 + 11 > |X|.

For d 6 4, every matching in Qd extends to a spanning cycle and hence to a 2-factor.
Here we extend the latter conclusion to d = 5.

Theorem 11. Every matching in Q5 extends to a 2-factor.

Proof. By Corollary 8, we need only consider matchings with at most 10 edges. Dvořák [4]
that linear forests in Qd having at most 2d − 3 edges extend to spanning cycles; since
matchings are linear forests and spanning cycles are 2-factors. matchings with at most 7
edges extend. It remains to consider matchings with 8, 9, or 10 edges. If some matching
fails to extend, then let M be a smallest such matching, and let A be a subset of partite
set X as guaranteed by Theorem 6. We use the properties listed in the parts of Theorem 6
to eliminate all cases.

By part (a), no edge of M is incident to A; each vertex of A needs two additional edges
in a 2-factor containing M (that is, A = A2). By part (e), |A| 6 16 − |M |, so |A| 6 8,
with equality only if |M | = 8.

Recall that B = NG−M(A), and B1 is the set of vertices in B covered by M . By part
(a), every edge of M is incident with B1, so |B1| = |M |. Now 2|A2| = |B1|+2|B2

2 |+|B1
2 |+1

from part (b) yields 2|A| > |M |+ 1, and hence |A| > 5.
Since no edges of M are incident to A, we have NQ5−M(A) = NQ5(A). Hence we can

drop the subscript and refer just to N(A). If |A| = 5, then Lemma 9 yields |N(A)| > 11; if
|A| = 6, then Corollary 10 yields |N(A)| > 12. However, part (f) requires 2|A| > |N(A)|,
contradicting both cases. Hence |A| > 7.

Lemma 9 implies that any set of size at least 3 in Y has at least 10 neighbors in X.
All neighbors of Y − N(A) are in X − A. Since |X − A| 6 9, we have |Y − N(A)| 6 2,
and hence |N(A)| > 14. However, if |A| = 7, then part (f) requires |N(A)| < 14.

We are left with |A| = 8, which as noted before requires |M | = |B1| = 8. Hence part
(b) yields 2|B2

2 |+ |B1
2 | = 7. Now, part (f) and |N(A)| > 14 require |N(A)| ∈ {14, 15}.

First we exclude |N(A)| = 14. Since 2|B2
2 |+ |B1

2 | = 7, parity implies that |B1
2 | is odd,

so some vertex y of N(A) has one neighbor in A and hence four neighbors in X −A. Let
Y −N(A) = {u, v}. Since |X −A| = 8, the set {u, v} has at most eight neighbors. Hence
u and v have two common neighbors; they can’t have more, so N(u) ∪ N(v) = X − A.
We also have y with four neighbors in X − A.

To eliminate this case, we may assume by symmetry that u = (00000) and v =
(11000). The vertices of N(u) ∪ N(v) are then all five vertices of weight 1 plus
{(11100), (11010), (11001)}. To have four neighbors in this set, y must have weight 2.
Now y has exactly two neighbors of weight 1, but v is the only vertex of weight 2 having
two neighbors of weight 3 in N(v).

Therefore, |N(A)| = 15. That is, 8 + |B2
2 | + |B1

2 | = 15. Combining this with 2|B2
2 | +

|B1
2 | = 7 yields |B2

2 | = 0 and |B1
2 | = 7. We count edges incident to X − A. Each vertex
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of B1
2 has one neighbor in A and hence four in X − A. The vertex in Y −N(A) has five

neighbors in X − A. Each vertex of B1 has at least one neighbor in X − A (its neighbor
in M). Together, we have at least 41 edges incident to X − A, but the total degree of
X − A is only 40.

We have eliminated all cases, so every matching extends to a 2-factor.
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[11] Häggkvist, R. and Thomassen, C., Circuits through specified edges, Discrete Math.,
41 (1982), 29–34.

[12] Hu, Z. and Tian, F. and Wei, B., Long cycles through a linear forest, J. Combin.
Theory Ser. B, 82 (2001), 67–80.

[13] Kano, M. and Saito, A., A short proof of Lovász’s factor theorem, Memories of
Akashi Technological College, 26 (1984), 167–170.

[14] Katerinis, P., Minimum degree of bipartite graphs and the existence of k-factors,
Graphs Combin., 6 (1990), 253–258.

[15] Kreweras, G., Matchings and Hamiltonian cycles on hypercubes, Bull. Inst. Combin.
Appl., 16 (1996), 87–91.

the electronic journal of combinatorics 20(3) (2013), #P11 9



[16] Ore, O., Graphs and subgraphs, Trans. Amer. Math. Soc., 84 (1957), 109–136.

[17] Ruskey, F. and Savage, C., Hamilton cycles that extend transposition matchings in
Cayley graphs of Sn, SIAM J. Discrete Math., 6 (1993), 152–166.

[18] Somani, A. and Peleg, O., On diagnosability of large fault sets in regular topology-
based computer systems, IEEE Trans. on Comp., 45 (1996), 892–903.

[19] Sugiyama, T., Hamiltonian cycles through a linear forest, SUT J. Math., 40 (2004),
103–109.

[20] Tutte, W.T., Graph Factors, Combinatorica, 1 (1981), 79–97.

[21] Vandenbussche, J., and West, D. B. Matching extendability in hypercubes, SIAM J.
Discrete Math., 23 (2009), 1539–1547.

[22] Wojda, A. P., Hamiltonian cycles through matchings, Demonstratio Math., 21 (1988),
547–553.

the electronic journal of combinatorics 20(3) (2013), #P11 10


