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Abstract

This paper gives a plethysm formula on the characteristic map of the induced
linear characters from the unipotent upper-triangular matrices Un(Fq) to GLn(Fq),
the general linear group over finite field Fq. The result turns out to be a multiple of
a twisted version of the Hall-Littlewood symmetric functions P̃n[Y ; q]. A recurrence
relation is also given which makes it easy to carry out the computation.
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1 Introduction

Let Fq be a fixed finite field and GLn(Fq) the finite general linear group over Fq. The
representation theory of GLn(Fq) over C was presented by J.A.Green [5]. He also con-
structed the characteristic map which builds a connection between the character spaces
of GLn(Fq) for n > 0 and the Cartesian product over infinitely indexed sets of rings of
symmetric functions. In character theory, the study of induced linear characters from
subgroups is very useful in order to understand the character ring of the larger group.

In this paper, we consider certain induced linear characters from the group of unipo-
tent upper-triangular matrices Un(Fq) to GLn(Fq). The representations of these induced
linear characters are known as Gelfand-Graev modules, which play an important role in
the representation theory of finite groups of Lie type ([4], [12]). The formula for the
characteristic map of the induced linear characters is given by Thiem [9]. We then apply
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a homomorphism ρ (see Definition 5) on the image of the characteristic map. We refer to
the result as a plethysm formula because it involves a composition of symmetric functions
using the plethysm operation. There are two advantages in doing so: to get a simpler
formula and to express the result as a multiple of a twisted version of the Hall-Littlewood
symmetric functions P̃n[Y ; q]. We hope this method could contribute to the study of the
irreducible decomposition of the induced characters from Un(Fq) to GLn(Fq).

In section 2 we give some background knowledge on symmetric functions and repre-
sentation theory of GLn(Fq) and Un(Fq). Since the character theory of Un(Fq) is known
as a wild problem, supercharacter theory is built up as an approximation of the ordinary
character theory. The linear characters of Un(Fq) that we are considering are part of the
category of supercharcters of Un(Fq). We introduce further questions about the induc-
tion of all supercharacters in Section 4. In Section 3 we give our main result about the
plethysm formula. A natural recurrence relation is obtained so that we can carry out the
computation of the homomorphism ρ on the characteristic map of the induced linear char-
acters more easily. We also give a relation between the characteristic map of the induced
characters from Un(Fq) to GLn(Fq), and the homomorphism ρ on those characteristics.
This is depicted in the following diagram

⊗ϕ∈ΘΛC(Y ϕ)

ρ

��

Id ⊗f∈ΦΛC(Xf )

Π|ΛC(Xf=x−1)

��
ΛC(Y ) τ◦ω

// ΛC(Xx−1)

where the notation is explained in Theorem 17. From the above commutative diagram
we show that our simplified plethysm formula does not lose any information on the char-
acteristic map of the induced characters from Un(Fq) to GLn(Fq).

2 Background

2.1 Symmetric functions

The notation in this paper follows closely the book of Macdonald [7] and Thiem [10].

Definition 1. A partition λ of n ∈ N, is a sequence λ = (λ1, λ2, . . . , λl) of positive
integers in weakly decreasing order: λ1 > λ2 > · · · > λl, such that λ1 + λ2 + · · ·+ λl = n.
We denote this by λ ` n. Here, each λi (1 6 i 6 l) is called a part of λ. We say the length
of the partition λ is l = l(λ), which is the number of parts of λ. We use |λ| to denote the
sum of all parts λ1 +λ2 + · · ·+λl, and we call |λ| the size of the partition. Sometimes we
also use the notation:

λ = (1m1 , 2m2 , . . . , nmn , . . .),

where each mi means there are mi parts in λ equal to i.

Let ΛC(Y ) denote the ring of symmetric functions with complex coefficients in the
variables Y = {y1, y2, . . .}. We denote the complete symmetric functions, elementary
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symmetric functions, monomial symmetric functions, power-sum symmetric functions,
and Schur symmetric functions by hλ[Y ], eλ[Y ], mλ[Y ], pλ[Y ], and sλ[Y ] respectively.

Following other references (e.g. Garsia and Tesler [3]), we use the notation Ω for the
basic symmetric function kernel. Then the generating function for hn[Y ] is

Ω[tY ] =
∑
n>0

hn[Y ]tn =
∏
j>1

(1− yjt)−1.

It is also well known that

Ω[X]Ω[Y ] = Ω[X + Y ], and Ω[X]/Ω[Y] = Ω[X− Y].

Let X = {x1, x2, . . .} be another set of finite or infinite variables. We have the following
identity:

Ω[XY ] :=
∏
i,j

(1− xiyj)−1 =
∑
λ

mλ[X]hλ[Y ] (2.1)

summed over all partitions λ.
There is a scalar product defined on ΛC(Y ), which makes (mλ) and (hλ) dual to each

other:
〈hλ,mµ〉 = δλµ

for all partitions λ, µ, where δλµ is the Kronecker delta.
We use Pλ[Y ; t] to denote the Hall-Littlewood symmetric functions, as defined in [7]

(see page 209). If we define

qr = qr[Y ; t] = (1− t)P(r)[Y ; t] for r > 1,

q0 = q0[Y ; t] = 1,

then the generating function for qr[Y ; t] is

Q(u) =
∑
r>0

qr[Y ; t]ur =
∏
i

1− yitu
1− yiu

= Ω[(1− t)uY ] . (2.2)

For each partition λ, let n(λ) =
∑

i>1(i− 1)λi. Define

P̃λ[Y ; q] = q−n(λ)Pλ[Y ; q−1],

and we call P̃λ[Y ; q] the twisted Hall-Littlewood symmetric functions.
From [7], it is well known that the plethysm can be defined by

ha[pb[Y ]] = ha[y
b
1, y

b
2, . . .], (2.3)

which is the coefficient of tab in
∏

j>1(1− ybjtb)−1.
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2.2 Representation theory of GLn(Fq)

The representation theory of the finite general linear group Gn = GLn(Fq) over C can be
found in J.A.Green [5], Macdonald [7] and Thiem [9]. Here we give a short description of
the characteristic map constructed by J.A.Green.

Let F̄q denote the algebraic closure of the finite field Fq. The multiplicative group of
F̄q is denoted by F̄×q . The Frobenius automorphism of F̄q over Fq is given by

F : x→ xq,where x ∈ F̄q.

For each n > 1, we use F̄×q,n to denote the fixed points of F n in F̄×q .
Let F̄∗q = {φ : F̄×q → C×} be the group of complex-valued multiplicative characters of

F̄×q . The Frobenius automorphism on F̄∗q is

F : ξ → ξq,where ξ ∈ F̄∗q.

For each n > 1, let F̄∗q,n be the group of elements fixed by F n. We also define a pairing of
F̄∗q with F̄×q by

〈ξ, x〉n = ξ(x)

for ξ ∈ F̄∗q,n and x ∈ F̄×q,n.
We then define

Φ = {F -orbits of F̄×q } and Θ = {F -orbits of F̄∗q}.

Since each F -orbit of F̄×q is in one-to-one correspondence with an irreducible polynomial
over Fq, we can also use f to denote each F -orbit in Φ. A partition-valued function µ on
Φ is a function which maps each f ∈ Φ to a partition µ(f). The size of µ is

‖µ‖ =
∑
f∈Φ

d(f)|µ(f)|,

where d(f) is equal to the degree of f ∈ Φ.
Let P denote the set of all partitions and

PΦ =
⋃
n>0

PΦ
n , where PΦ

n = {µ : Φ→ P ; ‖µ‖ = n}.

We use Kµ to denote the conjugacy classes in Gn parameterized by µ ∈ PΦ
n [7]. The

characteristic function of the conjugacy class Kµ is denoted by πµ.
Similarly, for each partition-valued function λ : Θ→ P, the size of λ is

‖λ‖ =
∑
ϕ∈Θ

d(ϕ)|λ(ϕ)|,

where d(ϕ) is equal to the number of elements in ϕ. Let

PΘ =
⋃
n>0

PΘ
n , where PΘ

n = {λ : Θ→ P ; ‖λ‖ = n}.
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We use Gλ
n to denote the irreducible Gn-modules indexed by λ ∈ PΘ

n [7]. The character
of the irreducible Gn-module Gλ

n is denoted by χλ.
For every f ∈ Φ, let Xf := {X1,f , X2,f , . . .} be a set of infinitely many variables. Each

Xi,f has degree d(f).
Let

P̃η[f ] = P̃η[Xf ; q
d(f)] = q−d(f)n(η)Pη[Xf ; q

−d(f)],

where P̃η[Xf ; q
d(f)] is the twisted Hall-Littlewood symmetric function. Define

P̃µ =
∏
f∈Φ

P̃µ(f)[f ].

For every ϕ ∈ Θ, let Y ϕ := {Y ϕ
1 , Y

ϕ
2 , . . .} be a set of infinitely many variables. Each

Y ϕ
i has degree d(ϕ). Define

Sλ =
∏
ϕ∈Θ

sλ(ϕ)[Y
ϕ],

where sλ(ϕ)[Y
ϕ] is the Schur symmetric function.

We define the transformation between the symmetric functions in the variables {Xf :
f ∈ Φ} and those in the variables {Y ϕ : ϕ ∈ Θ} by the following identity:

pk[Y
ϕ] = (−1)n−1

∑
x∈F̄×q,n

ξ(x)pn/d(fx)[Xfx ] , (2.4)

where n = k × d(ϕ), ξ is any element in ϕ, and fx is the irreducible polynomial that
contains x as a root. Since fx = fy if x, y are in the same F -orbit in F̄×q,n, equation (2.4) is
well defined for any ξ ∈ ϕ. Also here pk[Y

ϕ] and pn/d(fx)[Xfx ] are power sums in different
sets of variables. Equation (2.4) is an isomorphism and its inverse can be found in [7].
For interested readers willing to know more details, please refer to [7] and [11].

Since the power-sum symmetric functions form a basis of the ring of symmetric func-
tions, with the basis transformation given by equation (2.4), we let

ΛC = ⊗f∈ΦΛC(Xf ) = ⊗ϕ∈ΘΛC(Y ϕ),

where ΛC(Xf ) is the ring of symmetric functions in Xf , and ΛC(Y ϕ) is the ring of sym-
metric functions in Y ϕ. As a graded ring, we have

ΛC = C-span{P̃µ|µ ∈ PΦ}
= C-span{Sλ|λ ∈ PΘ}.

From [7] we know that the conjugacy classes Kµ of Gn are parameterized by µ ∈ PΦ
n ,

and the irreducible characters χλ of Gn are indexed by λ ∈ PΘ
n . The following theorem

gives the characteristic map of Gn.
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Theorem 2. (Green [5], Macdonald [7], Zelevinski [14]) Let An denote the space of
complex-valued class functions on Gn and A = ⊕n>0An. The linear map

ch : A −→ ΛC

χλ 7→ Sλ, for λ ∈ PΘ,

πµ 7→ P̃µ, for µ ∈ PΦ,

is a Hopf algebra isomorphism.

2.3 Supercharacter theory

Let Un be the group of unipotent upper-triangular matrices with entries in the finite field
Fq, and ones on the diagonal. This group is the subgroup of the finite general linear
group Gn. Although the character theory on Un is a wild problem, people came up
with a slightly coarser version called superclass and supercharacter theory (André [2],
Yan [13]). This approximation of the character theory of Un is relatively easier to study
and compute. Superclasses are certain unions of conjugacy classes and supercharacters are
sums of irreducible characters. They are compatible in the sense that supercharacters are
constant on superclasses. The supercharacter theory has a rich combinatorial structure
(ref. [10]) and connects to some other algebraic structures as well (ref. [1]).

The superclasses of Un can be indexed by the F×q -labeled set partitions, and a super-
character becomes an irreducible character if the corresponding indexed F×q -labeled set
partition has no crossing arcs. For the strict definitions and more details on supercharac-
ters please see [10] or [1].

In this paper we consider the linear supercharacters of Un indexed by

1

q1

2

q2

3

q3

n

qn−1

where q1, . . . , qn−1 ∈ F×q (see Thiem [10] for this notation). Let χ
(n)
(q1,...,qn−1) denote the

above character. We induce χ
(n)
(q1,...,qn−1) from Un to Gn by the formula

χ
(n)
(q1,...,qn−1) ↑

Gn
Un

(g) =
1

|Un|
∑
h∈Gn

χ̄
(n)
(q1,...,qn−1)(hgh

−1), (2.5)

where χ̄(s) = χ(s) if s ∈ Un, and χ̄(s) = 0 if s 6∈ Un.

The induced character χ
(n)
(q1,...,qn−1) ↑

Gn
Un

is a character of Gn, which is known as the

character of the Gelfand-Greav module ([4], [9]). Applying the homomorphism ρ defined

in Section 3 to the characteristic map of χ
(n)
(q1,...,qn−1) ↑

Gn
Un

, we get a multiple of the twisted

Hall-Littlewood symmetric function P̃n. An explicit formula for this result together with
a recurrence relation is also given in Section 3.
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3 Plethysm Formula for the induced character

We start from the formula of the characteristic map of χ
(n)
(q1,...,qn−1) ↑

Gn
Un

, which is given by

Thiem [9].

Theorem 3. (Thiem [9])

ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

) =
∑
λ∈PΘ

n
ht(λ)=1

Sλ, (3.1)

where ht(λ) = max{l(λ(ϕ))|ϕ ∈ Θ}.

Notice that ht(λ) = 1 implies for every ϕ ∈ Θ we have l(λ(ϕ)) 6 1, which means λ(ϕ)
contains at most one part. Since for each a ∈ N, sa[Y

ϕ] = ha[Y
ϕ]. From the definition of

Sλ, we can write (3.1) as

ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

) =
∑
λ∈PΘ

n
ht(λ)=1

∏
ϕ∈Θ

sλ(ϕ)[Y
ϕ] =

∑
λ∈PΘ

n
ht(λ)=1

∏
ϕ∈Θ

hλ(ϕ)[Y
ϕ]

=
∑

a1b1+···+akbk=n

λ(Θ)={a1,...,ak}∈P
Θ
n

∑
deg(ϕi)=bi

ϕ1,...,ϕk distinct

ha1 [Y ϕ1 ]ha2 [Y ϕ2 ] · · ·hak [Y ϕk ], (3.2)

where Y ϕ1 , Y ϕ2 , . . . , Y ϕk are different sets of variables. For i from 1 to k, each variable in
the set Y ϕi = {Y ϕi

1 , Y ϕi
2 , . . .} has degree bi.

We give an example to better understand formulae (3.1) and (3.2).

Example 4. For n = 3, we have

ch(χ
(3)
(q1,q2) ↑

G3
U3

) =
∑

ϕ1,ϕ2,ϕ3distinct
deg(ϕi)=1

h1[Y ϕ1 ]h1[Y ϕ2 ]h1[Y ϕ3 ]

+
∑

ψ1,ψ2distinct
deg(ψi)=1

h2[Y ψ1 ]h1[Y ψ2 ] +
∑

deg(ϕ̄1)=2
deg(ϕ̄2)=1

h1[Y ϕ̄1 ]h1[Y ϕ̄2 ]

+
∑

deg(ϕ)=1

h3[Y ϕ] +
∑

deg(ψ)=3

h1[Y ψ].

From the above example we see that the expansion on the right-hand side of (3.2)
becomes more complicated as n increases. This inspires us to come up with the idea of
using a homomorphism, as we will see later in Definition 5, to simplify the computation.

For each term in equation (3.2), we have a two row array

(
b1 b2 · · · bk
a1 a2 · · · ak

)
where

bi = d(ϕi) and it satisfies the condition
∑k

i=1 aibi = n. We arrange the pairs (bi, ai) such
that:

(1) b1 6 b2 6 . . . 6 bk,
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(2) aj 6 aj+1 if bj = bj+1 for 1 6 j < k.
Once the array is sorted, we can denote it as follows:(

1m1 2m2 · · · nmn

1m1,1 2m1,2 · · · nm1,n 1m2,1 2m2,2 · · · nm2,n · · · 1mn,1 2mn,2 · · · nmn,n

)
where

∑n
i,j=1(mi,j × j × i) = n and mi,1 + mi,2 + . . . + mi,n = mi for 1 6 i 6 n. Each

mi counts the number of different sets of variables appearing in the term with the same
degree i. Each mi,j counts the number of complete symmetric functions hj in variables
with degree i.

For a given i, let lq(i) denote the number of all different sets of variables with the
same degree i. We know that lq(i) is equal to the number of irreducible polynomials
f over finite field Fq with degree i and satisfying f(0) 6= 0. The number of irreducible
polynomials of degree i over Fq is given by the formula

Lq(i) =
1

i

∑
d|i

µ(d)q
i
d ,

where µ is the Möbius function. Then we have

lq(i) =

{
Lq(1)− 1, for i = 1;
Lq(i), for i > 2.

(3.3)

Thus for a given i and a list of numbers [mi,1,mi,2, . . . ,mi,n] where mi,1+mi,2+. . .+mi,n =
mi, the number of products of the form

h1[Y ϕi,1 ]h1[Y ϕi,2 ] · · ·h1[Y ϕi,mi,1 ]

× h2[Y ϕi,mi,1+1 ]h2[Y ϕi,mi,1+2 ] · · ·h2[Y ϕi,mi,1+mi,2 ]

× · · ·
× hn[Y ϕi,mi,1+···+mi,n−1+1 ]hn[Y ϕi,mi,1+···+mi,n−1+2 ] · · ·hn[Y ϕi,mi ] (3.4)

is equal to
lq(i)(lq(i)− 1) · · · (lq(i)−mi + 1)

mi,1!mi,2! · · ·mi,n!
,

where Y ϕi,1 , Y ϕi,2 , . . . , Y ϕi,mi are mi different sets of variables with the same degree i.
Notice that when n increases, we get more terms on the right-hand side of equation (3.2).

In order to simplify the computation, we send each set of variables Y ϕi to {ybi1 , y
bi
2 , . . .}.

Using plethysm defined as equation (2.3), we give the following definition.

Definition 5. Define a homomorphism ρ : C-span{Sλ|λ ∈ PΘ} → ΛC(Y ) as follows:

ρ(ha[Y
ϕ]) = ha[pb[Y ]], ∀ϕ ∈ Θ, b = deg(ϕ).
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The image of the homomorphism doesn’t differentiate the sets of variables and there-
fore simplifies the computation. Applying the homomorphism does lose information on
the characteristics of characters in Gn. However, as we will see later on in Theorem 17
and Corollary 18, if we consider the induced characters from Un to Gn, then the homo-
morphism carries all the information and this will be discussed later in this section.

Since ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

) is independent of q1, . . . , qn−1, and only depends on n for

n > 1, we can simply denote ρ(ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

)) by ρn and set ρ0 = 1. We also use
ρ[mi,1,...,mi,n] to denote the results of applying ρ on the sum of all different products in the
form of (3.4) for the same index list [mi,1, . . . ,mi,n], i.e.

ρ[mi,1,...,mi,n] :=
lq(i)(lq(i)− 1) · · · (lq(i)−mi + 1)

mi,1!mi,2! · · ·mi,n!
(h1[pi])

mi,1 · · · (hn[pi])
mi,n

.

Applying ρ to both sides of (3.2) we get

ρn =
∑

∑n
i,j=1mi,j×j×i=n

ρ[m1,1,...,m1,n] · · · ρ[mn,1,...,mn,n] . (3.5)

The following theorem follows naturally.

Theorem 6. Let CHq(t) denote the generating function for ρn:

CHq(t) = 1 + ρ1t+ ρ2t
2 + · · · =

∑
n>0

ρnt
n.

Then we have

CHq(t) =
∏
i>1

(∏
j>1

(1− yijti)−1

)lq(i)

=
∏
i>1

∏
j>1

(1− yijti)−lq(i).

Proof. Since for every i > 1,∏
j>1

(1− yijti)−1 =
∑
a>0

ha[y
i
1, y

i
2, . . .]t

a·i

= 1 + (h1[pi]) · ti + (h2[pi]) · t2i + · · · .
We have(∏

j>1

(1− yijti)−1

)lq(i)

=
(
1 + (h1[pi])t

i + (h2[pi])t
2i + · · ·

)lq(i)
=

∑
mi,1+mi,2+···+mi,n=mi

06mi6lq(i)

(
lq(i)

mi

)(
mi

mi,1mi,2 · · ·mi,n

)

× (h1[pi])
mi,1(h2[pi])

mi,2 · · · (hn[pi])
mi,n · t(mi,1+2mi,2+···+n·mi,n)·i

=
∑

mi,1+mi,2+···+mi,n=mi
06mi6lq(i)

ρ[mi,1,...,mi,n] · t(mi,1+2mi,2+···+n·mi,n)·i
.
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From (3.5) we see that the coefficient of tn in the product
∏

i>1

(∏
j>1(1− yijti)−1

)lq(i)
is

exactly equal to ρn for n > 1. Thus we get the Theorem.

Theorem 7. ∏
i>1

∏
j>1

(1− yijti)−lq(i) =

∏
j>1(1− yjt)∏
j>1(1− yjqt) .

(3.6)

Proof. From equation (3.3) we know that when i = 1,∏
j>1

(1− yjt)−lq(1)
∏
j>1

(1− yjt)−1 =
∏
j>1

(1− yjt)−Lq(1)
,

and when i > 2, ∏
j>1

(1− yijti)−lq(i) =
∏
j>1

(1− yjt)−Lq(i).

Thus the above identity is equivalent to the identity∏
i>1

∏
j>1

(1− yijti)Lq(i) =
∏
j>1

(1− yjqt), (3.7)

where Lq(i) denotes the number of irreducible polynomials over Fq for i > 1, as we stated
before.

Equation (3.7) is a classical identity which could be found, e.g. in [8] page 171. Here
we give a direct computational proof by taking the logarithm on both sides of (3.7) and
showing they are equal.

ln

(∏
i>1

∏
j>1

(1− yijti)Lq(i)
)

=
∑
j>1

(∑
i>1

Lq(i) ln(1− yijti)

)

=
∑
j>1

(∑
i>1

Lq(i)

(∑
r>1

(yijt
i)r

r

))

=
∑
j>1

(∑
i>1

∑
r>1

Lq

(
i · r
r

)
· i · r
r
·
y

(i·r)
j · t(i·r)

i · r

)

=
∑
j>1

∑
N>1
N=i·r

yNj · tN

N

∑
r|N

Lq

(
N

r

)
· N
r


=
∑
j>1

∑
N>1
N=i·r

yNj · tN

N
· qN


=
∑
j>1

(ln(1− yjqt)) = ln

(∏
j>1

(1− yjqt)

)
.

Thus we get (3.7).
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Theorem (6) and Theorem (7) together yield the formula for the generating function
of ρn as follows:

CHq(t) =
∏
j>1

1− yjt
1− yjqt .

(3.8)

Before we link it to Hall-Littlewood polynomials, we give a recurrence relation for ρn using
formula (3.8).

Corollary 8. For every n > 1, we have

ρn = (qn − 1)hn − ρn−1h1 − ρn−2h2 − · · · − ρ1hn−1. (3.9)

Proof. From (3.8) we have

CHq(t)× Ω[tY ] =
∏
j>1

(1− yjqt)−1.

Comparing the coefficients of tn on both sides, we get

ρ0hn + ρ1hn−1 + · · ·+ ρnh0 = qnhn,

which yields the theorem.

Example 9.

ρ1 = (q − 1)h1;

ρ2 = (q2 − 1)h2 − ρ1h1

= (q2 − 1)h2 − (q − 1)h1,1

= (q − 1)[(q + 1)h2 − h1,1];

ρ3 = (q3 − 1)h3 − ρ1h2 − ρ2h1

= (q3 − 1)h3 − (q − 1)h2,1 − (q2 − 1)h2,1 + (q − 1)h1,1,1

= (q − 1)[(q2 + q + 1)h3 − (q + 2)h2,1 + h1,1,1].

From the above examples we notice that the coefficients of hλ are in ±N[q]× (q − 1).
Let [hλ]ρn denote the coefficients of hλ in the expansion of ρn. In particular, we have
[hn]ρn = qn − 1 for all n > 1. The following corollary gives the recurrence relation on the
coefficients.

Corollary 10. For any λ = (al11 , a
l2
2 , . . . , a

lk
k ) ` n with li > 1 for all 1 6 i 6 k and

l(λ) > 2, we have

[hλ]ρn = −[h
(a
l1−1
1 ,a

l2
2 ,...,a

lk
k )

]ρn−a1 − [h
(a
l1
1 ,a

l2−1
2 ,...,a

lk
k )

]ρn−a2 − · · · − [h
(a
l1
1 ,a

l2
2 ,...,a

lk−1

k )
]ρn−ak .

(3.10)
Here, if li = 1 for some 1 6 i 6 k, then we set

(al11 , . . . , a
li−1
i , . . . , alkk ) := (al11 , . . . , âi, . . . , a

lk
k ),

where âi means simply remove ai from the partition λ. In particular, [hλ]ρn ∈ ±N[q] ×
(q − 1), while the sign is given by (−1)l(λ)−1.
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Proof. Equation (3.10) follows directly from Corollary 8 by comparing the coefficients of
hλ from two sides. The claim that [hλ]ρn is in ±N[q] × (q − 1) together with the sign
property can be proved easily by using induction on equation (3.10).

Remark 11. Corollary 8 and Corollary 10 give an easy way of computing ρn for every
n > 1 simply by knowing [hi]ρi = qi − 1 for every i > 1.

Example 12.

[h2,1]ρ3 = −[h1]ρ1 − [h2]ρ2

= −(q − 1)− (q2 − 1)

= −(q − 1)(q + 2).

[h1,1,1]ρ3 = −[h1,1]ρ2 = [h1]ρ1

= q − 1.

Now back to our formula (3.8). We rewrite it in the following form so that we can
easily use the generating function for qr as in equation (2.2).

CHq(t) =
∏
j>1

1− yjt
1− yjqt

=
∏
j>1

1− yj · 1
q
· (qt)

1− yj · (qt)

=
∑
r>0

qr[Y ; q−1]qrtr,

where Y = {y1, y2, . . .}. Comparing the coefficients from two sides we get the following
corollary.

Corollary 13.

ρn = qn[Y ; q−1]qn = (1− q−1)Pn
[
Y ; q−1

]
qn

= qn−1(q − 1)Pn
[
Y ; q−1

]
= qn−1(q − 1)P̃n [Y ; q] . (3.11)

Corollary 13 gives the connection between the image of the homomorphism ρ on
the characteristic map of χ

(n)
(q1,...,qn−1) ↑

Gn
Un

and the Hall-Littlewood symmetric functions.
As we mentioned in the introduction, we refer to this result as a plethysm formula on
ch(χ

(n)
(q1,...,qn−1) ↑

Gn
Un

).

For any linear supercharacter [10, 9, 1] of Un, there is a unique way to decompose
the indexed set partition into connected components. We denote a linear supercharacter
with k connected components by χ

n1|n2|...|nk
~q1,..., ~qk

, where for i from 1 to k, each ni counts the

size of the ith connected component, and ~qi = (qi,1, . . . , qi,ni−1) ∈ (F×q )ni−1 denotes the
labels of the arcs for the ith connected component. The following corollary follows from
the property of the linear supercharacters [10, 9, 1].
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Corollary 14.

ρ(ch(χ
n1|n2|...|nk
~q1,..., ~qk

↑GnUn )) =
k∏
i=1

ρni .

Example 15. For the following linear supercharacter of U6

χ
1|2|3
~q1, ~q2, ~q3

= χ
1 2

q2,1

3 4

q3,1

5

q3,2

5 6

where ~q1 = (), ~q2 = (q2,1), ~q3 = (q3,1, q3,2) and q2,1, q3,1, q3,2 ∈ F×q , we have

ρ ◦ ch(χ
1|2|3
~q1, ~q2, ~q3

↑G6
U6

) = ρ1ρ2ρ3.

Let the transition matrix between {mλ[X]}λ`n and {pµ[X]}µ`n be Cλ,µ, i.e.

mλ[X] =
∑
µ

Cλ,µpµ[X].

Define mλ[q − 1] by the following equation

mλ[q − 1] =
∑
µ

Cλ,µpµ[q − 1],

where pn[q − 1] = qn − 1 for every n > 1, and pµ[q − 1] = pµ1 [q − 1] · · · pµl [q − 1] for
µ = (µ1, . . . , µl).

Remark 16. Using the orthogonal relation between the bases {mλ} and {hµ}, we give
another expression for ρn as follows:

ρn =
∑
λ`n

mλ[q − 1]× hλ[Y ].

Proof. Using the notation in Section 2.1, we have

Ω[qtY ] =
∏
j>1

1

1− yjqt ,
Ω[−tY ] =

∏
j>1

(1− yjt).

CHq(t) =
∏
j>1

1− yjt
1− yjqt

= Ω[(q − 1)tY ]

=
∑
n>0

(∑
λ`n

mλ[q − 1] · hλ[Y ]

)
tn

.
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As we mentioned above, it seems that we lose information by applying ρ to the char-
acteristic map of χ

(n)
(q1,...,qn−1) ↑

Gn
Un

. However, since χ
(n)
(q1,...,qn−1) ↑

Gn
Un

is a character induced

from Un, this allows us to express ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

) in basis {P̃µ|µ ∈ PΦ} from the
result of applying ρ. To show this fact, we first introduce the following homomorphism
on symmetric function ring defined in [7]:

ω : ΛC(Y )→ ΛC(Y )

by
ω(er[Y ]) = hr[Y ], for all r > 0.

The map ω is a well known involution and automorphism on ΛC(Y ). Also, we have

ω(pr[Y ]) = (−1)r−1pr[Y ], for all r > 0.

The following theorem illustrates the relation between applying the homomorphism ρ
to the characteristic map in basis {Sλ|λ ∈ PΘ} and the projection on the characteristic
map in basis {P̃µ|µ ∈ PΦ} to the space ΛC(Xx−1).

Theorem 17. The following diagram commutes:

⊗ϕ∈ΘΛC(Y ϕ)

ρ

��

Id ⊗f∈ΦΛC(Xf )

Π|ΛC(Xf=x−1)

��
ΛC(Y ) τ◦ω

// ΛC(Xx−1) ,

where τ is the map of changing variables yi into Xi,x−1 for i = 1, 2, . . ., and Π|ΛC(Xf=x−1)

is the projection to the space ΛC(Xx−1).

Proof. Recall equation (2.4)

pk[Y
ϕ] = (−1)n−1

∑
x∈Mn

ξ(x)pn/d(fx)[Xfx ] ,

where ξ ∈ ϕ, x ∈ fx and n = k × d(ϕ). If we apply ρ to pk[Y
ϕ] we get pn[Y ]. Ap-

plying the projection map Π|ΛC(Xf=x−1) on the right-hand side of equation (2.4) yields
(−1)n−1pn[Xx−1]. Since {pn : n = 1, 2, . . .} are algebraically independent over C and
{pλ : λ a partition} form a basis of the symmetric function ring, we get the theorem.

Since ΛC has two bases {Sλ|λ ∈ PΘ} and {P̃µ|µ ∈ PΦ}, we use ch(χ ↑GnUn )(Xf : f ∈ Φ)

to denote the expression in terms of basis {P̃µ|µ ∈ PΦ}, and ch(χ ↑GnUn )(Y ϕ : ϕ ∈ Θ) the
expression in terms of basis {Sλ|λ ∈ PΘ}. We then have the following identity.

Corollary 18.

ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

)(Xf : f ∈ Φ) = τ ◦ ω(ρn)

= qn−1(q − 1)ω(P̃n [Xx−1; q]).
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Proof. From the definition of the induced character by equation (2.5) we know that

χ
(n)
(q1,...,qn−1) ↑

Gn
Un

(g) = 0

for all g ∈ Gn which are not similar to any unipotent upper-triangular matrices. Notice
that the characteristic polynomial for all matrices in Un is (x−1)n. Since similar matrices

have the same characteristic polynomial, χ
(n)
(q1,...,qn−1) ↑

Gn
Un

could possibly take nonzero values

only on those matrices in Gn with characteristic polynomials equal to (x− 1)n. We then
have

ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

)(Xf : f ∈ Φ) ∈ ΛC(Xx−1),

and so
Π|ΛC(Xf=x−1)[ch(χ

(n)
(q1,...,qn−1) ↑

Gn
Un

)] = ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

).

By theorem 17 we obtain the corollary.

Remark 19. From the proof of Corollary 18 we conclude that for any character χ of Un,
if we induce χ from Un to Gn, then we have

ch(χ ↑GnUn )(Xf : f ∈ Φ) = τ ◦ ω ◦ ρ(ch(χ ↑GnUn )(Y ϕ : ϕ ∈ Θ)).

For λ = (λ1, . . . , λl) let ρλ = ρλ1ρλ2 . . . ρλl . By Corollary 13, since ρn = qn−1(q −
1)Pn[Y ; q−1], we know that {ρλ} forms a basis for the symmetric function ring ΛC(Y ).
Thus ρ(ch(χ ↑GnUn )) can be written as ρ(ch(χ ↑GnUn )) =

∑
λ`nCλρλ, where Cλ ∈ C. We then

define a map as follows.

Definition 20. Define ρ̂ : ΛC(Y )→ C-span{Sλ|λ ∈ PΘ} by

ρ̂(ρn) :=
∑
λ∈PΘ

n
ht(λ)=1

Sλ

= ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

),

and

ρ̂(ρλ) = ρ̂(ρλ1)ρ̂(ρλ2) . . . ρ̂(ρλl),

where λ = (λ1, . . . , λl).

Proposition 21. For a fixed finite field Fq and a character χ of Un, we have

(ρ̂ ◦ ρ)(ch(χ ↑GnUn )) = ch(χ ↑GnUn ).

Proof. First of all, we have ρ̂◦ρ(ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

)) = ρ̂(ρn) = ch(χ
(n)
(q1,...,qn−1) ↑

Gn
Un

). From
Theorem 17 and Remark 19 we know that ρ restricted on the characteristics of induced
characters from Un to Gn is an isomorphism. Since {ρn}n∈N forms an algebraic basis and
for all ch(χ ↑GnUn ), ρ must have a unique inverse, we get the proposition.
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Suppose ρ(ch(χ ↑GnUn )) =
∑

λ`nCλρλ, where Cλ ∈ C. From the definition of ρ̂ we get

ρ̂ ◦ ρ(ch(χ ↑GnUn )) =
∑
λ`n

Cλ(ρ̂(ρλ))

=
∑
λ`n

Cλρ̂(ρλ1)ρ̂(ρλ2) . . . ρ̂(ρλl). (3.12)

Using Proposition 21 we get the following corollary.

Corollary 22. For a fixed finite field Fq and a character χ of Un, suppose ch(χ ↑GnUn ) =∑
λ`nCλρλ where Cλ ∈ C. We have

ch(χ ↑GnUn ) =
∑
λ`n

Cλρλ

=
∑
λ`n

Cλ

 ∑
λ(1)∈PΘ

λ1

ht(λ(1))=1

Sλ(1)


 ∑

λ(2)∈PΘ
λ2

ht(λ(2))=1

Sλ(2)

 · · ·
 ∑

λ(l)∈PΘ
λl

ht(λ(l))=1

Sλ(l)


.

Remark 23. It is difficult to get an expression for ch(χ ↑GnUn ) in terms of basis {Sλ|λ ∈ PΘ},
which gives the irreducible decomposition of the induced character. However, if we know
the image of ρ on the characteristic map of χ ↑GnUn , we may use ρ̂ to get the irreducible

decomposition of ch(χ ↑GnUn ). We hope these results can contribute to research in this
problem. We list some open problems in Section 4.

4 Further Questions

The induced characters that we are studying in this paper are very special. A natural
question to ask is: “can we give a nice formula for the characteristics of all the induced
supercharacters from Un to Gn?” Zelevinsky [14] and Thiem and Vinroot [11] have worked
on the case of degenerate Gelfand-Graev characters. The problem of how the generalized
Gelfand-Graev representations of the finite unitary group decompose is still open.

The generalized Gelfand-Graev representations, which are defined by Kawanaka [6],
are obtained by inducing certain irreducible representations from a unipotent subgroup [11].
Here the supercharacters that we are considering are more general than the case of the
generalized Gelfand-Graev representations. We hope that the ideas and results developed
in this paper could help to work on this problem.

Below we give some examples of computations of ρ acting on the characteristic map
of induced supercharacters.

Example 24. For q = 2, we have

ρ ◦ ch

χ 1 2

1

3

↑G3
U3

 = (ρ3 + ρ2ρ1)|q=2
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ρ ◦ ch

χ 1 2

1

3 4

↑G4
U4

 = (ρ4 + 2ρ3ρ1 + ρ2ρ
2
1)|q=2

ρ ◦ ch

χ 1 2

1

3

1

4

↑G4
U4

 = ρ ◦ ch

χ 1 2

1

3

1

4

↑G4
U4

 = (2ρ4 + ρ2ρ2 + ρ3ρ1)|q=2

ρ ◦ ch

χ 1 2

1

3

1

4

↑G4
U4

 = (ρ4 + ρ3ρ1)|q=2

Inspired by these results, we propose the following conjecture and state some questions
that remain open.

Conjecture 25. For a fixed finite field Fq and a supercharacter χ of Un, we have

ρ(ch(χ ↑GnUn )) ∈ N[ρ1, . . . , ρn].

The conjecture is interesting in the sense that not every character of a larger group can
be represented as a non-negative integer combination of characters induced from linear
characters of subgroups. It is interesting to know which kind of characters have that
property. If the above conjecture is true, then the following remark is meaningful.

Remark 26. For a fixed finite field Fq and a character χ of Un, suppose ρ(ch(χ ↑GnUn )) =∑
λ`nCλρλ where Cλ ∈ C. We have

dim(χ) =
∑
λ`n

Cλ. (4.1)

Proof. From Corollary 14 we have

χ ↑GnUn=
∑
λ`n

Cλ(χ
λ1|λ2|...|λl
~q1,...,~ql

↑GnUn ) =

(∑
λ`n

Cλχ
λ1|λ2|...|λl
~q1,...,~ql

)
↑GnUn ,

where ~qi = (qi,1, . . . , qi,λi−1) ∈ (F×q )λi−1. So we have

dim(χ) = dim

(∑
λ`n

Cλχ
λ1|λ2|...|λl
~q1,...,~ql

)
=
∑
λ`n

Cλ dim(χ
λ1|λ2|...|λl
~q1,...,~ql

).

Since dim(χ
λ1|λ2|...|λl
~q1,...,~ql

) = 1, equation (4.1) follows.
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Question 27. For a fixed finite field Fq and a supercharacter χ of Un, find a formula for
the image of the homomorphism ρ on the characteristic map of χ ↑GnUn ,

ρ ◦ ch(χ ↑GnUn ) =
∑
λ`n

Cλρλ,

where ρλ = ρλ1ρλ1 . . . ρλl for λ = λ1, . . . , λl. It would be nice to give a combinatorial
formula for the coefficient Cλ, since the examples above suggest a possibility of some
rules.

Remark 28. If we have the formula of ρ(ch(χ ↑GnUn )), we can easily get the expression for

the characteristic map of χ ↑GnUn in terms of basis {P̃µ|µ ∈ PΦ} by Remark 19. We may
also use ρ̂ to get an expression in the basis {Sλ|λ ∈ PΘ} by Corollary 22.

Question 29. Up to now the induced representations that we are considering are in
characteristic zero. Another problem we can think about is what happens in characteristic
p case.
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