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Abstract

Given any finite simplicial complex ∆, we show how to construct from a colouring
χ of ∆ a new simplicial complex ∆χ that is balanced and vertex decomposable.
In addition, the h-vector of ∆χ is precisely the f -vector of ∆. Our construction
generalizes the “whiskering” construction of Villarreal, and Cook and Nagel. We
also reverse this construction to prove a special case of a conjecture of Cook and
Nagel, and Constantinescu and Varbaro on the h-vectors of flag complexes.
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1 Introduction

The work of this paper was inspired by the “whiskering” construction of finite simple
graphs found in work of Villarreal [21] and Cook and Nagel [7]. Given a finite graph
G = (VG, EG) on the vertex set VG = {x1, . . . , xn}, Villarreal constructed a new graph,
denoted GW , on the vertex set {x1, . . . , xn, y1, . . . , yn} by adjoining the edges {xi, yi} for
every i to the graph G. The new graph has a “whisker” at every vertex of the original
graph. As discovered by Villarreal, the edge ideal of the new graph GW , that is,

I(GW ) = 〈wiwj | {wi, wj} ∈ EGW 〉 ⊆ R = k[x1, . . . , xn, y1, . . . , yn]

has the property thatR/I(GW ) is Cohen-Macaulay. It was later observed by Dochtermann
and Engström [8] and Woodroofe [22], and generalized by Cook and Nagel [7], that one
could deduce this result by studying the topological properties of the simplicial complex
associated to I(GW ) via the Stanley-Reisner correspondence. In particular, Villarreal’s
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construction can be viewed as creating a new independence complex ∆′ (sometimes called
a flag complex) from the independence complex ∆ of G. This new complex ∆′ is vertex
decomposable (as defined by Provan and Billera [18]), and it is this topological property
that implies that R/I(GW ) is Cohen-Macaulay.

Our entry point is to ask whether there is a more general theory that can be applied
to all simplicial complexes. Moreover, we want this general theory to specialize to known
cases for flag complexes. In Section 3 we will show that a general construction exists
using the notion of a colouring χ of a simplicial complex ∆. From the colouring χ and
complex ∆, we make a new complex, denoted ∆χ. Regardless of how one colours ∆, the
construction of ∆χ always results in a balanced vertex decomposable simplicial complex
(see Theorem 7). It should be noted that this construction has appeared in several guises
over the years (see Remark 4 and Discussion 11).

The consequences of our results are explored in Section 4. In particular, it is shown that
the f -vector of a simplicial complex is also the h-vector of a balanced vertex decomposable
simplicial complex. Although this result is implicit in work of Björner, Frankl, and Stanley
[3], to the best of our knowledge, this fact has not explicitly appeared in the literature
(although the case of flag complexes occurs in [7]). We also show that the graded Betti
numbers of the Stanley-Reisner ideal of the Alexander dual of ∆χ can be expressed directly
in terms of the f -vector of ∆ (see Theorem 13).

Section 5 describes when our construction can be reversed, i.e., starting with a balanced
vertex decomposable simplicial complex ∆, we construct another simplicial complex ∆′

such that f -vector of ∆′ is the same as the h-vector of ∆. We use this procedure to prove
that the set of f -vectors of independence complexes of chordal graphs is precisely the set
of h-vectors of balanaced vertex decomposable independence complexes of chordal graphs.
Our result is a special case of a conjecture of Cook and Nagel [7] and Constantinescu and
Varbaro [5] that the set of f -vectors of flag complexes is precisely the set of h-vectors of
balanced vertex decomposable flag complexes.

As a final comment, we do not discuss the “whiskering” procedure found in [10] in
which whiskers are added to only some of the vertices. This idea is explored in [2].

Acknowledgements. We thank Uwe Nagel and the referees for their invaluable com-
ments. The authors made use of the computer programs CoCoA [4] and Macaulay 2 [13],
including the Macaulay 2 package [6]. The second author acknowledges the support of
NSERC.

2 Background

We work over the polynomial rings S = k[x1, . . . , xn] and R = k[x1, . . . , xn, y1, . . . , ys]
where k is any field. Let ∆ be a finite simplicial complex on vertex set {x1, . . . , xn}
of dimension d. We say ∆ is pure if all its facets (maximal elements) have the same
cardinality. An important combinatorial invariant of ∆ is its f -vector, that is, the vector
f(∆) = (f−1, f0, . . . , fd) where fi denotes the number of faces of ∆ of dimension i.
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If σ ∈ ∆, then the deletion of σ is the simplicial complex ∆ \ σ = {τ ∈ ∆ | σ 6⊆ τ},
and the link of σ is link∆(σ) = {τ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}. When σ = {v}, we shall
abuse notation and write ∆ \ v (respectively link∆(v)). With this notation, we introduce
a family of complexes due to Provan and Billera [18].

Definition 1. A pure simplicial complex ∆ is called vertex decomposable if (i) ∆ is a
simplex, or (ii) there exits v ∈ V such that ∆ \ v and link∆(v) are vertex decomposable.

Key to the main construction studied in this paper is the notion of a colouring.

Definition 2. Let ∆ be a simplicial complex on the vertex set V with facets F1, . . . , Ft.
An s-colouring of ∆ is a partition of the vertices V = V1 ∪ · · · ∪ Vs (where the sets Vi
are allowed to be empty) such that |Fi ∩ Vj| 6 1 for all 1 6 i 6 t, 1 6 j 6 s. We will
sometimes write χ is an s-colouring of ∆ to mean χ is a specific partition of V that gives
an s-colouring of ∆. If there exists an s-colouring, we say that ∆ is s-colourable. If ∆ has
dimension d− 1, then we say that ∆ is balanced if it is d-colourable.

We will be interested in how our results specialize to independence complexes of graphs,
sometimes called flag complexes. Recall that if G = (VG, EG) is a finite simple graph with
vertex set VG = {x1, . . . , xn} and edge set EG, then a subset W ⊆ VG is an independent
set of a graph G if for every edge e ∈ EG, we have e 6⊆ W . The independence complex of
G, denoted Ind(G), is the simplicial complex defined by

Ind(G) = {W ⊆ VG | W is an independent set of G}.

3 A construction and its properties

Starting with a simplicial complex ∆ and an s-colouring χ, we introduce a procedure to
construct a new simplicial complex that is pure of dimension s− 1, balanced, and vertex
decomposable.

Construction 3. Let ∆ be a simplicial complex on the vertex set {x1, . . . , xn}. Given
an s-colouring χ of ∆ given by V = V1 ∪ · · · ∪ Vs, we define ∆χ on vertex set
{x1, . . . , xn, y1, . . . , ys} to be the simplicial complex with faces σ ∪ τ where σ is a face of
∆ and τ is any subset of {y1, . . . , ys} such that for all yj ∈ τ we have σ ∩ Vj = ∅.

Remark 4. Construction 3 was introduced independently by Frohmader [11, Construction
7.1]. However, the construction appears implicitly in earlier work [3, Section 5], although it
is only applied to compressed multicomplexes. Another variation appears in work of Hetyei
(see [14, Definition 4.2]). The whiskering constructions found in [7, 21] for flag complexes
become special cases of Construction 3. For example, Villarreal’s construction in [21] of
adding whiskers to every vertex of a graph G, and studying the resulting independence
complex corresonds to the colouring V = {x1}∪{x2}∪· · ·∪{xn} and applying Construction
3 to Ind(G). We point the reader to [11] which makes the connection to Cook and Nagel’s
clique whiskering more explicit.
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Observe that each s-colouring χ of ∆ creates a new simplicial complex ∆χ. Even
though these simplicial complexes ∆χ may be different, they all share some interesting
properties.

Theorem 5. The facets of ∆χ are in one-to-one correspondence with the faces of the
original simplicial complex ∆. In addition, ∆χ is pure of dimension s− 1 and balanced.

Proof. Let V = V1 ∪ · · · ∪Vs be the colouring of ∆ given by χ. From the definition of ∆χ,
the maximal faces are those of the form σ∪{yj | Vj ∩σ = ∅} where σ is a face of ∆. This
establishes the one-to-one correspondence.

If we partition the vertices of ∆χ as {x1, . . . , xn, y1, . . . , ys} = V ′1 ∪ V ′2 ∪ · · · ∪ V ′s where
V ′j = Vj ∪ {yj}, then this partition gives an s-colouring of ∆χ. We can see from the
characterization of the facets of ∆χ that each facet contains exactly one vertex from each
of the sets V ′1 , . . . , V

′
s , and hence ∆χ is pure of dimension s− 1 as well as balanced.

Example 6. Let ∆ = 〈x1x2x3, x2x4, x3x4〉 and let χ be the colouring given by {x1, x4} ∪
{x2} ∪ {x3}. The faces of ∆ are {∅, x1, x2, x3, x4, x1x2, x2x3, x1x3, x2x4, x3x4, x1x2x3}.
These are in one-to-one correspondence with the facets of ∆χ:

∆χ =〈y1y2y3, x1y2y3, x2y1y3, x3y1y2, x4y2y3, x1x2y3, x2x3y1, x1x3y2, x2x4y3, x3x4y2, x1x2x3〉.

We come to the main result of this section.

Theorem 7. For any simplicial complex ∆, and any s-colouring χ of ∆, the simplicial
complex ∆χ is vertex decomposable.

Proof. We proceed by induction on the number of vertices of ∆. If ∆ is the simplicial
complex consisting of a single vertex x1, then the only possible colourings of the vertices
of ∆ are of the form V = V1 ∪ · · · ∪ Vs where V1 = {x1} and V2, . . . , Vs are empty. In
this case ∆χ = 〈x1y2 . . . ys, y1y2 . . . ys〉. This complex is vertex decomposable because
∆χ \ x1 = 〈y1y2 . . . ys〉 and link∆χ(x1) = 〈y2 . . . ys〉 are both simplices.

Now suppose that ∆ is a simplicial complex on the vertex set V = {x1, . . . , xn}, and
let χ be the s-colouring of ∆ given by V = V1 ∪ · · · ∪ Vs. We will show that we can
decompose ∆χ by decomposing at any vertex xi. Let g1, . . . , gt be the faces of ∆ and
define g′i = {yj | Vj ∩ gi = ∅}. So g1 ∪ g′1, . . . , gt ∪ g′t are the facets of ∆χ.

We must show that both ∆χ\xi and link∆χ(xi) are vertex decomposable. First consider
∆χ \x. We assume that the facets of ∆χ are ordered so that the facets g1 ∪ g′1, . . . , gr ∪ g′r
do not contain the vertex xi and the facets gr+1 ∪ g′r+1, . . . , gt ∪ g′t do contain xi. So

∆ \ xi = {faces of ∆ which do not contain xi} = {g1, . . . , gr}.

Note that we are using the fact that g1, . . . , gr, gr+1, . . . , gt is a complete list of the faces
of ∆ by Theorem 5.

Without loss of generality we may assume that xi ∈ V1. Then V \ {xi} = (V1 \ {xi})∪
V2 ∪ · · · ∪ Vs is an s-colouring of ∆ \ xi. Call this s-colouring χ′. Then (∆ \ xi)χ′ =
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〈(g1 ∪ g′1), . . . , (gr ∪ g′r)〉 = ∆χ \ xi. Since ∆ \ xi is a simplicial complex on fewer than n
vertices, (∆ \ xi)χ′ is vertex decomposable.

Now consider the link. Since (gr+1 ∪ g′r+1), . . . , (gt ∪ g′t) are the facets of ∆χ which
contain xi,

link∆χ(xi) = 〈(gr+1 ∪ g′r+1) \ {xi}, . . . , (gt ∪ g′t) \ {xi}〉
= 〈((gr+1 \ {xi}) ∪ g′r+1), . . . , ((gt \ {xi}) ∪ g′t)〉 .

For each 1 6 j 6 s, set Wj = {x` ∈ Vj | x` ∈ link∆(xi)}. Note that some of these sets
may be empty. Then W = W1 ∪ · · · ∪ Ws is an s-colouring of link∆(xi). We call this
s-colouring χ′′. Then

(link∆(xi))χ′′ = link∆χ(xi)

and by induction (link∆(xi))χ′′ is vertex decomposable.

The fact that ∆χ is vertex decomposable has the following consequence.

Definition 8. A pure simplicial complex ∆ is shellable if there is an ordering F1, . . . , Fs
on the facets of ∆ such that for all 1 6 i < j 6 s there exists some v ∈ Fj \ Fi and some
` ∈ {1, . . . , j − 1} with Fj \ F` = {v}. Such an ordering on the facets is called a shelling
order.

Corollary 9. For any simplicial complex ∆, and any s-colouring χ of ∆, the complex ∆χ

is shellable (and Cohen-Macaulay). Also, any order of the facets of ∆χ which refines the
order given by ordering the faces of ∆ by increasing dimension is a shelling order.

Proof. By Theorem 7, ∆χ is vertex decomposable, so by [18, Corollary 2.9] it is also
shellable, and consequently, Cohen-Macaulay (e.g, see [15, Theorem 8.2.6]).

For the rest, let F1, . . . Fs be the facets of ∆χ. By Theorem 5, each Fi = gi ∪ g′i where
gi is a face of ∆ and g′i = {yj | Vj ∩ gi = ∅}. We order the facets F1, . . . Fs so that
dim gi 6 dim gj if i < j. We now show that this is a shelling order.

Let Fi, Fj be any two distinct facets of ∆χ with i < j. Since i < j, we have dim gi 6
dim gj and so there is some xu ∈ Fj\Fi. Since gj\{xu} is a face of ∆ we have gj\{xu} = g`
for some `, and since dim g` < dim gj we have ` < j. Since g` = gj \ {xu} we must have
F` = g` ∪ g′` ∈ ∆χ where g′` = g′j ∪ {yw} where xu ∈ Vw. Then

Fj \ F` = (gj ∪ g′j) \ (g` ∪ g′`) = (gj ∪ g′j) \ ((gj \ {xu}) ∪ (g′j ∪ {yw})) = {xu} .

Thus our ordering is a shelling order.

4 Consequences: h-vectors and Betti numbers

In this section, we explore some consequences of Theorem 7 for h-vectors. The h-vector
(h0, h1, . . . , hd+1) of a d-dimensional simplicial complex ∆, denoted h(∆), is defined in
terms of the f -vector f(∆) = (f−1, f0, . . . , fd) as follows

hk =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1(∆) .
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We use Theorem 7 to obtain a new proof of one implication result of [3]. Note that
for brevity, we have omitted the definition of a colour-shifted simplicial complex. See [12]
for the definition and the discussion after the proof for some additional comments.

Theorem 10. Let m = (m1, . . . ,mt) ∈ Zt+. Then the following are equivalent:

(i) m is the f -vector of a simplicial complex.

(ii) m is the f -vector of a colour-shifted simplicial complex.

(iii) m is the h-vector of a balanced, vertex decomposable simplicial complex.

(iv) m is the h-vector of a balanced, shellable simplicial complex.

(v) m is the h-vector of a balanced, Cohen-Macaulay simplicial complex.

Proof. The equivalence of (i), (ii), (iv), and (v) appear in [3]. A alternative proof can be
found in [1]. The implication of (iii)⇒ (iv) follows from the fact that vertex decompos-
ability implies shellabilty. Our contribution is (i)⇒ (iii). Let f(∆) be the f -vector of a
simplicial complex ∆. For any s-colouring χ of ∆, ∆χ is a balanced vertex decomposable
simplicial complex by Theorems 5 and 7. Then we have h(∆χ) = f(∆). Indeed, one uses
the standard technique of using the shelling of ∆χ (as given by Corollary 9) to find h(∆χ)
using [20, Proposition III.2.3]. One then uses the correspondence of Theorem 5 between
the faces of ∆ and the facets of ∆χ to relate the h-vector back to f(∆). In essence, the
proof of [7, Theorem 3.8] for clique-whiskering generalizes in the natural way.

Discussion 11. Theorem 10 is stated as a theorem about simplicial complexes, but
[3] addressed the more general case of multi-complexes. Furthermore, in [3], colour-
shifted complexes are called compressed complexes. The strategy behind the orginal
proof of Theorem 10 is to show that the f -vector of a simplicial complex is also the
f -vector of some colour-shifted simplicial complex (the procedure for building this new
colour-shifted complex is iterative in nature). Then, from this colour-shifted simplicial
complex, a construction like Construction 3 is used to build a simplicial complex that is
balanced and shellable whose h-vector is the same as the f -vector of the colour-shifted
complex. One can show that if one applies Construction 3 to a colour-shifted simplicial
complex, one has a vertex decomposable simplicial complex. Therefore, the implication
(ii) ⇒ (iii) is implicit in Theorem 10. [3, Comment 6.5] states, without proof, that one
can prove (i) ⇒ (iv) for simplicial complexes without having to pass through colour-
shifted complexes. One assumes that the omitted proof uses something like Construction
3. What we have made explicit is that one can prove (i)⇒ (iii) directly without the need
of colour-shifted complexes, and at the same time, identify the f -vectors of a simplicial
complexes with a smaller subset of h-vectors of balanced complexes.

It has been asked whether the above statements of Theorem 10 still hold if we restrict
to the class of flag complexes. In particular, Cook and Nagel [7], and Constantinescu and
Varbaro [5] have posited the following conjecture (the conjecture of Cook and Nagel does
not include the word balanced):
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Conjecture 12. The following equality of sets holds:{
f -vectors of

flag complexes

}
=

{
h-vectors of balanced

vertex decomposable flag complexes

}
.

The set of f -vectors of flag complexes has been shown to be a subset of the set of
h-vectors of balanced vertex decomposable flag complexes. We omit the proof here, but
instead point the reader to the proofs of [7, Corollary 3.10] and [5, Proposition 4.1].
The second proof is interesting since the authors use basically the same construction
as Construction 3, but in the special case that the colouring is given by the partition
V = {x1}∪· · ·∪{xn}. In some special cases, e.g., bipartite graphs (see [7]), the conjecture
has been proved. We add additional evidence for Conjecture 12 in the next section.

We conclude this section by showing how to use Theorem 10 to find the graded Betti
numbers of the Alexander dual of the Stanley-Reisner ideal associated to I∆χ . Recall that
the Stanley-Reisner ideal of ∆ is the monomial ideal

I∆ = 〈xi1xi2 · · ·xis | {xi1 , xi2 , . . . , xis} /∈ ∆〉 ⊆ S = k[x1, . . . , xn].

The Alexander dual of a ∆, denoted ∆∨, is the simplicial complex ∆∨ = {σ | σ 6∈ ∆}.
Here, given σ ⊆ {x1, . . . , xn}, we let σ = {x1, . . . , xn} \ σ. We then have:

Theorem 13. Let (f−1, f0, . . . , fd) be the f -vector of a d-dimensional simplicial complex
∆ on V = {x1, . . . , xn}, and let χ be any s-colouring of ∆. The graded Betti numbers of
I∆∨

χ
in R are given by the formula

βi,i+n(I∆∨
χ
) =

d+1∑
j=i

(
j

i

)
fj−1(∆).

In particular, proj-dim(I∆∨
χ
) = reg(R/I∆χ) = d+ 1.

Proof. The projective dimension follows directly from our formula, and for the regularity,
we use the identity (e.g., see [15, Proposition 8.1.10]) that proj-dim(I∆∨) = reg(R/I∆).

Because ∆χ is pure and vertex decomposable (and thus shellable), [9, Corollary 5]
gives ∑

i>1

βi(R/I∆∨
χ
)ti−1 =

∑
i>0

hi(∆χ)(t+ 1)i. (1)

Note that in [9], the authors are taking the resolution of R/I∆∨
χ
, so βi(R/I∆∨

χ
) = βi−1(I∆∨

χ
).

Furthermore, although the formula of [9] is expressed in terms of total graded Betti
numbers, the resolution of I∆∨

χ
is linear (this is because ∆χ is shellable and pure of

dimension s−1, and hence I∆∨
χ

is generated in degree n and is componentwise linear, which
implies the ideal has a linear resolution). We therefore have βi−1(I∆∨

χ
) = βi−1,n+i−1(I∆∨

χ
).

To finish the proof, Theorem 10 allows us to replace hi(∆χ) with fi−1(∆) in the formula
(1), thus giving the desired formula for βi−1,n+i−1(I∆∨

χ
).
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Remark 14. For any valid f -vector f(∆) = (f0, . . . , fd), the sequence(
d+1∑
j=0

(
j

0

)
fj−1(∆),

d+1∑
j=1

(
j

1

)
fj−1(∆), . . . ,

d+1∑
j=d+1

(
j

d+ 1

)
fj−1(∆)

)
(2)

is a valid sequence of Betti numbers for an ideal with a linear resolution by Theorem 13.
Herzog, Sharifan, and Varbaro [17] classified all valid sequences of Betti numbers for an
ideal with a linear resolution. While one can deduce that (2) is valid sequence of Betti
numbers from [17], our Theorem 13 highlights how to start with a simplicial complex with
a given f -vector, and find a square-free monomial ideal whose graded linear resolution
has Betti sequence given by (2). This contrasts with [17] since the ideal they construct
with Betti sequence (2) need not be a square-free monomial ideal.

5 Application: independence complexes of chordal

graphs

In this section we provide new evidence for Conjecture 12. We give a condition to “reverse”
Construction 3, and then apply it to independence complexes of chordal graphs.

The restriction of ∆ to W ⊆ V is the subcomplex ∆|W = {F ∈ ∆ | F ⊆ W}. Our
criterion for “reversing” the process of the last section requires the following terminology.

Definition 15. Suppose ∆ = 〈F1, . . . , Fs〉 is a simplicial complex on the vertex set V .
We say that ∆ has a facet restriction with respect to F if F is a facet of ∆ such that

∆|V \F = {F1 \ F, . . . , Fs \ F}.

Note that the inclusion ∆|V \F ⊇ {F1 \F, . . . , Fs \F} always holds; however, in general
the two sets may not be equal as we see in the following example.

Example 16. Let ∆ = 〈123, 234, 345, 456〉 (to simplify notation, we are writing i for xi).
By considering each facet of ∆, we can show it has no facet restriction. Let F be the
facet 123. Then

∆|V \F = {∅, 4, 5, 6, 45, 56, 46, 456} 6= {123 \ F, 234 \ F, 345 \ F, 456 \ F} = {∅, 4, 45, 456} .

Similarly, if we consider the facet 234 we see that

∆|V \234 = ∆|156 = {∅, 1, 5, 6, 56} 6= {123\234, 234\234, 345\234, 456\234} = {1, ∅, 5, 56} .

By symmetry, the facets 345 and 456 also fail to give a facet restriction. Therefore the
simplicial complex ∆ has no facet restriction.

Example 17. Let ∆ be the simplicial complex 〈124, 245, 235, 456〉. Then ∆ has a facet
restriction with respect to the facet 245 since

∆|V \245 = ∆|136 = {∅, 1, 3, 6} = {124 \ 245, 245 \ 245, 235 \ 245, 456 \ 245} .
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The existence of a facet restriction allows us to “reverse” our proof of Theorem 10
(i) ⇒ (iii). In particular, we show that if ∆ has facet restriction, we can make a new
simplicial complex whose f -vector is the same of h(∆).

Theorem 18. Let ∆ = 〈F1, . . . , Ft〉 be a pure, balanced simplicial complex such that ∆
has a facet restriction with respect to the facet F . Then ∆ = (∆|V \F )χ where χ is the
colouring induced from the colouring of ∆. In particular, ∆ is vertex decomposable and
h(∆) = f(∆|V \F ).

Proof. Let d − 1 be the dimension of ∆. Because ∆ is pure and balanced, the colouring
χ is given by a partition V = V1 ∪ V2 ∪ · · · ∪ Vd such that |Fj ∩ Vi| = 1 for all 1 6 j 6 t
and 1 6 i 6 d. After relabelling, we can assume that F1 is the facet that gives the facet
restriction. Note that ∆|V \F1 is a simplicial complex on Y = V \ F1, and is d-colourable
since ∆|V \F1 inherits a colouring from χ given by:

Y = V \ F1 = (V1 \ F1) ∪ (V2 \ F1) ∪ · · · ∪ (Vd \ F1).

Abusing notation, let χ denote this new colouring. Then (∆|V \F1)χ is a balanced vertex
decomposable simplicial complex such that h((∆|V \F1)χ) = f(∆|V \F1) by Theorem 10.

To complete the proof, it suffices to show that (∆|V \F1)χ and ∆ are the same simplicial
complexes, but with a different labelling of the vertices. By Theorem 5, the facets of
(∆|V \F1)χ are in one-to-one correspondence with the faces of ∆|V \F1 . But we also have
that the facets of ∆ are in one-to-one correspondence with the faces of ∆|V \F1 via the
map Fi 7→ Fi \F1. Indeed, this map is clearly onto by our assumption that ∆ has a facet
restriction with respect to F1. It suffices to show that this map is one-to-one. So, suppose
Fi \ F1 = Fj \ F1, but Fi 6= Fj. This means that there is a vertex x ∈ Fi \ Fj because
the simplicial complex is pure. Since ∆ is balanced, there is a vertex y ∈ Fj \ Fi with
the same colour as x. Because Fi \ F1 = Fj \ F1, we must have x and y in F1. But this
contradicts the colouring of ∆. By combining these two one-to-one correspondences, we
get the desired bijection between the facets of ∆ and (∆|V \F1)χ.

Example 19. In Example 17 we saw that ∆ = 〈124, 245, 235, 456〉 has a facet restriction
with respect to the facet 245. Since ∆|136 = {∅, 1, 3, 6}, the f -vector of ∆|136 is f(∆|136) =
(1, 3). Therefore the h-vector of ∆ is h(∆) = f(∆|136) = (1, 3).

Recall that a graph G is chordal if every induced cycle of G of length > 4 has a chord.
We will prove the following fact about the independence complexes of chordal graphs.

Lemma 20. Let ∆ = Ind(G) be the independence complex of a chordal graph G. If ∆ is
also pure, then ∆ has a facet restriction.

Theorem 18 and Lemma 20 combine to prove a special case of Conjecture 12.

Theorem 21. We have the the following equivalence of sets:{
f -vectors of independence

complexes of chordal graphs

}
=

{
h-vectors of balanced, vertex decomposable
independence complexes of chordal graphs

}
.
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Proof. If f(∆) is the f -vector of ∆ = Ind(G) whenG is chordal, then for any colouring χ of
∆ = Ind(G), the simplicial complex ∆χ is balanced and vertex decomposable by Theorem
7, and f(∆) = h(∆χ) by Theorem 10. It remains to explain why ∆χ is the independence
complex of a chordal graph. As noted in Remark 4, in the case of independence complexes,
Construction 3 is the same as the clique wiskering construction of Cook and Nagel [7].
Furthermore, the clique wiskering construction of a chordal graph produces a new chordal
graph, so ∆χ is the independence complex of a chordal graph.

To show the reverse containment, let G be any chordal graph such that ∆ = Ind(G)
is balanced and vertex decomposable. Because ∆ is vertex decomposable, and thus pure,
by Lemma 20, ∆ has a facet restriction with respect to some facet F . Then by Theorem
18, we have h(∆) = f(∆|V \F ). To complete the argument, we note that

∆|V \F = Ind(G)|V \F = Ind(G|V \F ).

The graph G|V \F is an induced subgraph of a chordal graph, and so is a chordal graph.
So h(∆) = f(Ind(G|V \F )), thus completing the proof.

To prove Lemma 20 we will require a result of Herzog, Hibi, and Zheng about the
clique complex. For any finite simple graph G = (VG, EG) the clique complex of G is the
simplicial complex Cl(G) = {C ⊆ V | G|C is a clique} . Below, a vertex v ∈ V is a free
vertex if v is contained in exactly one facet of ∆.

Theorem 22 ([16, Theorem 2.1]). Let G be a chordal graph and let C1, . . . , Ct be all the
facets of Cl(G) that contain a free vertex. The following are equivalent:

(a) G is unmixed, i.e., all maximal independent sets have the same cardinality.

(b) V = C1 ∪ C2 ∪ · · · ∪ Ct is a partition of the vertices of G.

We are now ready to prove Lemma 20.

Proof. (of Lemma 20) Let ∆ = Ind(G) be the independence complex of a chordal graph,
and furthermore, assume ∆ is pure. Let C1, . . . , Ct be the facets of Cl(G) which contain
a free vertex. Since ∆ is pure, we know that G is unmixed. Thus by Theorem 22, we have
the partition V = C1 ∪ · · · ∪ Ct. For 1 6 i 6 t, let yi be a free vertex of Cl(G) contained
in Ci. Set F = {y1, . . . , yt}. We will show that F is a facet of ∆ and that ∆ has a facet
restriction with respect to F .

It is clear that F = {y1, . . . , yt} is an independent set since each yi is in a unique
maximal clique Ci and an edge {yi, yj} would constitute a clique of size 2. Further, F is
a maximal independent set since every vertex x /∈ F is in some Ci and therefore adjacent
to some yi. Since ∆ is assumed to be pure, this means that every facet has size t.

Next let F1, . . . , Fs be the facets of ∆. To finish the proof we will show that

∆|V \F = {F1 \ F, . . . , Fs \ F} .

We simply need to show ∆|V \F ⊆ {F1 \ F, . . . , Fs \ F}. Let H ∈ ∆|V \F , and define
H ′ = H ∪ {yi | Ci ∩H = ∅}. Then H ′ is independent since the neighbours of yi are the
elements of Ci \ {yi}. Since H ′ has cardinality t, it is a facet of ∆. Therefore H = H ′ \F
which proves that ∆|V \F = {F1 \ F, . . . , Fs \ F}.
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