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Abstract

We consider the response matrices in certain weighted networks that display
a circular symmetry. It had been observed empirically that these exhibit several
paired (multiplicity two) eigenvalues. Here, this pairing is explained analytically
for a version of the model more general than the original. The exact number of
necessarily paired eigenvalues is given in terms of the structure of the model, and
the special structure of the eigenvectors is also described. Examples are provided.

Keywords: circular planar graph; Dirichlet-to-Neumann matrix; eigenvalue pair-
ing; resistor network

1 Introduction

We begin by describing the physical model underlying our work, using the definitions and
notations from [5, 7], see also [4]:
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A graph with boundary is a triple G = (V, Vg, E), in which V is the set of nodes, E
is the set of edges, and Vg is a nonempty subset of V' called the set of boundary nodes.
The set I =V \ Vg is called the set of interior nodes.

A circular planar graph is a graph G with boundary that is embedded in a disc D in
the plane so that the boundary nodes lie on the circle C' which bounds D, and the rest
of GG is in the interior of D. The boundary nodes are labeled vy, ..., v, in clockwise order
around C'.

A conductivity on a graph G is a function v that assigns to each edge e in G a
positive real number v(e), called the conductance of the edge e. Finally, a resistor network
[' = (G, ) is a graph G together with a conductivity function ~.

If I is a resistor network with boundary, the set V3 of boundary nodes is sometimes
denoted OG, and the set I =V \ Vj of interior nodes of G is sometimes denoted intG.

Let I' = (G,v) be a connected resistor network, and let u be the voltage function
defined at all the nodes of G. Then w is called y—harmonic if for any node w € intG,
> Y{w, ¢}) (u(w) — u(g)) = 0. For a network I' = (G,v) (G has m nodes) with a
~v—harmonic voltage function u, the Kirchhoff matrix is an m-by-m matrix K defined as

follows: 0 y ?Ji ¢ ()
i T{iig}) ifi=j

Using K, the resulting current flow into I' is ¢ = Ku. One can view K as

oG intG
K- 9 (A B
intG BT C

If T' is a connected resistor network with boundary, the response matrix (which is also
called Dirichlet-to-Neumann matrix) A, can be obtained as the Schur complement [6, 9] in
K of the square submatrix corresponding to the interior nodes of I': A, = A— BC'B”.
Let ¢ and v be column vectors such that ¢; is the boundary voltage and v; is the boundary
current at a boundary node 7. Then one can compute i using the response matrix by
¥ =M.

In analyzing the response matrix of certain resistor networks, the third author empir-
ically noticed that it displayed several eigenvalues of multiplicity two, independent of ~.
These networks (described in section 2) involve a circular symmetry that implies equality
in certain edge weights, but the eigenvalue pairing is unusual compared to such models in
general. It is our purpose here to explain this eigenvalue pairing analytically, and in the
process, to make observations regarding the structure of the eigenvectors of the response
matrix. We also note limitations on the occurrence of this eigenvalue pairing. Eigenvalues
of the response matrix of certain types of networks have been discussed widely in the past
(e.g. [3, 5, 8]). Such information as pairing can only improve the ability to calculate
eigenvalues of such response matrices.
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In the next section we describe the model, its Kirchhoff matrix (which is actually the
Laplacian matrix of the graph) and the resulting response matrix (a Schur complement in
the Laplacian). Necessary background and comments are also given. Then, in the third
section, we prove the main theorem that explains the eigenvalue pairing. In the fourth
section, we generalize the results to a much wider family of networks. Along the way,
further structural observations are made about the eigenvectors.

2 The Model

The resistor networks we consider may be described by a weighted undirected, planar
graph with a single center vertex, surrounded by concentric circles, with N “long” radial
lines emanating the same distance out ( at least to the last circle) from the center and S
“short” radial lines. Both form vertices when they intersect the concentric circles. The
short lines begin on circles and extend outward; there is the same number B of short
lines between each pair of consecutive long lines. Each such collection is required to be
right-left symmetric and the same, in order, as the next. We call such a graph circular
symmetric (note that the underlying graph is a circular planar graph). As an example,

W
RS

Figure 1: A circular symmetric graph
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In this case N = 4 and B = 2, so that S = 8. We assume that the weights on the
edges are related as presented in Figure 2.

Figure 2: A weighted circular symmetric graph

All edge weights are assumed positive with no other conditions or symmetries assumed.
We call a circular symmetric graph, with weights as above “properly weighted”. All edge
weights, for edges between two consecutive concentric circles (or beyond the last one), are
the same, but this weight may differ, depending upon the pair of consecutive concentric
circles. For edges on a concentric circle, between two consecutive long lines, right-left
symmetry is required, as well as the same weights between the next pair of long lines.

Consider another example presented in Figure 3

The weighted Laplacian of a circular symmetric graph, properly weighted, is then the
following singular M-matrix. Since the graph is connected, it has rank deficiency of 1.
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Figure 3: Second example of weighted circular symmetric graph

c 0 0 0 0 0 —c 0 0 0 0 0 0
0 c 0 0 0 0 0 —c 0 0 0 0 0
0 0 c 0 0 0 0 0 —c 0 0 0 0
0 0 0 c 0 0 0 0 0 —c 0 0 0
0 0 0 0 c 0 0 0 0 0 —c 0 0
0 0 0 0 0 c 0 0 0 0 0 —c 0
L= —c 0 0 0 0 0 c+2b+a —b 0 0 0 —b —a
0 —c O 0 0 0 -b c+2b -b 0 0 0 0
0 0 —c O 0 0 0 —b c+2b+a —b 0 0 —a
0 0 0 — O 0 0 0 —b c+2b —b 0 0
0 0 0 0 — O 0 0 0 —b c+2b+a -b —a
0 0 0 0 0 —c —b 0 0 0 —-b c+2b 0
0 0 0 0 0 0 —a 0 —a 0 —a 0 3a

The response matrix for this network model, which we denote by R, is simply the Schur
complement of the diagonal principle submatrix L[7,8,9,10,11,12,13|7,8,9,10, 11, 12, 13]
in L. If a=1,b= 2 and ¢ = 3, then in this case we get

445 137 133 19 133 _ 137
286 286 572 143 572 286
_ 137 206 137 _ 25 19 _ 25
286 143 286 143 143 143
_ 133 137 45 137 133 _ 19
572 286 286 286 572 143
R=
_ 19 _ 25 137 206 _ 137 _ 25
143 143 286 143 286 143
_ 133 19 133 137 445 _ 137
572 143 572 286 286 286
_ 137 25 19 25 137 206
286 143 143 143 286 143
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Because of the inertia theorem for Schur complements [9], this matrix is necessarily
(symmetric) positive semidefinite with just one zero eigenvalues. It is the remaining
(positive) eigenvalues in which we are interested. In general, the response matrix may be

. A B
written as R = A — BC™'BT, when L = BT O
that the rows (and columns) of A correspond to the vertices of degree one in the circular
symmetric graph.

As we shall see, the response matrix necessarily has several multiplicity two “paired”)
eigenvalues. Aside from the pairing, we have not found these eigenvalues to exhibit any
other particular structure. For example, the eigenvalues of the matrix R from above are

{2, 35(59 + 3VIT), 2(59 + 3VT7), 35 (59 — 3VT), 1% (59 — 3v/T7),0}, and one can

see that there are two eigenvalues of multiplicity two.

In the next section, we describe how many paired eigenvalues must appear in R and
why, in our main theorem. In the process, special structure in the eigenvectors is men-
tioned. Examples show that, in general, the number of proven pairs is best possible.

is the weighted Laplacian, such

3  The number of paired eigenvalues in R

The two key parameters in the network model are N, the number of long radial lines
extending from the center vertex and the number S of shorter radial lines not incident
with center. There is a fixed number B of these shorter lines between each pair of longer
lines, so that S = BN. The total A = N + S of these lines is then (B + 1)N. Let U be
the number of long lines extending strictly above the horizontal axis when one of the long

lines determines the horizontal axis and the remainder are evenly spaced. So, U = %

or ¥ depending on whether N is odd or even. Then, the minimum number of paired

eigenvalues in the response matrix is as follows.

Theorem 1. Let R be the response matriz of a properly weighted, circular symmetric
network. Then, with the parameters defined above, R has at least

(B+ 1)U
paired eigenvalues.

Remark 2. It may happen that two paired eigenvalues are the same, making a multiplicity
4 eigenvalue, for example. But generically there will (B + 1)U distinct paired eigenvalues
and no more. So, an alternate statement would be that there are at least 2(B + 1)U
eigenvalues counting multiplicity, of positive even multiplicity.

Before presenting the proof, we introduce several notations. Let o, € N, a > 2.
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Define the matrix T, g of order «, 8 in the following way

[0 I; 0 ... 0]

0 0 Iy ... 0
T =

0 0 0 ... Iy

I 0 0 0 |

such that Iz appears o times in total. For example, for o = 4, 3 = 3 we have:

0 Is 0 O

0 0 Is O
Tyz =

0 0 0 I3

I; 0 0 O

We denote by C), the anti-diagonal matrix of order n, all of those anti-diagonal entries
are ones. The matrix P, is defined in the following way:

For example,

1 0 0

0 0 1
Ps=10 0 0

0 1 0
0

01 0 0

We are now ready to present the proof of Theorem 1:

Proof. Using the symmetries of a properly weighted graph, as well as known relations
between matrices of the form P4 and T g1, we get:

ITnp1R=RINp (1)
PyR = RP, (2)
Twnpr1Pa = PATY 5y (3)

It is well known that the eigenvalues of matrices of the form T g1 are

{1(B+1)7 w(B“), wz(B+1) wN—l(B+1)}

g ey
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where w is a primitive N* root of unity, and the brackets indicate the multiplicity. Note
that T p4+1 is a permutation matrix and R is symmetric, and hence both of them are
diagonalizable. In addition, according to (1), Ty p4+1 and R commute, and hence they

have a common basis of eigenvectors, which we denote by {v;;} 1<i<y and for which
1<j<B+1

TN B+1Vij = wiilvi,j (4)

Rvij = i jvi

where {a; ;} 1<i<v s the set of the eigenvalues of R. Using (4) and (3) and we get
1<j<B+1

N—1 i—1)(N—1
T, p+1Pavig = PATY phaviy = 0D Pyuy

forall1<i< N,1<j< B+1 Thus, we get that Pyv; ; is an eigenvector of Ty 11 that

is associated with the eigenvalue w=" DW= Let us assume from now on that 1 < i < N.
Then
W DWN=1) _  iN=N—i+l _ N, =N, =i+l _ =N, =i+l _ N, =i+l _  N—(i-1)

Therefore, since Pav; ; is an eigenvector of Ty g1 with the eigenvalue w™¥=0= then by
(4) we have

Pyv; j € span{vn_it21,UN—i+22, -, UN—i+2,B+1} (5)
Note that since we assumed i > 1, vn_;1o; is defined. Hence, according to (5), we may
write

B+1
Pav; j = Z Ci j kUN—i+2,k (6)
k=1
where not all the ¢; ; are zeros.
Therefore, from (6) and (4), we get
B+1
RPyv; j = Z Cij kN —i+2,kUN —i 42, k- (7)
k=1

On the other hand, from (6) and (4) we have

B+1

PaRv; j = Pac juij = o jPav;; = E 0 G jKUN i 2,k (8)
k=1

Since by (2), RPav;; = PaRv;; and {v;;} are linearly independent, the coefficients of
Un—_it2k i (7) and (8) must be equal, and hence, for all 1 <k < B+ 1, ¢;jkOn_itor =
ozmc,;,j,k.

As we mentioned before, there exists k for which ¢;;, # 0. Dividing the appropriate
equation by ¢; ;; leads us to any_;42x = o, ; Therefore, if ¢ # N — i + 2, we get that
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a; ; is of multiplicity at least 2. In order to avoid double counting, let us assume that
1 < N—1+2,and hence 2t < N +2,s01 < % Together with our original assumption,
<1< % Hence, there are 2 cases:

N is odd, and i € {2,3,4,..., X},

N is even, and i € {2,3,4,...,% )

In both cases, j € {1,2,..., B+ 1}.

Note that for odd N, [{2,3,... 2}| = U, and similarly, for even N, [{2,3,... 3}| =
U. Therefore, in any event, we get that there are at least U(B + 1) pairs of equal
eigenvalues. O

4  Further discussion and Generalization

As one can see from the proof of our main result, we used only two properties of the
network, which are equations (1) and (2). Thus, we want the network (including its
weights) to be symmetric with respect to the y-axis, as well as preserve certain rotational
symmetry (that depends on the parameters in (1)). Thus, using the notations from the
beginning of section 3, as well as the same proof, we obtain the following:

Theorem 3. Let R be the response matriz of a network satisfying (1) and (2). Then,
with the parameters defined at the beginning of section 3, R has at least

(B+ 1)U
paired eigenvalues.

There are various examples of such networks. With proper weights, the networks in
Figure 4 satisfy the theorem.

Figure 4: Networks that satisfy Theorem 3
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