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Abstract

We introduce a multi-parameter generalization of the Lambda-determinant of
Robbins and Rumsey, based on the cluster algebra with coefficients attached to a
T -system recurrence. We express the result as a weighted sum over alternating sign
matrices.

1 Introduction

The so-called Lambda-determinant was introduced by Robbins and Rumsey [14] as a
natural generalization of the ordinary determinant, via a one-parameter deformation of
the Dodgson condensation algorithm [7] that expresses the determinant of any n × n
matrix in terms of minors of sizes n− 1 and n− 2. This produces, for each n× n matrix
A, a Laurent polynomial of its entries, involving only monomials with powers of ±1,
coded by Alternating Sign Matrices (ASM) of same size n. Robbins and Rumsey were
able to write a compact formula for the Lambda-determinant of any matrix A, as a sum
over the ASMs of same size with explicit coefficients [14] (see also [2] for a lively account
of the discovery of ASMs). ASMs are known to be in bijection with configurations of
the Six Vertex (6V) model on a square n × n grid, with special Domain Wall Boundary
Conditions (DWBC) [10]. The latter are obtained by choosing an orientation of the edges
of the underlying square lattice, such that each vertex of the grid has two incoming and
two outgoing adjacent edges. The resulting six local configurations read as follows:

6V
a a b b c c1 2 1 2 1 2

6V

ASM 0 0 0 0 1 −1

DWBC
(1.1)
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The boundary condition (DWBC) imposes that horizontal external edges point towards
the grid, while vertical external edges point out of the grid. The bijection between the
6V configurations and ASMs goes as follows: the a and b type vertices correspond to the
entries 0, while the c1 type vertex corresponds to the entry 1, and the c2 type vertex to the
entry −1. Conversely, for any n×n ASM B, there is a unique 6V-DWBC configuration on
the n×n square grid. For any fixed ASM B, we denote by C(B)i,j the configuration of the
vertex (i, j) in the corresponding 6V-DWBC model, with C(B)i,j ∈ {a1, a2, b1, b2, c1, c2}.

In this note, we define an inhomogeneous, multi-parameter generalization of the
Lambda-determinant of an n × n matrix A. This is done by deforming the Dodgson
condensation algorithm [7] by use of two sets of parameters λa, µa, a ∈ Z. More precisely:

Definition 1. Let A = (ai,j)i,j∈I, I = {1, 2, ..., n}, and sequences λ = (λa)a∈Z, µ =
(µa)a∈Z of fixed parameters. The generalized Lambda-determinant of A, denoted |A|λ,µ is
defined inductively by the following modified Dodgson condensation algorithm. Let Aj1,..,jk

i1,...,ik
denote the submatrix of A obtained by erasing rows i1, ..., ik and columns j1, ..., jk, and s
be the shift operator acting on sequences as (sλ)a = λa+1 and (s−1λ)a = λa−1 and similarly
on µ. We have:

|A|λ,µ =
µ0 |A

1
1|sλ,sµ |A

n
n|s−1λ,s−1µ + λ0 |A

n
1 |s−1λ,sµ |A

1
n|sλ,s−1µ

|A1,n
1,n|λ,µ

This recursion relation on the size of the matrix, together with the initial condition that a
0×0 matrix has generalized Lambda-determinant 1 and a 1×1 matrix (a) has generalized
Lambda-determinant a determines |A|λ,µ completely.

This generalization of the Lambda-determinant is connected to the expressions found
in [15] for solutions of the octahedron recurrence as partition functions of domino tilings
of Aztec diamonds. The main result of the present paper is the following closed formula,
which holds whenever the definition makes sense:

Theorem 2. For fixed parameters λa, µa, a ∈ {−n + 2,−n + 3, ..., n − 3, n − 2} the
generalized Lambda-determinant of a matrix A = (ai,j)i,j∈I, I = {1, 2, ..., n}, is expressed
as follows:

|A|λ,µ =
∑

ASM B

n
∏

i,j=1

wi,j(A,B;λ, µ) (1.2)

where the sum extends over all the n × n Alternating Sign Matrices B = (bi,j)i,j∈I, and
the weights wi,j(A,B, λ;µ) are defined as:

wi,j(A,B;λ, µ) = (ai,j)
bi,j ×















λj−i if C(B)i,j = a1
µi+j−n−1 if C(B)i,j = b1

(

λj−i + µi+j−n−1

)

if C(B)i,j = c2
1 otherwise

.
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The paper is organized as follows. In Section 2, we recall Robbins and Rumsey’s
original definition of the Lambda-determinant, and express it as a solution of the T -
system/octahedron recurrence with one coefficient. In Section 3, we define the generalized
Lambda-determinant as a solution of a T -system with inhomogeneous coefficients. The
latter is shown to be part of a cluster algebra of infinite rank, and as such to possess the
Laurent property. Using the T-system relation, we present a non-homogeneous example
leading to simple product formulas for the generalized Lambda-determinant of the matrix
with entries ai,j = 1 for all i, j. Section 4 is devoted to the actual computation of the gen-
eralized Lambda-determinant, by solving the T -system with inhomogeneous coefficients.
This is done via a matrix representation of the T -system relation that leads to a general-
ization of the solution of [6]. In Section 5 the solution is rephrased in terms of networks,
namely of paths on directed graphs. The latter are finally mapped onto configurations of
the 6V-DWBC model, leading to the proof of Theorem 2. Section 6 is devoted to further
properties of the generalized Lambda-determinant, an expression purely in terms of ASMs,
some explicit examples, and the complete solution of the T -system with inhomogeneous
coefficients, and finally some concluding remarks.

Acknowledgments. We thank R. Kedem for many useful discussions, and the referee
for very helpful comments. We also thank the Mathematical Science Research Institute in
Berkeley, CA and the organizers of the semester “Cluster Algebras” for hospitality while
this work was completed. This work is partially supported by the CNRS PICS program.

2 The classical Lambda-determinant

2.1 Desnanot-Jacobi identity and determinant

Let I = {1, 2, ..., n}. For any matrix M = (mi,j)i,j∈I we use the same notations as in
Def.1. For any given k + 1× k + 1 matrix M , we have the celebrated identity:

|M | × |M1,n
1,n | = |Mn

n | × |M1
1 | − |Mn

1 | × |M1
n| (2.1)

This gives rise to the Dodgson condensation algorithm for effective computing of determi-
nants, as the identity may be used as a closed recursion relation on the size of the matrix,
allowing for computing its determinant from the initial data of determinants of matrices
of size 0 and 1 (equal respectively to 1 and the single matrix element).

More formally, we may recast the algorithm using the so-called A∞ T -system relation:

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k − Ti+1,j,kTi−1,j,k (2.2)

for any i, j, k ∈ Z with fixed parity of i+ j + k.
Let A = (ai,j)i,j∈I be a fixed n× n matrix. Together with the initial data:

Tℓ,m,0 = 1 (ℓ,m ∈ Z; ℓ+m = nmod 2)

Ti,j,1 = a j−i+n+1
2

, i+j+n+1
2

(i, j ∈ Z; i+ j = n+ 1mod 2; |i|+ |j| 6 n− 1) , (2.3)
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the solution of the T -system (2.2) satisfies:

T0,0,n = det(A) (2.4)

2.2 T -system with a coefficient and Lambda-determinant

Robbins and Rumsey have introduced the Lambda-determinant by applying the Dodgson
algorithm to the following modified Desnanot-Jacobi identity. Let λ ∈ C∗ be a fixed
parameter and A = (ai,j)i,j∈I be a fixed n× n matrix.

Definition 3. The Lambda-determinant of A, denoted |A|λ is defined as the solution
|A|λ = T0,0,n of the following T -system with a coefficient

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + λ Ti+1,j,kTi−1,j,k (2.5)

and subject to the initial conditions (2.3).

Note that for λ = −1, we recover the usual determinant: |A|−1 = det(A).

Example 4. The generalized Lambda-determinant of a 3× 3 matrix A reads:
∣

∣

∣

∣

∣

∣

a b c
d e f
g h k

∣

∣

∣

∣

∣

∣

λ

= λ3 ceg + λ2 cdh+ λ2 bfg + aek + λ bdk + λ afh+ λ(λ+ 1)
bdfh

e

Example 5. The Lambda-determinant of the Vandermonde matrix A = (aj−1
i )i,j∈I reads

|A|λ =
∏

16i<j6n

(

aj + λai
)

2.3 The Robbins-Rumsey formula and Alternating Sign Matri-
ces

A remarkable property of the definition of the Lambda-determinant, is that it produces
a Laurent polynomial of the matrix elements ai,j, which is a sum over monomials with
only powers ±1. These powers are coded by n × n so-called Alternating Sign Matrices
(ASM), namely matrices B = (bi,j)i,j∈I with entries bi,j ∈ {0, 1,−1}, with non-negative

partial row sums:
∑k

j=1 bi,j > 0, k = 1, 2, ..., n−1, i ∈ I; and with row sums equal to one:
∑n

j=1 bi,j = 1, i ∈ I. More precisely, Robbins and Rumsey found the following formula
for the Lambda-determinant:

|A|λ =
∑

ASM B

λInv(B)(1 + λ−1)#(−1)B
∏

i,j∈I

a
bi,j
i,j (2.6)

where #(−1)B is the total number of entries in B that are equal to −1, and

Inv(B) =
∑

k<ℓ
m<p

bk,pbℓ,m

is the generalized inversion number of B.
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Remark 6. Note that for λ = −1 the sum truncates to only the contribution of ASMs
with no −1 entry, which are the permutation matrices P , and Inv(P ) is the usual inver-
sion number of the permutation matrix P , so that (2.6) reduces to the usual determinant
formula.

Remark 7. From eq.(2.6), we see that the Lambda-determinant is well defined for any
matrix A with non-vanishing entries. More precisely, as the matrix elements bi,j = −1 of
ASMs may only occur for 2 6 i, j 6 n − 1, the Lambda-determinant is well-defined for
any n× n matrix A such that ai,j 6= 0 for all 2 6 i, j 6 n− 1.

3 An inhomogeneous generalization of the Lambda-

determinant

3.1 T -system and Cluster Algebra

The unrestricted A∞ T -system (2.2) is known to be part of an infinite rank cluster algebra
with coefficients [9]. The T-system in this form (with Ti,j,k defined only for i+ j + k = 1
mod 2), was shown to be a particular mutation in an infinite rank cluster algebra with
coefficients, with cluster variables of the form (Ti,j,k−1, Ti′,j′,k)i,j,i′,j′∈Z and non-vanishing
fixed coefficients (λi)i∈Z [4]. It reads:

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + λi Ti+1,j,kTi−1,j,k (3.1)

As a consequence of the cluster algebra Laurent property [9], the solution Ti,j,k of this
equation may be expressed as a Laurent polynomial of any choice of admissible initial
values, with coefficients in Z[(λi)i∈Z]. The “coefficients” λi are inhomogeneous, as they
now depend on the value of i. In particular, choosing homogeneous coefficients λi = λ
independent of i, we recover the Laurent property observed for the Lambda-determinant
of Robbins and Rumsey.

As it turns out, we may consider an even more general inhomogeneous coefficient
T -system equation:

Ti,j,k+1Ti,j,k−1 = µj Ti,j+1,kTi,j−1,k + λi Ti+1,j,kTi−1,j,k (3.2)

for any fixed non-vanishing coefficients (λi)i∈Z and (µj)j∈Z. We have the following

Theorem 8. The equation (3.2) is a particular mutation in a cluster algebra A with
coefficents. The initial seed is given by the cluster X0 =

(

(Ti,j,0)i,j∈Z, (Ti′,j′,1)i′,j′∈Z
)

with i+
j = 1 mod 2 and i′+j′ = 0 mod 2 as usual, and the coefficients

(

(λa)a∈Z, (µb)b∈Z
)

, and the

extended exchange matrix B̃0 with the following infinite block form: B̃0 =









0 B
−B 0
L0 L1

M0 M1









,
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where:

(B)i,j;i′,j′ = δi,i′δ|j−j′|,1 − δj,j′δ|i−i′|,1

(L0)a;i,j = δi,a (L1)a;i′,j′ = −δi′,a

(M0)b;i,j = −δj,b (M1)b;i′,j′ = δj′,b

Proof. We must show that the cluster Xk =
(

(Ti,j,k)i,j∈Z, (Ti′,j′,k+1)i′,j′∈Z
)

, where Ti,j,k is
the solution of (3.2) with prescribed values of

(

(Ti,j,0)i,j∈Z, (Ti′,j′,1)i′,j′∈Z
)

, is a cluster in

the cluster algebra A. First let us represent the quiver Q̃0 coded by the extended exchange
matrix B̃0. We represent by a filled • (resp. empty ◦) circle the vertices (i, j) such that
i+ j = 1 mod 2 (resp. (i′, j′) such that i′ + j′ = 0 mod 2), and by a cross ⊗ (resp. square
�) the vertices (a) indexing λa (resp. (b) indexing µb) of Q̃0. We have the following local
structure, around respectively vertices (i, j) • and (i′, j′) ◦:

λ

µj

i λ

µj’

i’

i’

j’

i

j

Note that the vertices (a = i, i′) indexing λi, λi′ are connected to all (i, j), (i′, j) re-
spectively, for all j ∈ Z, while vertices (b = j, j′) indexing µj, µj′ are connected to all
(i, j), (i, j′) respectively, for all i ∈ Z, with edges of alternating orientations. We may
reach the cluster X1 from the initial cluster X0 by a compound mutation, obtained by
mutating all the vertices •. The resulting quiver Q̃1 is identical to Q̃0 with all edge ori-
entations flipped, namely B̃1 = −B̃0, as illustrated below for mutations in a quadrant
around a • vertex:

µ

µ i,j

λiλ

µj µj

iλ

µ i,j

j

iλ

µ i−1,j+1 µ i,j

i

µj

µ i−1,j+1µ i,j+1µ i−1,j 0Q0
~

Q0
~

Q0
~

Q
~

i

j

i

j

i

j

i

j

(Recall that a mutation at a vertex v of a quiver flips the orientations of all incident edges,
creates “shortcut” edges u → w for any length 2 path u → v → w before mutation, and
any 2-loop v → w → v thus created must be eliminated.)

The cluster X2 is then reached by mutating all vertices ◦, and has the exchange matrix
B̃2 = B̃0, etc.

the electronic journal of combinatorics 20(3) (2013), #P19 6



As a consequence of the theorem, we have the Laurent property: the solution Ti,j,k of
the system (3.2) for prescribed values of

(

(Ti,j,0)i,j∈Z, (Ti′,j′,1)i′,j′∈Z
)

, is a Laurent polyno-
mial of these values, with coefficients in Z[(λa)a∈Z, (µb)b∈Z].

3.2 Generalized Lambda-determinant: definition and proper-
ties

In view of the results of previous section, we may recast the Definition 1 into the following:

Lemma 9. Given a square matrix A = (ai,j)i,j∈I, and some parameters λa, µa, a ∈ J =
{−(n− 2),−(n− 3), ...,−1, 0, 1, ..., n− 3, n− 2}, the inhomogeneous Lambda-determinant
of A is the solution T0,0,n of the inhomogeneous T -system (3.2), with initial conditions
(2.3).

As a consequence of Theorem 8, we know that |A|λ;µ is a Laurent polynomial of the
entries ai,j of A, with coefficients in Z[(λa)a∈J , (µa)a∈J ].

Example 10. The generalized Lambda-determinant of a 3× 3 matrix A reads:
∣

∣

∣

∣

∣

∣

a b c
d e f
g h k

∣

∣

∣

∣

∣

∣

λ,µ

= λ1λ0λ−1 ceg + λ0µ0λ1 cdh+ λ0µ0λ−1 bfg

+µ1µ0µ−1 aek + λ0µ0µ1 bdk + λ0µ0µ−1 afh+ λ0µ0(λ0 + µ0)
bdfh

e

Example 11. Let λa = λ and µa = µ, for all a, and A be the Vandermonde matrix
A = (aj−1

i )i,j∈I. Then we have:

|A|λ;µ =
∏

16i<j6n

(

λai + µaj
)

The generalized Lambda-determinant reduces to the original Robbins-Rumsey
Lambda-determinant for the choice of parameters λa = λ and µa = 1 for all a.

The generalized Lambda-determinant satisfies a number of properties, inherited from
the symmetries of the T -system. We have the following

Proposition 12. Let σ, τ be the following transformations of the matrix A = (ai,j)i,j∈I,
corresponding respectively to quarter-turn rotation, and diagonal reflection:

σ(A)i,j = an+1−j,i τ(A)i,j = aj,i

Then with the following action on parameters:
{

σ(λ)a = µ−a

σ(µ)a = λa
and

{

τ(λ)a = λ−a

τ(µ)a = µa
(3.3)

we have: |ϕ(A)|ϕ(λ),ϕ(µ) = |A|λ,µ for ϕ = σ, τ .
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Proof. To compute |ϕ(A)|ϕ(λ),ϕ(µ), we use the following T -system relation

T ϕ
i,j,k+1T

ϕ
i,j,k−1 = µϕ

j T
ϕ
i,j+1,kT

ϕ
i,j−1,k + λϕ

i T
ϕ
i+1,j,kT

ϕ
i−1,j,k

with λϕ
i = ϕ(λ)i and µϕ

j = ϕ(µ)j, together with the initial data

T ϕ
i,j,0 = 1 (i+ j = nmod 2) T ϕ

i,j,1 = ϕ(A) j−i+n+1
2

, i+j+n+1
2

(i+ j = n+ 1mod2)

We wish to compare the solution T ϕ
0,0,n with that, T0,0,n, of the T -system (3.2) subject to

the initial conditions (2.3). For ϕ = σ, τ , we have respectively:

T σ
i,j,1 = σ(A) j−i+n+1

2
, i+j+n+1

2
= a−i−j+n+1

2
,−i+j+n+1

2
= Tj,−i,1

T τ
i,j,1 = τ(A) j−i+n+1

2
, i+j+n+1

2
= a i+j+n+1

2
,−i+j+n+1

2
= T−i,j,1

From the obvious symmetries of the T -system, and with the respective choice of param-
eters (3.3), we deduce that

T σ
i,j,k = Tj,−i,k and T τ

i,j,k = T−i,j,k

for all i, j, k such that i + j + k = n mod 2. The proposition follows for i = j = 0 and
k = n.

3.3 A non-homogeneous example

In this section we study a non-trivial example of an inhomogeneous generalized Lambda-
determinant that may be of interest as a statistical model. We choose the matrix A =
(ai,j)i,j∈I with entries

ai,j = 1 (i, j ∈ I) (3.4)

We pick coefficients with an explicit dependence on their index, namely

λa = qa µb = qb (a, b ∈ Z) (3.5)

for some fixed parameter q ∈ C∗. We have the following

Theorem 13. The generalized Lambda-determinant of the matrix A (3.4) and with the
parameters λ, µ of (3.5) reads:

|A|λ,µ =

⌊n
2
⌋

∏

m=1

n−2m
∏

j=2m−n

(1 + qj)

To prove the theorem, let us actually solve the more general T -system (3.2) with
coefficients λa, µb as in (3.5), and with initial conditions (2.3). We have:

the electronic journal of combinatorics 20(3) (2013), #P19 8



Lemma 14. The solution of the inhomogeneous T -system (3.2) with coefficients λa, µb as
in (3.5) and with initial data Ti,j,0 = Ti,j,1 = 1 for all i, j ∈ Z reads:

Ti,j,k = q
k(k−1)

2
Min(i,j)

⌊
k−|i−j|

2
⌋

∏

m=1

k−|i−j|−2m
∏

a=2m−k+|i−j|

(1 + qa)

×

|i−j|
∏

m=1

k−|i−j|+2m−2
∏

a=m

(1 + qa) (3.6)

Proof. By uniqueness of the solution for the given initial data, we simply have to check
that the above satisfies both the initial condition Ti,j,0 = Ti,j,1 = 1 and the T -system
with coefficients. The condition Ti,j,0 = Ti,j,1 = 1 is clear from the formula (3.6). The
expression (3.6) is easily shown to satisfy:

Ti,j+1,kTi,j−1,k

Ti+1,j,kTi−1,j,k
= 1 (i, j ∈ Z; k ∈ Z+)

as the various factors cancel out exactly. Analogously, we find that only one factor survives
in:

Ti,j,k+1Ti,j,k−1

Ti+1,j,kTi−1,j,k
= qi + qj (i, j ∈ Z; k ∈ Z>0)

and therefore (3.2) follows, the lemma is proved.

Theorem 13 follows by taking i = j = 0, k = n in the expression (3.6) above. Note
that the result of Theorem 13 reduces in the homogeneous limit q → 1 to:

T0,0,n = 2
n(n−1)

2

in agreement with the result of Example 11 for ai = 1 for all i and λ = µ = 1.

4 Computing the generalized Lambda-determinant

We first write a solution of the T -system with inhomogeneous coefficients, based on a
matrix representation generalizing the solution of [6].

4.1 Inhomogeneous T -system solution I: V and U matrices, def-

inition and properties

Let us consider the square lattice with vertex set Z2, and its elementary triangulations,
obtained by picking either of the two possible diagonal edges in each square face. We
consider a pair of such triangles sharing an horizontal edge of the lattice as a generalized
rhombus, and we restricted ourselves to bicolored triangulations such that exactly one
of the two triangles in each generalized rhombus is grey, the other one being white. We
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moreover attach variables to the vertices of the lattice. This gives rise to eight possible
generalized rhombi. In analogy with the solution of the Ar T -system [3], we associate
the following 2 × 2 matrices to each of these generalized rhombi, with entries Laurent
monomials of the variables at the three vertices adjacent to the grey triangle, and also
depending on fixed coefficients λ, µ:

V (d, a, b;λ, µ) =

(

µa
b

λd
b

0 1

)

= bb

d

a

d

or a

V ′(d, a, b;λ, µ) =

(

a
b

λd
b

0 1

)

=

dd

a or a bb

U(a, b, c;λ, µ) =

(

1 0
c
b

a
b

)

=

c

a or a bb

c

U ′(a, b, c;λ, µ) =

(

1 0
c
b

µa
b

)

=

c

b

c

a or a b

Note that we have represented a thicker blue horizontal (resp. red vertical) edge to
indicate the presence of the parameter µ (resp. λ) in the corresponding matrices. Next,
we introduce a graphical calculus, by associating to pictures some matrix products. We
read pictures from left to right, and take the product of matrices in the same order.

With this rule, the above matrices satisfy the following property, easily checked by
direct calculation.

Lemma 15.

x b

c

a

d

= V (d, a, x)U(x, b, c) = U ′(a, x′, c)V ′(d, x′, b) = x’ b

c

a

d
iff xx′ = µab+ λcd
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We use the standard embeddings of any 2 × 2 matrix M into GLn denoted Mi, i =
1, 2, ..., n− 1 with entries

(Mi)r,s =

{

δr,s if r 6∈ {i, i+ 1} or s 6∈ {i, i+ 1}
Mr,s otherwise

In this embedding, it is clear that for any 2 × 2 matrices M,P , Mi and Pj commute for
|j − i| > 1. To avoid confusion, let us stress that the index i of the GLn embedding must
be understood as a vertical coordinate in the rhombus tiling picture (ranging from 1 to
n−1, from bottom to top), which is strictly speaking “upside down” compared to the row
index in the embedded matrices. We have also the following exchange properties, easily
checked directly:

Lemma 16. The matrices Ui, Vj satisfy:

Ui(a, b, c;λ, µ)Vi+1(b, c, d;λ, µ) = V ′
i+1(a, c, d;λ, µ)U

′
i(a, b, d;λ, µ)

i+2

i+1

i

c

ba

d
=

i+2

i+1

i

c

ba

d

where again the pictures are read from left to right, the indices i, i+ 1, ... from bottom to
top, and the direction of the diagonal of a square indicates which generalized rhombus is
to the left of the other, and we have represented the 4 up/down pointing white triangles
in-between the two possible configurations of half-squares each of them may be in (total of
16 configurations here). We also have the commutation relations:

[Vi(c, a, b), Uj(d, e, f)] = [V ′
i (c, a, b), Uj(d, e, f)] = [Vi(c, a, b), U

′
j(d, e, f)]

= [V ′
i (c, a, b), U

′
j(d, e, f)] = 0 (j 6= i, i− 1)

The relations of Lemmas 15 and 16 are all we need to construct the solutions of the
unrestricted A∞ T -system with coefficients, expressed in terms of products of U and V
matrices. The relation of Lemma 15 allows to implement the T -system evolution on
the variable in the center x → x′. The relations of Lemma 16 allow for rearranging
triangulations so as to be able to apply the former. In particular, when representing
white and grey triangulations, we may omit the diagonal of each square of a uniform
color, as both choices of diagonal lead to the same matrix product. So we will typically
consider tilings of domains of Z2 by means of grey and white unit squares (2 tiles), and
grey and white triangles equal to half a unit square, cut by one diagonal (4 tiles) such that
any edge is common to two tiles of different colors. We call such a tiling a square-triangle
tiling.
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4.2 Inhomogeneous T -system solution II: a determinant formula

We consider the tilted square domain Dk(i, j) ⊂ Z2 defined by

Dk(j, i) = {(x, y) ∈ Z
2 such that |x− j|+ |y − i| 6 k − 1} (i, j ∈ Z; k ∈ Z+)

We also consider two square-triangle tilings ofDk(j, i), denoted by θmin(k) and θmax(k) de-
fined as follows. θmin(k) is the intersection of a checkerboard of alternating grey and white
squares with Dk(j, i) such that the NW border of Dk(j, i) is adjacent only to white trian-
gles (likewise, the SE border is adjacent to only white triangles, while the SW and NE bor-
ders are adjacent only to black triangles). θmax(k)is the only square-triangle tiling without
squares having opposite color boundary assignments (NW,SE grey, SW,NE white). Here
are examples of θmin(k) and θmax(k) for k = 5:

θmin(5) = , θmax(5) =

To attach matrices to these tilings, let us also include thick (red or blue) edges like in
the representations of U, V, U ′, V ′. We fix the ambiguity on grey squares of θmin(k) (from
Lemma 16) by picking the l.h.s. representation. This gives two decorated tilings θ̃min(k)
and θ̃max(k) which for k = 5 read:

θ̃min(5) =

8

2

3

44

5

6

7

1

, θ̃max(5) =

8

1

2

3

44

5

6

7

We finally attach variables to the vertices and coefficients to the thickened edges of the
tilings as follows. On θ̃min(k) we assign variables ti,j to the vertices (j, i) ∈ Dk(0, 0),
and coefficients λi to thickened vertical (red) edges with top vertex of the form (ℓ, i),
µj to thickened horizontal (blue) edges with right vertex of the form (j,m), ℓ,m ∈ Z.
On θ̃max(k) we assign variables ui,j to the vertices (j, i) ∈ Dk(0, 0), and coefficients λi to
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thickened vertical (red) edges with top vertex of the form (ℓ, i), µj to thickened horizontal
(blue) edges with right vertex of the form (j,m), ℓ,m ∈ Z. For completeness, we assign
the value µ = 1 (resp. λ = 1) to coefficients corresponding to non-thickened horizontal
(resp. vertical) edges.

We finally attach matrices Θmin(k) and Θmax(k) to the two tilings. These are defined
as the products of Ui, Vi, U

′
i , V

′
i matrices embedded into GL2k−2, coded respectively by the

two decorated tilings with assigned vertex and thickened edge values. Note again that the
index i is to be read from bottom to top in the rhombus tiling, whereas it is read from
top to bottom as usual in the GL2k−2 matrices. Likewise, the directions NW,SW,NE,SE
refer to the domain Dk(j, i) or its tiling configurations θ̃min,max(k), not the corresponding
matrices Θmin,max(k), which are upside-down in comparison.

Example 17. For k = 3, we have the 4× 4 matrix:

Θmin(3) = V2(t−1,−1, t0,−2, t0,−1;λ0, µ−1)V1(t−2,0, t−1,−1, t−1,0;λ−1, µ0)

×U2(t0,−1, t0,0, t1,−1; 1, 1)V3(t0,0, t1,−1, t1,0;λ1, µ0)

×U1(t−1,0, t−1,1, t0,0; 1, 1)V2(t−1,1, t0,0, t0,1;λ0, µ1)

×U3(t1,0, t1,1, t2,0; 1, 1)U2(t0,1, t0,2, t1,1; 1, 1)

corresponding to the following variables and coefficients:

µ0

µ0

µ1

4

t

0,2t
λ 0

µ−1

1

2

3

2,0

i

0

−1

−2

1

2

j
0 1 2−1−2

1,−1t

0,−1t

−1,1t

1,1t

0,1t
λ 0

−1,0t
λ −1

0,0t

1,0t
λ 1

−2,0t

−1,−1t

0,−2t

Likewise, we have:

Θmax(3) = U ′
2(u0,−2, u0,−1, u1,−1; 1, µ−1)U1(u−1,−1, u−1,0, u0,−1; 1, 1)

×U ′
3(u1,−1, u1,0, u2,0; 1, µ0)U

′
2(u0,−1, u0,0, u1,0; 1, µ0)

×V ′
2(u−1,0, u0,0, u0,1;λ0, 1)V

′
1(u−2,0, u−1,0, u−1,1;λ−1, 1)

×V3(u0,1u1,0, u1,1;λ1, µ1)V
′
2(u−1,1, u0,1, u0,2;λ0, 1)
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corresponding to the following variables and coefficients:

0,0u

1,0u

2,0u

0,1u

1,1u

−1,1u

0,2u

−1,−1u

0,−1uµ−1

µ0

µ0

µ1

λ 1

λ 0 λ 0

λ −1

4

u

1,−1u

−2,0u

−1,0u

1 2−1−2

1

2

3

0,−2

i

0

−1

−2

1

2

j
0

We have:

Theorem 18. Let n > 1, and let us pick variables ui,j as:

ui,j = Ti,j,n−|i|−|j| (j, i) ∈ Dn(0, 0) (4.1)

where Ti,j,k, for i+ j+k = n mod 2, is the solution of the T -system with coefficients (3.2)
subject to the initial conditions

Ti,j,ǫi,j,n = ti,j (j, i) ∈ Dn(0, 0) (4.2)

where ǫi,j,n = (i+ j + nmod2) ∈ {0, 1}. Then we have the matrix identity

Θmin(n) = Θmax(n)

Proof. The identity is proved by showing that we may transform the minimal tiling θ̃min(n)
with variables ti,j into the maximal tiling θmax(n) with variables ui,j by successive appli-
cations of the Lemmas 15 and 16. This is illustrated below for the case n = 3.

(e)(a) (b) (c) (d)

Starting from θ̃min(n) (a), let us first apply Lemma 16 to flip the diagonals of all the white
squares (b). Then apply Lemma 15 to update all the values at vertices (j, i) ∈ Dn(0, 0)
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such that i+ j = n mod 2 (marked as empty circles on (b)). Due to the update relation
xx′ = µab+λcd, and comparing with the T -system evolution (3.2), we see that the updated
values are Ti,j,2 (filled vertices on (c)). We then use Lemma 16 to flip the diagonals of all
the remaining squares (d), then update the values at vertices (j, i) ∈ Dn−1(0, 0) such that
i+ j = n− 1 mod 2 (empty circle on (d)), yielding updated values Ti,j,3. The procedure
is iterated until there are no more squares. In the final tiling configuration, the boundary
triangles have opposite colors from those of θ̃min(n), the tiling is therefore θ̃max(n). Note
that the last (central) updated value is u0,0 = T0,0,n. As both Lemmas 15 and 16 leave
the result of the corresponding matrix products unchanged, the theorem follows.

Corollary 19. Let amin(n), amax(n) denote respectively the n−1×n−1 initial principal
minors of Θmin(n) and Θmax(n), then we have:

amin(n) = amax(n)

Our last task is to relate the central value T0,0,n = u0,0 to the matrix Θmin(n). We
have the following:

Theorem 20. Notations are as in Theorem 18. The solution T0,0,n of the T system with
coefficients (3.2) is expressed in terms of its initial data ti,j as:

T0,0,n = amin(n)

−1
∏

i=2−n

t−1
i,1−n−i

0
∏

i=2−n

ti,n−1+i

Proof. Let us compute amax(n). We note that, as Ui, U
′
i are lower triangular and Vi, V

′
i are

upper triangular, the 2n− 2× 2n− 2 matrix Θmax(n) is the product of a lower triangular
L matrix by an upper one U, corresponding respectively to the left and right halves of
θ̃max(n). More precisely, all matrices corresponding to the SW corner of the tiling θ̃max(n)
are of Ui type (i 6 n − 2), all matrices in the NW corner of θ̃max(n) are of U ′

i type
(n− 1 6 i 6 2n− 3), all matrices in the SE corner of θ̃max(n) are of V ′

i type (i 6 n− 1)
and all matrices in the NE corner of θ̃max(n) are of Vi type (n 6 i 6 2n− 3).

Let Mmax(n) be the truncation of Θmax(n) to its n− 1 first rows and columns. From
the triangularity property, we have Mmax(n) = ℓu where ℓ and u are the truncations of
L and U to their n − 1 first rows and columns, so that amax(n) = det(ℓ) det(u). By the
triangularity property, and the above remark on corners, det(ℓ) is the product over all
diagonal matrix elements of the Ui in Θmax(n), while det(u) is the product over all diagonal
matrix elements of the V ′

i in Θmax(n). These in turn have a very simple interpretation
in terms of the tilings: the diagonal matrix elements of Ui (i 6 n − 2) are the ratios
(left vertex value)/(right vertex value) along the horizontal edges of the tiling (here in the
strict SW corner, i.e. with 2 − n 6 i < 0 and 1 − n 6 j 6 0. The product over these is
telescopic and leaves us with only the ratios of (leftmost vertex value)/(rightmost vertex
value)=ui,i+1−n/ui,0 along the row i. Analogously, the diagonal matrix elements of V ′

i

(i 6 n− 1) have the same interpretation, and we get the telescopic products ui,0/ui,n−1+i

along the row i. Collecting both products, we get

amax(n) = det(ℓ) det(u) =

−1
∏

i=1−n

ui,1−n−i

ui,0

0
∏

i=2−n

ui,0

ui,n−1+i
= u0,0

−1
∏

i=2−n

ui,1−n−i

0
∏

i=2−n

u−1
i,n−1+i
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Finally, we note that the SW and SE boundary values of ui,j are all of the form Ti,j,1 and
therefore are equal to the corresponding ti,j variables. The theorem then follows from
Corollary 19, allowing to substitute amin(n) for amax(n).

4.3 A determinant formula for the generalized Lambda-

determinant

To get a formula for the generalized Lambda-determinant, we simply have to combine the
results of Theorems 18 and 20. Our generalized Lambda-determinant is the solution T0,0,n

of the T -system with coefficients subject to the initial conditions (2.3). It corresponds to
the initial values:

ti,j =

{

1 if i+ j + n = 0mod 2
a j−i+n+1

2
, j+i+n+1

2
otherwise

(4.3)

We assume from now on that the initial data ti,j is chosen as in (4.3). With the same
notations as in the previous section, we obtain:

Theorem 21. The generalized Lambda-determinant of any matrix A = (ai,j)16i,j6n reads:

|A|λ,µ = amin(n)

n
∏

i=2

a−1
i,1

n
∏

i=1

an,i

As such, it is a Laurent polynomial of the ai,j’s with coefficients in Z+[(λi)i∈J , (µi)i∈J ],
where J = {1− n, 2− n, ..., n− 1}.

Proof. By direct application of Theorems 18 and 20, with the initial conditions (4.3). We
simply use the relation ti,j = a j−i+n+1

2
, j+i+n+1

2
which gives

∏−1
i=2−n t

−1
i,1−n−i =

∏n−1
i=2 a−1

i,1 and
∏0

i=2−n ti,n−1+i =
∏n

i=2 an,i, and for convenience we insert extra terms a−1
n,1 (resp. an,1) in

each product, that cancel out. As amin(n) is an initial principal minor of a product of
Ui, U

′
i , Vi, V

′
i matrices, and as the entries of all the matrices are Laurent monomials of the

ti,j’s and monomials of the λi’s and µj ’s, we recover the Laurent polynomiality property of
cluster algebras with coefficients, namely that the solution T0,0,n is a Laurent polynomial
of the entries of A, with coefficients that are polynomials of the λi’s and µj’s. Moreover,
from the form of the matrices, these polynomial coefficients have themselves non-negative
integers coefficients. The theorem follows.

5 From networks to 6V model

5.1 Network formulation

The matrices V, V ′, U, U ′ may be interpreted as elementary “chips” that may be used to
build networks, i.e. directed graphs with weighted edges. Each non-zero matrix element
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mi,j of V, V ′, U, U ′ is interpreted as the weight of a directed edge connecting an entry
vertex i to an exit vertex j. This gives rise to the four following “chips”:

V (d, a, b;λ, µ) =
d/b

a/b

1

1

2

1

2

ba

d

λ

µ
=

(

µa
b

λd
b

0 1

)

V ′(d, a, b;λ, µ) =
a/b

1

λ

1

2

1

2

ba

d

d/b
=

(

a
b

λd
b

0 1

)

U(a, b, c;λ, µ) = c/b

1

2

ba

c
a/b

1
1

2
=

(

1 0
c
b

a
b

)

U ′(a, b, c;λ, µ) =

a/bµ

1

2

1

2

ba

c

1

c/b =

(

1 0
c
b

µa
b

)

(5.1)

where we have represented in dashed black lines the edges with weight 1, and in thickened
red (resp. blue) edges the diagonals (resp. horizontals) carrying an extra multiplicative
weight λ (resp. µ). The GLr embedding Mi is clear: we place the chip for M in positions
i, i+ 1 and complete the graph by horizontal edges j → j with weight 1, for j 6= i, i+ 1.
Note that as for rhombus tilings, the index i in networks is read from bottom to top, i.e.
upside-down compared to the actual matrices. The product of two matrices correspond
in this language to the concatenation of the graphs, namely the identification of the exit
points of the left matrix graph with the entry points of the right matrix graph. Graphs
obtained by concatenation of elementary chips are called networks. Note that in the
present case networks have face labels, that determine all the edge weights via the rules
(5.1).

The matrix of the network is the product of the matrices of the chips forming it. The
matrix element (i, j) of this product is the sum over all directed paths on the network
with entry i and exit j of the product of the weights of the traversed edges.

We may now represent the networks Gmin(n) and Gmax(n) corresponding to the ma-
trices Θmin(n) and Θmax(n). They are constructed as follows. Each lozenge in the de-
composition of the corresponding tilings θ̃min,max(n) is replaced by the corresponding chip
from (5.1), at the same position. More precisely, a lozenge for the matrix Ui, U

′
i , Vi, V

′
i is

replaced by the corresponding embedded network chip with entry and exit points i, i+1.

the electronic journal of combinatorics 20(3) (2013), #P19 17



For n = 5, this gives (recall that dashed black lines have weight 1, while thickened
blue (resp. red) lines have an extra weight µ (resp. λ)):

Gmin(5) =

8

3

4

2

1 1

2

3

4

5

6

7

8

5

6

7

and

Gmax(5) =
4

3

2

1

4

3

2

1

5 5

6 6

7 7

8 8

We have:

Lemma 22. The function amin(n) (resp. amax(n)) is the partition function for families
of non-intersecting paths that start at the entry points 1, 2, ..., n − 1 and end at the exit
points 1, 2, ..., n− 1 of the network Gmin(n) (resp. Gmax(n)).

Proof. By direct application of the Lindström-Gessel-Viennot Theorem [11, 12], as amin(n)
(resp. amax(n)) are the n− 1× n− 1 initial principal minors of Θmin(n) (resp. Θmax(n)),
the matrices of the networks Gmin(n) (resp. Gmax(n)).

Remark 23. Note that due to the structure of Gmax(n), there is a unique configuration
of n−1 non-intersecting paths contributing to amax(n), namely that in which all the paths
have only horizontal steps. This gives an alternative pictorial interpretation of the proof
of Theorem 20.

In view of Theorem 21, let us now reformulate amin(n). To this effect, we will simplify
slightly the network Gmin(n) by use of the following:
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Lemma 24. We have the following equivalence between networks corresponding to the
matrix product Ui−1(a, b, c; 1, 1)Vi(b, c, d;λ, µ):

i−1

c

b

d

c/b

a/dλ
ac/bdµi+1

i =
a b

c d

a
,

where we have indicated the new edge weights (and kept the color code for thickened edges
receiving extra multiplicative weights µ (blue) and λ (red).

Applying Lemma 24 to all the pieces corresponding to products Ui−1Vi in the network
Gmin(n) allows to transform it into a new network G̃min(n) with the same network matrix,
but which is now a subset of the directed triangular lattice (with edges oriented from left
to right). For n = 4 this gives:

G̃min(4) =

a

3,1

a2,1

a4,2

a1,1

a4,1

a1,2

a2,2

a3,2

a2,3

a3,3

a4,3

a

4,4

a3,4

a1,3 a2,4

a1,4

1 1

1

1 1

1 1

1

1 1

2 2

3 3

4 4
1

where we have indicated the face variables corresponding to the initial data (2.3). Note
that the face labels of all up-pointing triangles are 1, whereas the down-pointing ones
are the matrix elements of A. Note also that for technical reasons we have included a
bottom isolated vertex. The matrix associated with this network, Θ̃min(n), has therefore
size 2n− 1× 2n− 1. The entry point 1 is trivially identified with the exit point 1.
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The edge weights read as follows:

1

i,1

a i+1,1

a i+1,2

a i,2 a i+1,2a i,2 /

µ i+1−n

1−iλ

a i,1

a i,j

a i+1,j

a i+1,j+1

a i,j+1 a i+1,j+1a i,j+1λ j−i

µ i+j−n a i,j a i+1,j/

1

a i+1,1

1

/

a

(a) (b)

(5.2)

depending on whether the triangle with face label ai,j is on the SW border (a) for j = 1
or anywhere else (b) for j > 1. In view of the formula of Theorem 21, it is natural to
absorb the prefactor

∏n
i=2 a

−1
i,1 into a redefinition of the network G̃min. Indeed, dividing

the weights of the thickened colored edges in (a) by ai+1,1, for i = 1, 2, ..., n − 1 exactly
absorbs the prefactor, as the paths starting at the left vertex must either traverse the
red or the blue adjacent edge. After this transformation, all the weights have the form
(b) of (5.2) for 1 6 i, j 6 n − 1, including the ones on the SW border. Denoting by
Ĝmin(n) the network thus modified, and by âmin(n) the n × n initial principal minor of
the associated matrix Θ̂min(n), we have the following reformulation of the generalized
Lambda-determinant:

Theorem 25. The generalized Lambda-determinant of A is given by:

|A|λ,µ = âmin(n)

n
∏

i=1

an,i

As such, it is the partition function of families of n non-intersecting paths on the (directed
triangular lattice) network Ĝmin(n), starting from the n SW vertices and ending at the n
SE vertices, multiplied by all the entries of the last row of A.

5.2 Another determinant formula for the generalized Lambda-

determinant

Let us now briefly describe a method for explicitly computing the generalized Lambda-
determinant of a given matrix A. The idea is to generate the paths eventually contributing
to the minor âmin(n). We consider points (x, y) in the integer plane Z2, and a Hilbert
space H with a distinguished canonical basis |x, y〉, x, y ∈ Z, and dual basis 〈u, v|, u, v ∈ Z

such that 〈u, v|x, y〉 = δu,xδv,y. Let us introduce operators ẑ, ŵ acting on H as follows:

ŵ|x, y〉 = |x+ 1, y + 1〉 ẑ|x, y〉 = |x+ 1, y − 1〉 (5.3)

Consider now the embedding of the network Ĝmin(n) into Z2, with vertices (x, y) ∈ Dn,
with:

Dn = {(x, y) ∈ Z
2 such thatx+ y = 0mod 2 and |x|+ |y − n+ 1| 6 n− 1}
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Note that the bottom vertex of Ĝmin(n) is now at the origin (0, 0). The starting points of
the paths contributing to âmin(n) are si = (1 − i, i− 1), i = 1, 2, ..., n and the endpoints
are ej = (j − 1, j − 1), j = 1, 2, ..., n. To each vertex (x, y) ∈ Dn, we attach the label of

the adjacent down-pointing triangle of Ĝmin(n), {(x− 1, y+1), (x+1, y+1), (x, y)}. For
simplicity, we denote by αx,y = ax−y

2
+n,x+y

2
+1 this label. We also attach the parameters

ℓy = λy+1−n and mx = µx respectively corresponding to the weights of the adjacent edges

(x, y) − (x + 1, y + 1) and (x − 1, y + 1) − (x + 1, y + 1) of Ĝmin(n). This leads to the
natural definition of the following diagonal operators:

α̂|x, y〉 = αx,y|x, y〉, ℓ̂|x, y〉 = ℓy|x, y〉, m̂|x, y〉 = mx|x, y〉

Starting from a vertex (x, y) there are three possibilities of steps in Ĝmin(n), with
the weights described in (5.2) (b). These weighted steps are generated by the following
operator acting on H :

Definition 26. We define the transfer operator T , acting on H as follows:

T = ŵℓ̂+ ŵm̂α̂−1ẑα̂ + α̂−1ẑα̂

T |x, y〉 = ℓy|x+ 1, y + 1〉+mx+1
αx,y

αx+1,y−1

|x+ 2, y〉+
αx,y

αx+1,y−1

|x+ 1, y − 1〉

Let Zi,j(n) denote the partition function for paths from si to ej on Ĝmin(n).

Lemma 27. We have:

Zi,j(n) = 〈j − 1, j − 1|(I − T )−1|1− i, i− 1〉

or equivalently:
Zi,j(n) = 〈0, 0|ŵ1−j(I − T )−1ẑ1−i|0, 0〉

Proof. By matching the Definition 26 with the weights of (5.2) (b), we easily see that each
step of a path on Ĝmin(n) is generated by T . More precisely, the quantity 〈u, v|T k|x, y〉
is the sum over all paths on Ĝmin(n) of length k starting at the point (x, y) and ending
at the point (u, v), of the product of the corresponding network edge weights. The first
part of the Lemma follows. For the second part, we note that the adjoint w† = w−1, and
w|x, y〉 = |x+ 1, y + 1〉, so the dual is

〈x+ 1, y + 1| = 〈x, y|ŵ† = 〈x, y|ŵ−1

The second formula follows.

Finally, combining Lemma 27 and Theorem 25, we obtain a compact expression for
the generalized Lambda-determinant:

Theorem 28.

|A|λ,µ = det
16i,j6n

〈0, 0|ŵ1−j α̂
(

I − ŵℓ̂− ŵm̂α̂−1ẑα̂− α̂−1ẑα̂
)−1

ẑ1−i|0, 0〉 (5.4)
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Proof. By definition, we have

âmin(n) = det
16i,j6n

Zi,j(n) =
∑

σ∈Sn

sgn(σ)

n
∏

j=1

Zσ(j),j(n)

The formula of Theorem 25 includes a prefactor
∏n

j=1 an,j. Let us absorb the terms

αj−1,j−1 = an,j in each of the factors Zσ(j),j(n), j = 1, 2, ..., n. As 〈0, 0|ŵ1−j = 〈j−1, j−1|,
we have αj−1,j−1〈0, 0|ŵ

1−j = 〈0, 0|ŵ1−jα̂. The theorem follows.

Remark 29. As a non-trivial check of Theorem 28, let us evaluate the determinant in
the homogeneous case when λa = λ and µa = µ for all a, and ai,j = 1 for all i, j. All

the operators ẑ, ŵ, ℓ̂, m̂ commute, and b̂ = I. Zi,j(n) is therefore simply the coefficient of
zi−1wj−1 of the series:

fZ(z, w) =
1

1− z − λw − µzw

where the subscript Z stands for the (infinite) matrix with entries Zi,j(∞). Note that fZ
is independent of n, which is simply the size of the initial principal minor of Z we are
supposed to compute to obtain |A|λ,µ. We have the following (infinite size) LU decompo-
sition:

Z = B(1, 1)tB(λ+ µ, λ)

where the infinite matrices B(α, β) are upper triangular, with non-zero matrix elements
B(α, β)i,j =

(

j
i

)

αiβj−i for j > i > 0, or equivalently with generating functions

fB(α,β)(z, w) =
∑

i,j>0

B(α, β)i,jz
iwj =

1

1− βw − αzw
.

The LU decomposition is easily obtained by the convolution formula:

fB(1,1)t B(λ+µ,λ)(z, w) =

∮

dt

2iπt
fB(1,1)t(z, t

−1)fB(λ+µ,λ)(t, w) .

where the integral extracts the constant term in t. Finally, by triangularity of the factors,
the product Z = B(1, 1)tB(λ + µ, λ), when truncated to the first n rows and columns,
truncates to the product of the n×n truncations of the factors. We deduce that the initial
principal n× n minor is:

|A|λ,µ = det
06i,j6n−1

(B(1, 1)j,i) det
06i,j6n−1

(B(λ+ µ, λ)i,j) = (λ+ µ)n(n−1)/2,

in agreement with the result of Example 11 for ai = 1 for all i.

5.3 Transformation into 6V model/ASM: proof of Theorem 2

By Theorem 25, the generalized Lambda-determinant is expressed as a sum over con-
figurations of n non-intersecting paths on the network Ĝmin(n). Any such configuration
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determines entirely the state of the down-pointing triangles labelled by the matrix ele-
ments (ai,j)i,j∈I (we may draw such triangles around ai,1, ai,n a1,j and an,j as well). We say
that a vertex (resp. edge) is occupied (resp. empty) if a path of the configuration traverses
it. This gives rise to seven possible local configurations of the bottom vertex and the three
edges of each down-pointing triangle, that we associate with the local configurations of
the 6V model as follows:

c2c1b2b1a2a1 (5.5)

where we have represented occupied vertices/edges by filled circles/thick solid lines, and
empty ones by empty circles/dashed lines. This is a mapping 2m to 1 of the configura-
tions of n non-intersecting paths on Ĝmin(n) with a total of m down-pointing triangle
configurations among the two on the right to those of the 6V model with DWBC on the
n×n grid rotated by +π/4, with m vertices of type c2. The latter in turn are in bijection
with ASMs of size n× n with m entries equal to −1, following the rules of (1.1). This is
illustrated in the case n = 4, m = 1 below:

0

0

0

0

1

0

0

1

1

−1

1 0

0

0

1

0

Let us now collect the various weights of the path configurations contributing to |A|λ,µ,
by distinguishing the dependence on the matrix elements of A (face labels) and the co-
efficients λ, µ (edge labels). The matrix elements ai,j are the labels of the down-pointing

triangular faces. For each face labeled a, only four edges of the network Ĝmin(n) have
weights depending on a. These are:

−1

a−1

a

aa a
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where we have shaded the down-pointing triangle with label a, and indicated the a-
dependence of the four relevant edges. This gives rise to the only following contributions
involving the matrix element a, depending on the state of occupation of the four above
edges, which we list by configuration of the down-pointing triangle:

a

1

a

c1

a

a

a

a1

a

1

a26V 1

network

weight

b

a

1

a

b2

a

1

a

a

c2

a−1

(5.6)

The dependence on the face label a = ai,j is therefore ab, where b = bi,j ∈ {0,±1} is the
matrix element of the ASM in bijection with the associated 6V model configuration. This
however is only valid for i 6= n, and extra care should be taken with the SE down-pointing
triangles. Indeed, their bottom vertex must always be occupied (it is an exit point for the
non-intersecting path configuration), and only two configurations may occur: (i) with the
top edge occupied (6V configuration b1) or (ii) with the left diagonal edge occupied (6V
configuration a2). In both cases, the occupied edge receives a weight a−1:

a

a−1

a−1 a

However, recall that the formula for the generalized Lambda-determinant of Theorem
25 contains a prefactor

∏n
i=1 an,i which is the product over the labels of the SE down-

pointing triangles. We may therefore absorb this prefactor in a redefinition of the weights
of horizontal and left diagonal edges adjacent to the SE faces, namely by multiplying
them by the face label a. The resulting network G′

min(n) and the n × n initial principal
minor a′min(n) of its matrix are such that

|A|λ,µ = a′min(n) . (5.7)

Note that this latter transformation of the network intoG′
min(n) corresponds exactly to the

insertion of the α̂ operator in Theorem 28. According to the table (5.6), each configuration
of n non-intersecting paths on the network G′

min(n) that contributes to a′min(n) receives

a weight
∏

i,j a
bi,j
i,j where bi,j is the ASM in bijection with the 6V configuration associated

to the path configuration.
Finally, the dependence of the edge weights on the coefficients λa, µa is clear from

(5.2) (b): around the down-pointing triangle with label ai,j, the horizontal edge receives

the electronic journal of combinatorics 20(3) (2013), #P19 24



the weight µi+j−n−1, while the left diagonal edge receives the weight λj−i. This gives the
total weights

2

a a

a2

µ

1

a

c

a

1 1 aweight λ

a

a

b1 b2 c1

a−1µ a−1λ

6V

network a a
(5.8)

where for a = ai,j , λ = λj−i and µ = µi+j−n−1, for all i, j = 1, 2, ..., n.
Starting from the expression (5.7), we may rearrange the configurations of paths with

a total of m triangle configurations of type c2 say in positions (i1, j1), (i2, j2), ..., (im, jm)
(and a total of m+n triangle configurations of type c1 in fixed positions) into a 2m-tuple,
in bijection with the unique ASM with exactly m entries −1 at the same positions (and
m + n entries equal to 1 at the same positions). Summing over the weights for such a
2m-tuple yields an overall factor of

m
∏

r=1

(λjr−ir + µir+jr−n−1)

according to the table (5.8). Collecting all the other weights, we may rewrite |A|λ,µ as a
sum over n × n ASMs B, with the weights of the form

∏

i,j∈I vi,j(ai,j, bi,j|λj−i, µi+j−n−1)
where

vi,j(a, b|λ, µ) = ab ×















λ if Ci,j(B) = a1
µ if Ci,j(B) = b1

λ+ µ if Ci,j(B) = c2
1 otherwise

This completes the proof of Theorem 2.

6 Discussion and conclusion

In this paper, we have defined the generalized Lambda-determinant of any square matrix
A. Via Theorem 2 this quantity may be reexpressed in terms of weighted configurations
of the 6V-DWBC model on a square grid of the same size as A, in bijection with ASMs
of the same size.

6.1 Properties

Let us show how the formula of Theorem 2 may be applied to give an alternative proof
of Proposition 12. Notations are as in Proposition 12.

We simply have to examine how the 6V/ASM configurations contributing to the for-
mula (1.2) are changed when we change A → ϕ(A), namely (i) rotate the matrix A by
a clockwise quarter-turn −π/2 (ϕ = σ) or (ii) transpose the matrix A, namely reflect
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it w.r.t. to its diagonal (ϕ = τ). We have the following action of ϕ on the 6V-DWBC
configurations C, compatible with the transformation B → ϕ(B) for any n× n ASM B:

Lemma 30. Let ϕ ∈ {σ, τ} act on configurations C of the n × n grid 6V-DWBC model
as follows: ϕ(C) is obtained by applying directly the transformation ϕ to the arrow config-
uration (rotation by −π/2 for ϕ = σ, reflection w.r.t. the diagonal for ϕ = τ), and then
performing a global flip of all the edge orientations. Then we have for all n× n ASM B:

ϕ
(

C(B)
)

= C

(

ϕ(B)
)

.

Proof. Note first that the global sign flip reinstates the correct orientations of external
edges to restore DWBC boundary conditions. Under the transformation ϕ, the six vertex
configurations are mapped as follows:

σ(a1) = b2 σ(b1) = a1 σ(a2) = b1 σ(b2) = a2 σ(c1) = c1 σ(c2) = c2
τ(a1) = a1 τ(b1) = b2 τ(a2) = a2 τ(b2) = b1 τ(c1) = c1 τ(c2) = c2

(6.1)

As both c1 and c2 are invariant under ϕ ∈ {σ, τ}, the ASM associated to the configuration
ϕ(C) is simply ϕ(B), and the Lemma follows.

Let us now evaluate |ϕ(A)|ϕ(λ),ϕ(µ). Using the formula (1.2), the weight w reads:

wi,j

(

ϕ(A), B;ϕ(λ), ϕ(µ)
)

=
(

ϕ(A)i,j

)bi,j
×















ϕ(λ)j−i if C(B)i,j = a1
ϕ(µ)i+j−n−1 if C(B)i,j = b1

ϕ(λ)j−i + ϕ(µ)i+j−n−1 if C(B)i,j = c2
1 otherwise

Let us perform the change of summation variables B = ϕ(C). For ϕ = σ, τ respectively,
this gives weights:

wi,j

(

σ(A), σ(C); σ(λ), σ(µ)
)

=
(

an+1−j,i

)cn+1−j,i

×















µi−j if C(C)n+1−j,i = b1
λi+j−n−1 if C(C)n+1−j,i = a2

µi−j + λi+j−n−1 if C(C)n+1−j,i = c2
1 otherwise

wi,j

(

τ(A), τ(C); τ(λ), τ(µ)
)

=
(

aj,i

)cj,i
×















λi−j if C(C)j,i = a1
µi+j−n−1 if C(C)j,i = b2

λi−j + µi+j−n−1 if C(C)j,i = c2
1 otherwise

Equivalently, we may write:

wj,n+1−i

(

σ(A), σ(C); σ(λ), σ(µ)
)

=
(

ai,j

)ci,j
×















µi+j−n−1 if C(C)i,j = b1
λj−i if C(C)i,j = a2

λj−i + µi+j−n−1 if C(C)i,j = c2
1 otherwise

wj,i

(

τ(A), τ(C); τ(λ), τ(µ)
)

=
(

ai,j

)ci,j
×















λj−i if C(C)i,j = a1
µi+j−n−1 if C(C)i,j = b2

λj−i + µi+j−n−1 if C(C)i,j = c2
1 otherwise
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(b)(a)

Figure 1: The sub-configuration of a 6V-DWBC configuration C situated (a) under a diagonal
(b) above an anti-diagonal. We have marked the edges of the diagonal border, respectively equal
to the N and E edges (a) and S and E edges (b).

These two expressions match wi,j(A,C;λ, µ) provided the 6V weights in the definition are
changed into respectively (i) a1 → a2 and (ii) b1 → b2.

Proposition 12 follows from the fact that the formula (1.2) remains valid if we change
a1 → a2 and/or b1 → b2 in the definition of w. This in turn is the consequence of the
following:

Lemma 31. For any 6V-DWBC configuration C, we have for all a:

|{i ∈ {1, 2, ..., n} such thatCi,i+a = a1}| = |{i ∈ {1, 2, ..., n} such thatCi,i+a = a2}|

|{i ∈ {1, 2, ..., n} such thatCi,a−j = b1}| = |{i ∈ {1, 2, ..., n} such thatCi,a−j = b2}|

in other words there are as many a1 configurations as a2 along each parallel to the diagonal,
and there are as many b1 configurations as b2 along each parallel to the anti-diagonal.

Proof. Let us consider a diagonal (i, i+a)16i6n−a of C, and the sub-configuration situated
under the line (i, i + a − 1) (see Fig.1 (a)). This configuration has entering edges on
its left and possibly right vertical borders, and outgoing edges along its bottom and
possibly top horizontal borders, in equal numbers. By the neutrality condition at each
vertex (there are as many entering as outgoing edges), we deduce that there are as many
entering as outgoing edges along the diagonal border. These are the N and E edges
of the vertices of the diagonal border. Inspecting the vertices on (1.1) we see that all
vertices have opposite orientations of their N and E edges, except for a1 and a2 who have
respectively two outgoing and two entering N and E edges. We deduce that these occur
in the same number to guarantee that as many edges are entering and outgoing along the
diagonal border. The argument may be repeated for anti-diagonals by considering the
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sub-configuration situated above the anti-diagonal (i, a + 1 − i) (see Fig.1 (b)). In that
case, we must inspect the S and E edges of the vertices of (1.1), and we note that only
b1 and b2 have S and E edges pointing both out or in, therefore they must be in equal
number along the diagonal border. The Lemma follows.

6.2 The generalized Lambda-determinant in terms of ASM

Theorem 2 expresses the generalized Lambda-determinant in terms of 6V-DWBC con-
figurations. Let us reexpress this quantity purely in ASM terms. To this end, we must
better explain the inversion number of any ASM B. The contributions to Inv(B) =
∑

i<j k<ℓ bj,kbi,ℓ are obtained from rectangular submatrices of B
[k,ℓ]
[i,j] of B, obtained by

retaining only the intersection between rows (i, i + 1, ..., j) and columns (k, k + 1, ..., ℓ)
in B. To produce a non-trivial contribution to Inv(B) the rectangle must have non-zero
elements in position (j, k) (SW) and (i, ℓ) (NE). Let us now concentrate on the element in
position (i, k) (NW). Let h, v denote respectively the first non-zero element of B on row
i to the right of bi,k and on column k below bi,k. The simplest way of thinking about the
bijection from ASM to 6V-DWBC is that along rows edges are oriented from the entries
−1 to the entries 1 and get reversed at the first and last 1, with opposite rules along
columns. Assuming bi,k = 0, this gives the following 4 possibilities: (i) (h, v) = (1, 1):
then C(B)i,k = a1; (ii) (h, v) = (−1, 1): then C(B)i,k = b2; (iii) (h, v) = (1,−1): then
C(B)i,k = b1; (iv) (h, v) = (−1,−1): then C(B)i,k = a2. When computing contributions
to Inv(B), we may first fix the NW corner of rectangles we sum over, and finally sum over
the position (i, k) of that corner. In cases (ii-iv), for fixed (i, k) the sum gives trivially
zero, as there are as many 1’s and −1 either on the row or the column of (i, k) or both.
So only the case (i) contributes a total of +1 to Inv(B). Moreover, if bi,k 6= 0, only cases
(i) and (iv) survive, with respectively bi,k = −1 and bi,k = 1. However for the same reason
as before, the case (iv) does not contribute to Inv(B) when we sum over the rectangles
with fixed NW corner bi,k. We are left with only the case (i), for which C(B)i,j = c2, and
the sum over rectangles contributes a total of +1 to inv(B).

To summarize, terms contributing +1 to Inv(B) may be associated bijectively to the
a1 and c2 configurations in C(B). So we have Inv(B)−#(−1)B = #(a1), the total number
of a1 vertices in C(B). Moreover, the vertices equal to a1 in C(B) correspond bijectively
to the entries 0 of B, such that the first non-zero elements in B in their row to the right
and in their column below are both 1.

We may repeat the above analysis with the matrix σ(B), rotated by −π/2. What plays
the role of a1 after rotation are the vertices b1 before rotation (see previous subsection),
and c2’s remain unchanged. We deduce that Inv(σ(B)) − #(−1)B = #(b1), the total
number of b1 vertices in C(B). Moreover the vertices equal to b1 in C(B) correspond
bijectively to the entries 0 of B, such that the first non-zero elements in B in their row
to the right and in their column above are both 1.

Definition 32. For each fixed diagonal δa(B) = {bi,j | j − i = a} for 2 − n 6 a 6 n− 2,
let us denote by Ia(B) the total number of entries 0 such that the first non-zero entries
to the right and below are both 1. For each fixed anti-diagonal αb = {bi,j | i + j = b} for
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2−n 6 b 6 n−2 let I′b(B) denote the total number of entries 0 such that the first non-zero
entries to the right and above are both 1. Finally, let #(−1)B(i, j) = δbi,j ,−1.

We have the following generalized Lambda-determinant expression:

Theorem 33. The generalized Lambda-determinant of any n× n matrix A reads:

|A|λ,µ =
∑

n×nASM B

n−2
∏

a=2−n

λIa(B)
a µI′a(B)

a

n
∏

i,j=1

a
bi,j
i,j (λj−i + µi+j−n−1)

#(−1)B(i,j)

6.3 The general solution of the T -system with coefficients

In this paper, we have concentrated on special initial conditions for the T -system (3.2),
namely such that Ti,j,0 = 1 and Ti,j,1 = a j−i+n+1

2
, i+j+n+1

2
. Starting from the general T -

system solution of Theorem 20, where both Ti,j,0 and Ti,j,1 are assigned arbitrary initial
values ti,j = Ti,j,ǫi,j,n, we may repeat the steps we took to modify the initial network
Gmin(n) into a subset of the directed triangular lattice. The resulting network (which we
still denote by Ĝmin(n), with associated minor âmin(n) by a slight abuse of notation) has
the following edge weights around each up-pointing triangle:

t

i−1,j−1t

i,jt

i+1,jt

i,j+1t

λ i
i−1,j−1t

i,jt
i+1,jt

i,j+1t

i−1,jt
µ j

i−1,j−1t

i,jt
i,j−1t

i−1,jt

i,j−1

(6.2)

and we have

T0,0,n = âmin(n)

n
∏

j=1

tj−n,j−1 = a′min(n)

where the last transformation to G′
min(n) consists in absorbing the tj−n,j−1 in the SE

horizontal and diagonal edge weights adjacent to the endpoints of the paths. Noting that
the initial values Ti,j,1 are the face labels of the down-pointing triangles, while the Ti,j,0

are those of the up-pointing triangles, we may summarize the dependence of the edge
weights on the face labels of the down-pointing and up-pointing triangles as follows:

a−1

a

aa
b

bbb

b

−1a

−1

−1
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where a, b = ti,j for some i, j. Combining these with the weights of down-pointing triangles
(5.6), we note that the weights acquire a simpler form if we transfer the λ and µ parameters
from the weights of down-pointing triangles to those of up-pointing ones, resulting in:

a a a a a

µ −1 a−1

a anetwork a a a

1 1 aweight 1

λ µ

1

λa

a a

a a

a−1 a−1

1 aweight 1

network

(6.3)

where for a = ti,j , we have λ = λi and µ = µj.

Remark 34. We have associated a 6V-DWBC configuration of size n to each configura-
tion of n non-intersecting paths on G′

min(n) from SW to SE, by the local rules (5.5) asso-
ciating 6V vertices to each down-pointing triangle configuration. We could have done the
same for up-pointing triangles as well, by using the same rules on the reflected up-pointing
triangles w.r.t. their horizontal edge. More precisely, this would yield a 6V-DWBC’ con-
figuration of size n− 1 where the prime refers to the fact that the boundary condition has
opposite convention (horizontal external edges point out of the grid, while vertical ones
point into the grid). Flipping all edge orientations, this becomes a 6V-DWBC configu-
ration of size n − 1. So each configuration of non-intersecting paths on G′

min(n) that
contribute to a′min(n) give rise naturally to a pair (B,C) of ASMs of respective sizes n
and n−1. Such pairs are called compatible pairs in the literature. However, these pairs do
not play any role in our fully inhomogeneous T -system solution, as weights are attached
only to such compatible pairs and cannot be disentangled nicely. In particular there is no
resummation of the non-intersecting lattice path weights into weights only pertaining to
the ASMs, as opposed to the case where Ti,j,0 = 1 of Theorem 2, where the second ASM
plays no role.

Example 35. We consider n = 3. We have the initial data assignments (represented in
the (i, j) plane):

T2,0,1 = t2,0
T1,−1,1 = t1,−1 T1,0,0 = t1,0 T1,1,1 = t1,1

T0,−2,1 = t0,−2 T0,−1,0 = t0,−1 T0,0,1 = t0,0 T0,1,0 = t0,1 T0,2,1 = t0,2
T−1,−1,1 = t−1,−1 T−1,0,0 = t−1,0 T−1,1,1 = t−1,1

T−2,0,1 = t−2,0

There are 8 distinct configurations of the 3 non-intersecting paths on G′
min(3), contributing

to a′min(3) (we have indicated the by small squares the centers of the n2 = 9 down-pointing
triangles and of the (n−1)2 = 4 up-pointing ones, corresponding to labels ti,j with (i, j) ∈
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D0,0,3, on the first configuration (a)):

1

2

3

2

3

1

2

3

2

3

0 1−1

0

1

−1

−2

2

−2 2
j

i

1

2

3

2

3

1

2

3

2

3

(a) (b) (c) (d)

(e) (g) (h)(f)

1

2

3

2

3

1

2

3

2

3

1

2

3

2

3

1

2

3

2

3

The corresponding weights read:

w(a) = µ−1µ0µ1
t0,−2,t0,0,t0,2

t0,−1t0,1
w(b) = λ0µ0µ1

t−1,−1t1,−1t0,2
t0,−1t0,1

w(c) = µ−1µ0λ0
t0,−1t−1,1t1,1

t0,−1t0,1

w(d) = λ2
0µ0

t−1,−1t−1,1t1,−1t1,1
t0,−1t0,1t0,0

w(e) = λ0µ
2
0
t−1,−1t−1,1t1,−1t1,1

t−1,0t1,0t0,0
w(f) = µ0λ0λ1

t−1,−1t−1,1t2,0
t−1,0t1,0

w(g) = λ−1λ0µ0
t1,−1t1,1t−2,0

t−1,0t1,0
w(h) = λ−1λ0λ1

t−1,−1t−1,1t−2,0

t−1,0t1,0

The corresponding solution of the T -system is:

T0,0,3 = µ−1µ0µ1
t0,−2, t0,0, t0,2

t0,−1t0,1
+ λ0µ0µ1

t−1,−1t1,−1t0,2
t0,−1t0,1

+ µ−1µ0λ0
t0,−1t−1,1t1,1
t0,−1t0,1

+λ2
0µ0

t−1,−1t−1,1t1,−1t1,1
t0,−1t0,1t0,0

+ λ0µ
2
0

t−1,−1t−1,1t1,−1t1,1
t−1,0t1,0t0,0

+ µ0λ0λ1
t−1,−1t−1,1t2,0

t−1,0t1,0

+λ−1λ0µ0
t1,−1t1,1t−2,0

t−1,0t1,0
+ λ−1λ0λ1

t−1,−1t−1,1t−2,0

t−1,0t1,0

If we take t±1,0 = t0,±1 = 1, we recover the formula of Theorem 2:

T0,0,3 = µ−1µ0µ1 t0,−2, t0,0, t0,2 + λ0µ0µ1 t−1,−1t1,−1t0,2 + µ−1µ0λ0 t0,−1t−1,1t1,1

+µ0λ0λ1 t−1,−1t−1,1t2,0 + λ−1λ0µ0 t1,−1t1,1t−2,0 + λ−1λ0λ1 t−1,−1t−1,1t−2,0

+λ0µ0(λ0 + µ0)
t−1,−1t−1,1t1,−1t1,1

t0,0
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where the sum extends over the 7 ASM of size 3. Finally, for ti,j = 1 for all i, j and
λi = µi = qi we have:

T0,0,3 = 4 + 2(q + q−1) = (1 + q−1)(1 + q0)(1 + q1)

in agreement with Theorem 13 for n = 3.

6.4 Conclusion and perspectives

A number of questions remain to be answered concerning this new deformation of the
determinant.

The partition function of the 6V-DWBC model at its free fermion point ∆ = 0,
q = eiπ/2, corresponds to the 2-enumeration of ASM, with a weight 2 per entry −1, and
matches the Lambda-determinant, with all λa = µb = 1. However, the 6V-DWBCmodel is
known to have a non-trivial deformation involving 2n spectral parameters say zi per row i
and wj per column j of the square lattice n×n grid. Our generalized Lambda-determinant
introduces 2n−2 other deformation parameters, which are attached to diagonals and anti-
diagonals of the same square grid. It would be interesting to mix the two deformations
and see if we can obtain some new information on ASMs by the process.

Another question concerns the limit shape. It is known that the 6V-DWBC model at
its free fermion point is also in bijection with the domino tilings of the Aztec diamond [8],
for which an arctic circle theorem exists, namely there exists a limiting curve (a circle)
separating frozen tiling phases from entropic tiling in the limit of large grid and small
mesh size. It is easy to work out the homogeneous deformation of this curve when λa = λ
and µb = µ for all a, b. The simplest way of computing the artic curve in our model (in the
case of a matrix A with entries ai,j = 1) is by analyzing the singularities of the generating
function of the density ρi,j,k defined as

ρi,j,k =
∂Log Ti,j,k

∂t0,0

∣

∣

∣

ti,j=1;i,j∈Z

where Ti,j,k is the solution of the T-system (3.2) with initial data (4.2). Defining
ρ(X, Y, Z) =

∑

k>1;i,j∈Z ρi,j,kX
iY jZk we find, by differentiating the T-system relation

and evaluating the result at ti,j = 1:

ρ(X, Y, Z) =
Z

(1 + Z2 − Z( λ
λ+µ

(X +X−1) + µ
λ+µ

(Y + Y −1))

Following [13], we find that in the coordinates (x, y) obtained as limit of ( i
k
, j
k
), for (i, j) ∈

Di,j,k, of a k×k 6V-DWBC grid rotated by +π/4, the singular curve is the following ellipse:

x2

(

1 +
λ

µ

)

+ y2
(

1 +
µ

λ

)

= 1

It would be interesting to see how this is affected by inhomogeneous parameters λa, µa.
In the particular example λi = µi = qi of Section 3.3, we find the following equation for
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ρ(X, Y, Z):

(

1 + Z2 − Z(X +X−1)
)

ρ(X, Y, Z) +
(

1 + Z2 − Z(qY + q−1Y −1)
)

ρ(q−1X, qY, Z) = 2Z

For generic q (not a root of unity) the function ρ(X, Y, Z) is not algebraic, and may be
defined as the following limit:

ρ(X, Y, Z) =
2Z

(1−XZ)(1−X−1Z)
lim
t→1−

∞
∑

k=0

(−t)k
k
∏

m=1

(1− qmY Z)(1− q−mY −1Z)

(1− q−mXZ)(1− qmX−1Z)

It would be interesting to investigate its singularity structure.
Finally, the connection to cluster algebra should also allow us to consider quantum

versions of the T-system, via the quantum cluster algebra construction of [1]. A first step
in this direction was taken in [5] for the case of the A1 quantum T-system. Presumably,
such quantum deformations should yield new non-trivial deformations of the Lambda-
determinant and hopefully enrich our understanding of ASMs.
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