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Universidad Carlos III de Madrid
Av. de la Universidad 30, 28911 Leganés, Madrid, Spain

wcarball@math.uc3m.es
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Abstract
If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T =

{x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The
space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a
δ-neighborhood of the union of the two other sides, for every geodesic triangle T
in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of
X, i.e. δ(X) = inf{δ > 0 : X is δ-hyperbolic } . In this paper we characterize the
strong product of two graphs G1 � G2 which are hyperbolic, in terms of G1 and
G2: the strong product graph G1�G2 is hyperbolic if and only if one of the factors
is hyperbolic and the other one is bounded. We also prove some sharp relations
between δ(G1 � G2), δ(G1), δ(G2) and the diameters of G1 and G2 (and we find
families of graphs for which the inequalities are attained). Furthermore, we obtain
the exact values of the hyperbolicity constant for many strong product graphs.

Keywords: Strong Product Graphs; Geodesics; Gromov Hyperbolicity; Infinite
Graphs
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1 Introduction

The study of mathematical properties of Gromov hyperbolic spaces and its applications
is a topic of recent and increasing interest in graph theory; see, for instance, [5, 6, 9, 11,
12, 13, 14, 15, 16, 18, 19, 27, 28, 29, 30, 31, 33, 34, 35, 38, 39, 42, 43, 45, 48, 49]. It
is well known that most networks can be modeled by a graph G = (V,E), where V is
the set of mainly elements and E is the set of communication links between them in the
network. Different methods have been proposed for configuration processing and data
generation. Some of them are structural models which can be seen as the product graph
of two given graphs, known as factors or generators. Many properties of structural models
can be obtained by considering the properties of their generators. The different kinds of
products of graphs are an important research topic in Graph Theory. In particular, the
strong product graph operation has been extensively investigated in relation to a wide
range of subjects [2, 10, 32, 47]. A fundamental principle for network design is extenda-
bility. That is to say, the possibility of building larger versions of a network preserving
certain desirable properties. For designing large-scale interconnection networks, the strong
p roduct is a useful method to obtain large graphs from smaller ones whose invariants can
be easily calculated [10, 32, 47].

The theory of Gromov hyperbolic spaces was used initially for the study of finitely
generated groups, where it was demonstrated to have an enormous practical importance.
This theory was applied principally to the study of automatic groups (see [36]), which
plays an important role in sciences of the computation. Another important application
of these spaces is the secure transmission of information by internet. In particular, the
hyperbolicity plays an important role in the spread of viruses through the network (see
[28, 29]). The hyperbolicity is also useful in the study of DNA data (see [9]).

Last years several researchers have been interested in showing that metrics used in
geometric function theory are Gromov hyperbolic. For instance, the Gehring-Osgood
j-metric is Gromov hyperbolic; and the Vuorinen j-metric is not Gromov hyperbolic
except in the punctured space (see [21]). The study of Gromov hyperbolicity of the
quasihyperbolic and the Poincaré metrics is the subject of [1, 3, 7, 22, 23, 24, 25, 39, 40,
43, 44, 45, 49]. In particular, the equivalence of the hyperbolicity of Riemannian manifolds
and the hyperbolicity of a simple graph was proved in [39, 43, 45, 49], hence, it is useful
to know hyperbolicity criteria for graphs.

Notations and terminology not explicitly given here can be found in [20]. We present
now some basic facts about Gromov’s spaces. Let (X, d) be a metric space and let γ :
[a, b] −→ X be a continuous function. We define the length of γ as

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}
.

We say that γ is a geodesic if it is an isometry, i.e. d(γ(t), γ(s)) = s−t for every t < s. We
say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic joining
x and y; we denote by [xy] any of such geodesics (since we do not require uniqueness of
geodesics, this notation is ambiguous, but it is convenient). It is clear that every geodesic
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metric space is path-connected. If X is a graph, we use the notation [u, v] for the edge
joining the vertices u and v; in what follows, by u ∼ v we mean that [u, v] ∈ E(X).

In order to consider a graph G as a geodesic metric space, we must identify (by an
isometry) any edge [u, v] ∈ E(G) with a real interval with length l := L([u, v]); therefore,
an inner point of the edge [u, v] is a point of G. A connected graph G is naturally equipped
with a distance defined on its points, induced by taking shortest paths in G. Then, G can
be seen as a metric graph.

Throughout this paper we just consider non-oriented (finite or infinite) connected
graphs with edges of length 1. These conditions guarantee that the graphs are geodesic
metric spaces. We also consider simple graphs, that is without loops or multiple edges,
which is not a restriction [6, Theorems 6 and 8].

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon with sides Jj ⊆ X,
we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) 6 δ. We denote by
δ(J) the sharp thin constant of J , i.e., δ(J) := inf{δ > 0 : J is δ-thin } . If x1, x2, x3 ∈ X,
a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and
[x3x1] (sometimes we write T = {[x1x2], [x2x3], [x3x1]}). The space X is δ-hyperbolic (or
satisfies the Rips condition with constant δ) if every geodesic triangle in X is δ-thin.
We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) :
T is a geodesic triangle in X }. We say that X is hyperbolic if X is δ-hyperbolic for some
δ > 0. If X is hyperbolic, then δ(X) = inf{δ > 0 : X is δ-hyperbolic }. A geodesic bigon
is a geodesic triangle {x1, x2, x3} with x2 = x3. Therefore, every bigon in a δ-hyperbolic
geodesic metric space is δ-thin.

There are several definitions of Gromov hyperbolicity. These different definitions are
equivalent in the sense that if X is δ-hyperbolic with respect to the definition A, then it
is δ′-hyperbolic with respect to the definition B for some δ′ (see, e.g., [8, 20]). We have
chosen this definition since it has a deep geometric meaning (see, e.g., [20]).

The following remarks are interesting examples of hyperbolic spaces. The real line
R is 0-hyperbolic due to any point of a geodesic triangle in the real line belongs to two
sides of the triangle simultaneously. The Euclidean plane R2 is not hyperbolic since
the equilateral triangles can be drawn with arbitrarily large diameter. This argument
can be generalized in a similar way to higher dimensions: a normed vector space E is
hyperbolic if and only if dim E = 1. Every arbitrary length metric tree is 0-hyperbolic
due to all points of a geodesic triangle in a tree belong simultaneously to two sides of
the triangle. Every bounded metric space X is ((diamX)/2)-hyperbolic. Every simply
connected complete Riemannian manifold with sectional curvature verifying K 6 −k2,
for some positive constant k, is hyperbolic. We refer to [8, 20] for more background and
further results.

Notice that the main examples of hyperbolic graphs are the trees. In fact, the hyper-
bolicity constant of a geodesic metric space can be viewed as a measure of how “tree-like”
the space is, since those spaces X with δ(X) = 0 are precisely the metric trees. This is
an interesting subject since, in many applications, one finds that the borderline between
tractable and intractable cases may be the tree-like degree of the structure to be dealt
with (see, e.g., [17]).
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If D is a closed connected subset of X, we always consider in D the inner metric
obtained by the restriction of the metric in X, that is

dD(z, w) := inf
{
LX(γ) : γ ⊂ D is a continuous curve joining z and w

}
> dX(z, w) .

Consequently, LD(γ) = LX(γ) for every curve γ ⊂ D.
Given a Cayley graph (of a presentation with solvable word problem) there is an

algorithm which allows to decide if it is hyperbolic. However, the problem of deciding
whether a general geodesic metric space is hyperbolic or not is usually very difficult. Note
that, first of all, we have to consider an arbitrary geodesic triangle T , and calculate the
minimum distance from an arbitrary point P of T to the union of the other two sides of
the triangle to which P does not belong to. Finally we have to take supremum over all
the possible choices for P and over all the possible choices for T . Without disregarding
the difficulty to solve this minimax problem, notice that in general the main obstacle is
that we do not know the location of geodesics in the space. Therefore, it is interesting to
obtain inequalities involving the hyperbolicity constant and to study the hyperbolicity of
a particular class of graphs.

The papers [5, 9, 16, 35, 37, 41, 48] study the hyperbolicity of, respectively, complement
of graphs, chordal graphs, line graphs, Cartesian product graphs, cubic graphs, short
graphs and median graphs, respectively. Our aim in this work is to obtain interesting
results about the hyperbolicity constant of strong product graphs.

The structure of this paper is as follows. First, in Section 2, we study several inequal-
ities involving the distance in the strong product of graphs and we obtain the exact value
of its diameter. Furthermore, we also study the relations between the geodesics of G1�G2

and geodesics in G1 and G2; it is not a trivial issue as Example 7 will show.
In Section 3, we prove several lower and upper bounds for the hyperbolicity constant

of G1 � G2, involving δ(G1), δ(G2) and the diameters of G1 and G2. One of the main
results of this work is Theorem 23, which characterizes the hyperbolic strong product
graphs G1�G2 in terms of G1 and G2. The graph G1�G2 is hyperbolic if and only if one
of its factors is hyperbolic and the other one is bounded. We also find families of graphs
for which many of the inequalities of this section are attained. Another main result in
this paper is Theorem 19 which provides the precise value of δ(G1 �G2) for a large class
of graphs G1, G2; this kind of result is not usual at all in the theory of hyperbolic graphs.

We conclude this paper with Section 4 where the exact values of the hyperbolicity
constant for many strong product graphs are calculated.

2 The distance in strong product graphs

In order to estimate the hyperbolicity constant of the strong product of two graphs G1 and
G2, we must obtain lower and upper bound on the distances between any two arbitrary
points in G1�G2. The lemmas of this section provide these estimations. We will use the
strong product definition given by Sabidussi in [46].
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Definition 1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) two graphs. The
strong product G1�G2 of G1 and G2 has V (G1)×V (G2) as vertex set, so that two distinct
vertices (u1; v1) and (u2; v2) of G1�G2 are adjacent if either u1 = u2 and [v1, v2] ∈ E(G2),
or [u1, u2] ∈ E(G1) and v1 = v2, or [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

Note that the strong product of two graphs is commutative. We use the notation
(u; v) instead of (u, v) to the points of the graph G1 � G2. We consider that every edge
of G1 �G2 has length 1.

Next, we will bound the distances between any two different pair of points in the
strong product graph. For this aim we must distinguish some cases depending on the
situation of the considered points. Let p ∈ G1 and q ∈ G2 be two points of G1 and
G2 respectively. The pair (p; q) is an inner point in G1 � G2, if p ∈ G1 \ V (G1) and
q ∈ V (G2) or p ∈ V (G1) and q ∈ G2 \ V (G2) or p ∈ G1 \ V (G1) and q ∈ G2 \ V (G2)
(i.e., (p; q) ∈ G1 �G2 \ V (G1 �G2)). Notice that the first and second cases of the inner
points in G1 � G2 are contained in the Cartesian product graph G1�G2 ⊂ G1 � G2; so
the first and second cases are the inner points of the Cartesian edges properly. In order
to represent the inner points of the non Cartesian edges in G1 �G2 we will consider the
following assumptions. Let [A1, A2] ∈ E(G1) and [B1, B2] ∈ E(G2) be edges in G1 and
G2, respectively. Let p ∈ [A1, A2] and q ∈ [B1, B2] be inner points of theses fixed edges;
we have (p; q) ∈ G1 �G2 \G1�G2 if L([pA1]) = L([qB1]) or L([pA1]) = L([qB2]).

Notice that there are different points on G1 � G2 with the same representation: the
midpoints of [(A1;B1), (A2;B2)] and [(A1;B2), (A2;B1)]. Then, this notation is ambigu-
ous, but it is convenient.

The following lemmas provide bounds on the distance between any two pair of points
in the strong product graph (p1; q1), (p2; q2) ∈ G1 �G2.

The first one is a well known property about distances between vertices in the strong
product of graphs proved in [26].

Lemma 2 (Lemma 5.1 in [26]). Let G1, G2 be any graphs. If p1, p2 ∈ V (G1) and q1, q2 ∈
V (G2), then

dG1�G2((p1; q1), (p2; q2)) = max{dG1(p1, p2), dG2(q1, q2)}.

Next, a lower bound on the distance between any two points in the strong product
graph.

Proposition 3. Let G1, G2 be any graphs. For every (p1; q1), (p2; q2) ∈ G1 �G2 we have

dG1�G2((p1; q1), (p2; q2)) > max{dG1(p1, p2), dG2(q1, q2)}. (1)

Proof. By symmetry, it suffices to prove dG1�G2((p1; q1), (p2; q2)) > dG1(p1, p2). Seeking
for a contradiction, assume that dG1�G2((p1; q1), (p2; q2)) < dG1(p1, p2).

Hence, there exist a geodesic Γ joining (p1; q1) and (p2; q2) in G1 � G2 with L(Γ) <
dG1(p1, p2). Denote by (A1;B1), . . . , (Ak;Bk) the vertices of G1 � G2 in Γ; without loss
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of generality we can assume that Γ meets (A1;B1), . . . , (Ak;Bk) in this order. Then, we
have

Γ := [(p1; q1)(A1;B1)]
⋃{

k−1⋃
j=1

[(Aj;Bj), (Aj+1;Bj+1)]

}⋃
[(Ak;Bk)(p2; q2)].

By Definition 1, we obtain that

γ := [p1A1]
⋃{

k−1⋃
j=1

[AjAj+1]

}⋃
[Akp2]

is a path joining p1 and p2 such that L(γ) 6 L(Γ) < dG1(p1, p2). This is the contradiction
we were looking for.

The following result provides an upper bound for the distance between a vertex and
an inner point, as well as between two inner points in G1 �G2.

Proposition 4. Let G1, G2 be any graphs.

(i) If (u; v) ∈ V (G1 �G2) and (p; q) ∈ G1 �G2 \ V (G1 �G2), then

dG1�G2((u; v), (p; q)) 6 max{dG1(u, p), dG2(v, q)}+ 1. (2)

(ii) If (p1; q1), (p2; q2) ∈ G1 �G2 \ V (G1 �G2), then

dG1�G2((p1; q1), (p2; q2)) 6 max{dG1(p1, p2), dG2(q1, q2)}+ 2. (3)

Proof. In order to prove (i), let us consider [(u1; v1), (u2; v2)] ∈ E(G1 � G2) such that
(p; q) ∈ [(u1; v1), (u2; v2)]. Let γ be a geodesic in G1�G2 joining (u; v) and (p; q). Without
loss of generality we can assume that (u1; v1) ∈ γ. Define ε := dG1�G2((u1; v1), (p; q)). By
Lemma 2, we have

dG1�G2((u; v), (p; q)) = max{dG1(u, u1), dG2(v, v1)}+ ε

6 max{dG1(u, p) + dG1(p, u1), dG2(v, q) + dG2(q, v1)}+ ε

6 max{dG1(u, p), dG2(v, q)}+ 2ε.

If ε 6 1/2, then we have (2). If ε > 1/2, then we have max{dG1(u, u2), dG2(v, v2)}
= max{dG1(u, u1), dG2(v, v1)}+ 1; thus, dG1�G2

(
(u; v), (p; q)

)
= max{dG1(u, p), dG2(v, q)}.

In order to proof (ii), notice that if (p1; q1), (p2; q2) belong to the same edge of G1�G2,
then we have the result since dG1�G2((p1; q1), (p2; q2)) < 1. Assume now that (p1; q1), (p2; q2)
belong to different edges of G1 � G2. Let us consider (u1; v1), (u2; v2), (u3; v3), (u4; v4) ∈
V (G1 � G2) such that (p1; q1) ∈ [(u1; v1), (u2; v2)] and (p2; q2) ∈ [(u3; v3), (u4; v4)]. Let
γ∗ be a geodesic in G1 � G2 joining (p1; q1) and (p2; q2). Without loss of generality
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we can assume that (u2; v2), (u3; v3) ∈ γ∗. Define ε1 := dG1�G2((u2; v2), (p1; q1)) and
ε2 := dG1�G2((u3; v3), (p2; q2)). Then, we have

dG1�G2((p1; q1), (p2; q2)) = ε1 + max{dG1(u2, u3), dG2(v2, v3)}+ ε2

6 2ε1 + max{dG1(p1, p2), dG2(q1, q2)}+ 2ε2.

Notice that if ε1, ε2 6 1/2, then (3) holds directly. If ε1 > 1/2 (the case ε2 > 1/2 is
analogous), then max{dG1(u1, u3), dG2(v1, v3)} = max{dG1(u2, u3), dG2(v2, v3)} + 1; thus,
dG1�G2

(
(p1; q1), (u3; v3)

)
= max{dG1(p1, u3), dG2(q1, v3)}. Hence, we have

dG1�G2

(
(p1; q1), (p2; q2)

)
= max{dG1(p1, u3), dG2(q1, v3)}+ ε2

6 max{dG1(p1, p2) + dG1(p2, u3), dG2(q1, q2) + dG2(q2, v3)}+ ε2

6 max{dG1(p1, p2), dG2(q1, q2)}+ 2ε2.

This finishes the proof.

The previous lemmas let us announce the following general result on the distances in
the strong product of two graphs.

Theorem 5. For all graphs G1, G2 we have:

a) dG1�G2((p1; q1), (p2; q2)) = max{dG1(p1, p2), dG2(q1, q2)}, for every (p1; q1), (p2; q2) ∈
V (G1 �G2),

b) max{dG1(p1, p2), dG2(q1, q2)} 6 dG1�G2((p1; q1), (p2; q2)) 6 max{dG1(p1, p2), dG2(q1, q2)}
+1, for every (p1; q1) ∈ V (G1 �G2) and (p2; q2) ∈ G1 �G2,

c) max{dG1(p1, p2), dG2(q1, q2)} 6 dG1�G2((p1; q1), (p2; q2)) 6 max{dG1(p1, p2), dG2(q1, q2)}
+2, for every (p1; q1), (p2; q2) ∈ G1 �G2.

Let us consider the projection Pk : G1 �G2 −→ Gk for k ∈ {1, 2}.

Corollary 6. Let {i, j} be a permutation of {1, 2}. Then, for every x, y in G1 �G2,

dGi
(Pi(x), Pi(y)) 6 dG1�G2(x, y) 6 dGi

(Pi(x), Pi(y)) + diamGj + 2. (4)

These results provide information about the geodesics in G1�G2. Notice that, if γ is
a geodesic joining x and y in G1 � G2, then it is possible that Pj(γ) does not contain a
geodesic joining Pj(x) and Pj(y) in Gj, as the following example shows.

Example 7. Consider a cycle graph G1 with vertices {v1, . . . , vn} such that vi ∼ vi+1 for
every i ∈ {1, . . . , n − 1} and a path graph G2 with vertices {w1, . . . , wn} such that wi ∼
wi+1 for every i ∈ {1, . . . , n−1}. By Lemma 2, we have that γ := ∪n−1

i=1 [(vi;wi), (vi+1;wi+1)]
is a geodesic joining (v1;w1) and (vn;wn) in G1 �G2, but P1(γ) = ∪n−1

i=1 [vi, vi+1] does not
contain the geodesic joining v1 and vn in G1 (the edge [v1, vn]).
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The following result allows to compute the diameter of the strong product of two
graphs. We denote by E1 the graph with just a single vertex.

Theorem 8. Let G1, G2 be any graphs. Then we have

diamG1�G2 =


max{diamG1, diamG2}, if G1 or G2 is an isomorphic graph to E1,

max{diamV (G1), diamV (G2)}+ 1, otherwise.

Proof. Since for any graph G, E1 � G is isomorphic to G we have the first equality. By
Lemma 2, we have diamV (G1 �G2) = max{diamV (G1), diamV (G2)}; hence,

max{diamV (G1), diamV (G2)} 6 diamG1 �G2 6 max{diamV (G1), diamV (G2)}+ 1.

Without loss of generality we can assume that diamV (G1) 6 diamV (G2). If diamV (G2)
= ∞, then the inequality holds. Hence, we can assume that G1 and G2 are bounded.
Let B1, B2 be vertices of G2 such that dG2(B1, B2) = diamV (G2), and let A1, A2 be two
adjacent vertices of G1. Let M1 (respectively, M2) be the midpoint of [(A1;B1), (A2;B1)]
(respectively, [(A1;B2), (A2;B2)]). One can check that dG1�G2(M1,M2) = diamV (G2)+1.

This finish the proof.

Note that, in particular, diamG1 � G2 = diamV (G1 � G2) + 1 if G1 and G2 are not
isomorphic to E1.

We say that a subgraph Γ of G is isometric if dΓ(x, y) = dG(x, y) for every x, y ∈ Γ.
We can deduce several results from Theorem 8. The first one says that max{diamG1,

diamG2} is a good approximation of the diameter of G1 �G2.

Corollary 9. For all graphs G1, G2 we have

max{diamG1, diamG2} 6 diamG1 �G2 6 max{diamG1, diamG2}+ 1.

Proof. If V is a vertex of G1 (respectively, G2), then, by Proposition 3, we have that
{V }�G2 (respectively, G1�{V }) is an isometric subgraph of G1�G2. Hence, we obtain
the first inequality. The second one is a consequence of Theorem 8 and the inequality
diamV (G) 6 diamG.

Furthermore, we characterize the graphs with diamG1�G2 = max{diamG1, diamG2}.

Corollary 10. The equality diamG1 � G2 = max{diamG1, diamG2} holds if and only
if G1 or G2 is isomorphic to E1, or diamG = diamV (G) + 1 for G ∈ {G1, G2} with
diamG = max{diamG1, diamG2}.
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3 Bounds for the hyperbolicity constant.

Some bounds for the hyperbolicity constant of the strong product of two graphs are
studied in this section. These bounds allow to prove Theorem 23, which characterizes the
hyperbolic strong product graphs. The next well-known result will be useful.

Theorem 11 (Theorem 8 in [42]). In any graph G the inequality δ(G) 6 1
2

diamG holds
and it is sharp.

Thanks to the Theorems 8 and 11 we obtain the following consequence.

Corollary 12. For all graphs G1, G2, we have

δ(G1 �G2) 6
max{diamV (G1), diamV (G2)}+ 1

2
,

and the inequality is sharp.

Theorems 32, 34 and 35 are families of examples for which the equality in the previous
corollary is attained.

Taking into account that E1 �G is an isomorphic graph to G, we have the following
result.

Corollary 13. For every graph G we have

δ(G� E1) = δ(E1 �G) = δ(G).

The next result will be useful.

Lemma 14 (Lemma 5 in [42]). If Γ is an isometric subgraph of G, then δ(Γ) 6 δ(G).

All the previous results allow us to present the following theorem which provides some
lower bounds for δ(G1 �G2).

Theorem 15. For all graphs G1, G2 we have:

(a) δ(G1 �G2) > max{δ(G1), δ(G2)},

(b) δ(G1 �G2) > 1
2

min{diamV (G1), diamV (G2)},

(c) δ(G1 �G2) > 1
2

(
diamV (G1) + 1

)
, if 0 < diamV (G1) < diamV (G2),

(d) δ(G1 �G2) > 1
4

min{diamV (G1) + 2δ(G2), diamV (G2) + 2δ(G1)}.
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Proof. Part (a) is immediate due to G1 � {v} and {u} � G2 are isometric subgraphs of
G1�G2 for every (u; v) ∈ V (G1�G2). Then Lemma 14 gives that δ(G1�G2) > δ(G1�
{v}) = δ(G1) and δ(G1 � G2) > δ({u} � G2) = δ(G2). Hence, we obtain δ(G1 � G2) >
max{δ(G1), δ(G2)}.

Let D := min{diamV (G1), diamV (G2)}.
Let us prove (b). If D = 0, then (b) holds; so, we just consider D > 0. If D < ∞,

let us consider a geodesic square K := {γ1, γ2, γ3, γ4} in G1�G2 ⊂ G1 �G2 with sides of
length D; then T := {γ1, γ2, γ} is a geodesic triangle in G1 �G2, where γ is a “diagonal”
geodesic joining the endpoints of γ1 ∪ γ2. It is clear that the midpoint p of γ satisfies
dG1�G2(p, γ1 ∪ γ2) = D/2; therefore δ(T ) > D/2 and, consequently, δ(G1�G2) > D/2. If
D =∞, we can repeat the same argument for any integer N instead of D, and we obtain
δ(G1 �G2) > N/2, for every N : hence, δ(G1 �G2) =∞ = D/2.

In order to prove (c), note that D < ∞. Let us consider a geodesic rectangle R :=
{σ1, σ2, σ3, σ4} in G1�G2 ⊂ G1 � G2 with L(σ1) = L(σ3) = diamV (G1) and L(σ2) =
L(σ4) = diamV (G1) + 1. Denote by γ a geodesic in G1 � G2 joining the endpoints of
σ1 ∪ σ2 which contains the edge in σ4 incident to σ1 ∩ σ4; we may choose γ such that it
contains a diagonal of a geodesic square in G1 �G2. Then B := {σ1, σ2, γ} is a geodesic
triangle in G1 �G2. If p is the midpoint of γ, then

dG1�G2(p, σ1 ∪ σ2) =
diamV (G1) + 1

2
.

Consequently, δ(G1 �G2) > δ(B) > (diamV (G1) + 1)/2.

Finally, (d). Let E := max{δ(G1), δ(G2)}. Then from parts (a) and (b), we have

δ(G1 �G2) > max

{
D

2
, E

}
>

1

2

(
D

2
+ E

)
=

1

4
min{diamV (G1) + 2E, diamV (G2) + 2E}

>
1

4
min{diamV (G1) + 2δ(G2), diamV (G2) + 2δ(G1)}.

Theorems 34 and 35 provide a family of examples for which the equality in Theorem
15 (a) is attained.

Corollary 12 and Theorem 15 provide lower and upper bounds for δ(G1 �G2) just in
terms of distances in G1 and G2.

Corollary 16. For all graphs G1, G2, we have

1

2
min{diamV (G1), diamV (G2)} 6 δ(G1�G2) 6

1

2

(
max{diamV (G1), diamV (G2)}+1

)
.

From Theorem 15 we have obtained several interesting consequences. The following
one is a qualitative result about the hyperbolicity of G1 �G2.
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Theorem 17. If G1 and G2 are infinite graphs, then G1 �G2 is not hyperbolic.

Theorem 18. Let G1, G2 be graphs with at least two vertices. Let m and M be the
minimum and the maximum between diamV (G1) and diamV (G2), respectively. Then we
have

δ(G1 �G2) > min

{
m+

1

2
,
M

2

}
. (5)

Proof. First of all, we prove

δ(G1 �G2) > min

{
m,

M

2

}
. (6)

In order to prove this inequality, assume first that 2m 6 M . If m < ∞, then let
us consider a geodesic rectangle R := γ1 ∪ γ2 ∪ γ3 ∪ γ4 in G1�G2 ⊂ G1 � G2 with
L(γ1) = L(γ3) = 2m and L(γ2) = L(γ4) = m, and consider a geodesic γ joining the
endpoints of γ1 and containing the midpoint of γ3; then B := {γ1, γ} is a geodesic bigon
in G1 � G2. If p is the midpoint of γ3, then dG1�G2(p, γ1) = m; therefore δ(B) > m,
and consequently δ(G1 � G2) > m. If m = ∞, then we can repeat the same argument
for any integer N instead of m, and we obtain δ(G1 � G2) > N , for every N ; hence,
δ(G1 �G2) =∞ = m.

If 2m > M , then M < ∞ and we can repeat the previous argument with bM/2c
instead of m, and we obtain the result when M is even. If M is odd, let us consider a
geodesic rectangle R := γ1 ∪ γ2 ∪ γ3 ∪ γ4 in G1�G2 ⊂ G1 � G2 with L(γ1) = L(γ3) =
2bM/2c + 1 = M and L(γ2) = L(γ4) = bM/2c; let p1, p2 be points on γ3 such that
dG1�G2(p1, γ4) = bM/2c and dG1�G2(p2, γ2) = bM/2c; consider a geodesic γ joining the
endpoints of γ1 and containing p1 and p2; then B := {γ1, γ} is a geodesic bigon in
G1 � G2. Denote by p the midpoint of [p1p2] ⊂ γ3; so, dG1�G2(p, γ1) = M/2; therefore,
δ(G1 �G2) > δ(B) >M/2.

Since we have proved (6), in order to obtain (5), we can assume that 0 < 2m < M ;
then we have m < ∞. If we replace bM/2c by m in the previous argument, we obtain
δ(G1 �G2) > m+ 1/2.

Corollary 33 and Theorems 34 and 35 show that the inequality in Theorem 18 is sharp.

Theorem 19. Let G1, G2 be any graphs. Let m and M be the minimum and the maximum
between diamV (G1) and diamV (G2), respectively. If 2m >M , then

M

2
6 δ(G1 �G2) 6

M + 1

2
. (7)

Furthermore, if 2m > M > 0, then

δ(G1 �G2) =
M + 1

2
. (8)
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Proof. If M = 0, then δ(G1 � G2) = 0 and (7) holds. If M > 0, then, by Corollary 12
and Theorem 18, the inequalities in (7) hold directly.

In order to prove (8), without loss of generality we can assume that diamV (G1) = m
and diamV (G2) = M . Assume first that M is an even number. Since m > M/2,
let us consider A0, A1, . . . , AM/2+1 ∈ V (G1) and B0, B1, . . . , BM ∈ V (G2) with γ1 :=
A0A1 . . . AM/2+1 is a geodesic in G1 and γ2 := B0B1 . . . BM is a geodesic in G2. Denote by
X (respectively, Y ) the midpoint of [(A0;B0), (A1;B0)] (respectively, [(A0;BM), (A1;BM)]).
Let us consider

Γ∗ := [X(A0;B0)]
⋃{

M⋃
i=1

[(A0;Bi−1), (A0;Bi)]

}⋃
[(A0;BM)Y ]

and

Γ′ :=[X(A1;B0)]
⋃

M/2⋃
i=1

[(Ai;Bi−1), (Ai+1;Bi)]

⋃
⋃

M⋃
j=M/2+1

[(AM+2−j;Bj−1), (AM+1−j;Bj)]

⋃[(A1;BM)Y ].

Then B := {Γ∗,Γ′} is a geodesic bigon in G1 � G2. If p is the midpoint of Γ′, then
dG1�G2(p,Γ

∗) = (M + 1)/2; therefore, δ(G1 �G2) > δ(B) > (M + 1)/2. Then, Corollary
12 gives the equality.

Assume now that M is an odd number. Since m > (M + 1)/2, let us consider
A0, A1, . . . , A(M+1)/2 ∈ V (G1) and B0, B1, . . . , BM ∈ V (G2) with γ1 := A0A1 . . . A(M+1)/2

is a geodesic in G1 and γ2 := B0B1 . . . BM is a geodesic in G2. Denote by X (respec-
tively, Y ) the midpoint of [(A0;B0), (A1;B0)] (respectively, [(A0;BM), (A1;BM)]). Let us
consider

Γ∗ := [X(A0;B0)]
⋃{

M⋃
i=1

[(A0;Bi−1), (A0;Bi)]

}⋃
[(A0;BM)Y ]

and

Γ′ :=[X(A1;B0)]
⋃

(M−1)/2⋃
i=1

[(Ai;Bi−1), (Ai+1;Bi)]

⋃⋃
[(A(M+1)/2;B(M−1)/2), (A(M+1)/2;B(M+1)/2)]

⋃
⋃

M⋃
j=(M+1)/2

[(AM+1−j;Bj−1), (AM−j;Bj)]

⋃[(A1;BM)Y ].
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Then B := {Γ∗,Γ′} is a geodesic bigon in G1 � G2. If p is the midpoint of Γ′, then
dG1�G2(p,Γ

∗) = (M + 1)/2; therefore, δ(G1�G2) > δ(B) > (M + 1)/2. Finally, Corollary
12 gives the equality.

Theorems 34 and 35 show that the first inequality in Theorem 19 is attained.

Let X be a metric space, Y a non-empty subset of X and ε a positive number. We
call ε-neighborhood of Y in X, denoted by Vε(Y ) to the set {x ∈ X : dX(x, Y ) 6 ε}.

The next result will be useful in order to prove the upper bound for δ(G1 � G2) in
Theorem 21 below.

Theorem 20 (Theorem 2.9 in [41]). Let X be a δ-hyperbolic geodesic metric space, u, v ∈
X, b a non-negative constant, h a curve joining u and v with L(h) 6 d(u, v) + b, and
g = [uv]. Then,

h ⊆ V8δ+b/2(g), g ⊆ V16δ+b(h).

Theorem 21. Let G1, G2 be any graphs. Then, we have

δ(G1 �G2) 6
5

2
diamG1 + 25δ(G2) + 5. (9)

Proof. It suffices to prove (9) if G1 is bounded and G2 is hyperbolic, since otherwise the
inequality δ(G1�G2) 6∞ holds. Let us consider any fixed geodesic triangle T = {x, y, z}
in G1 �G2 and α ∈ T . In order to bound δ(T ), without loss of generality we can assume
that α ∈ [xy]. Consider the projection P2 : G1�G2 −→ G2 and any geodesic γ := [uv] in
G1 �G2. By Corollary 6, we obtain

L
(
P2(γ)

)
6 L(γ) = dG1�G2(u, v) 6 dG2

(
P2(v), P2(v)

)
+ b, with b = diamG1 + 2.

Then, by Theorem 20, there is α′ ∈ [P2(x)P2(y)] such that

dG2(P2(α), α′) 6 8δ(G2) +
b

2
. (10)

Since G2 is hyperbolic, there is β′ ∈ [P2(y)P2(z)] ∪ [P2(z)P2(x)] such that

dG2(α
′, β′) 6 δ(G2). (11)

By Theorem 20, there is β′′ ∈ P2([yz] ∪ [zx]) such that

dG2(β
′, β′′) 6 16δ(G2) + b. (12)

Consequently, by (10), (11) and (12) we obtain

dG2(P2(α), P2([yz] ∪ [zx])) 6 dG2(P2(α), β′′) 6 25δ(G2) +
3b

2
. (13)

Finally, by Corollary 6 and (13) we obtain

dG1�G2(α, [yz] ∪ [zx]) 6 dG2(P2(α), P2([yz] ∪ [zx])) + b 6 25δ(G2) +
5b

2
.

This finishes the proof.

the electronic journal of combinatorics 20(3) (2013), #P2 13



Theorems 15 and 21 provide lower and upper bounds of δ(G1�G2) in terms of linear
combinations of hyperbolicity constants and diameters of its generator graphs, as the
following result shows.

Corollary 22. For all graphs G1, G2, we have

1

4
min{2δ(G1) + diamV (G2), 2δ(G2) + diamV (G1)} 6 δ(G1 �G2)

6
5

2
min {diamG1 + 10δ(G2), diamG2 + 10δ(G1)}+ 5.

Corollary 22 allows to obtain the main result of this work: the characterization of the
hyperbolic graphs G1 �G2.

Theorem 23. For all graphs G1, G2 we have that G1�G2 is hyperbolic if and only if G1

is hyperbolic and G2 is bounded or G2 is hyperbolic and G1 is bounded.

Many parameters γ of graphs satisfy the inequality γ(G1 � G2) > γ(G1) + γ(G2).
Therefore, one could think that the inequality δ(G1 � G2) > δ(G1) + δ(G2) holds for all
graphs G1, G2. However, this is false, as the following example shows:

Example 24. δ(P � C4) < δ(P ) + δ(C4), where P is the Petersen graph.

We have that diamV (P ) = 2, diamV (C4) = 2. Besides, Theorem 11 in [42] gives that
δ(P ) = 3/2 and δ(C4) = 1. By Theorem 19, we obtain δ(P � C4) = 3/2 < 3/2 + 1 =
δ(P ) + δ(C4).

The inequality δ(G1 � G2) 6 δ(G1) + δ(G2) is also false, since δ(P2 � P2) = δ(K4) =
1 > 2δ(P2) = 0.

4 Computation of the hyperbolicity constant for some

product graphs

This last section present the value of the hyperbolicity constant for many product of
graphs.

The following results in [4] will be useful. Denote by J(G) the set of vertices and
midpoints of edges in G. As usual, by cycle we mean a simple closed curve, i.e., a path
with different vertices, unless the last one, which is equal to the first vertex.

First, remark some previous results of [4] which will be useful.

Theorem 25 (Theorem 2.6 in [4]). For every hyperbolic graph G, δ(G) is a multiple of
1/4.

Theorem 26 (Theorem 2.7 in [4]). For any hyperbolic graph G, there exists a geodesic
triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and δ(T ) = δ(G).
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Remark 27. By Theorems 25 and 26, in order to compute the hyperbolicity constant of a
graph G it suffices to consider dG(p, [xz] ∪ [yz]) where T = {x, y, z} is a geodesic triangle
that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] satisfies dG(p, V (G)) ∈ {0, 1/4, 1/2}.

The following results characterize the hyperbolicity constant of the strong product of
trees and certain graphs. These results are interesting by themselves and, furthermore,
they will be useful in order to prove the last theorems of this paper.

Theorem 28. Let T be any tree and G any graph with 0 < diamV (G) < diamT/2.
Then, we have

δ(G� T ) = diamV (G) +
1

2
.

Proof. On the one hand, Theorem 18 gives δ(G � T ) > diamV (G) + 1/2. On the
other hand, by Theorem 26 it suffices to consider geodesic triangles 4 = {x, y, z} in
G � T which are cycles with x, y, z ∈ J(G � T ). Let (v;w) be a vertex in [xy]. If
dG�T ((v;w), {x, y}) 6 diamV (G), then dG�T ((v;w), [yz] ∪ [zx]) 6 diamV (G). Assume
that dG�T ((v;w), {x, y}) > diamV (G). Let Vx (respectively, Vy) be the closest vertex to
x (respectively, y) in [xy]. Note that dG�T (Vx, Vy) = dG�T (Vx, (v;w))+dG�T ((v;w), Vy) >
2 diamV (G). Consider the projection PT on T . By Lemma 2 we have dG�T (Vx, Vy) =
dT (PT (Vx), PT (Vy)). Due to dT (PT (Vx), PT (Vy)) 6 dT (PT (Vx), w) + dT (w,PT (Vy)), we
have dG�T (Vx, (v;w)) = dT (PT (Vx), w) and dG�T ((v;w), Vy) = dT (w,PT (Vy)). Then, w ∈
[PT (x)PT (y)] = PT ([xy]). Since T is a tree, w ∈ PT

(
[yz]∪ [zx]

)
. Then, ([yz]∪ [zx])∩ (G�

{w}) 6= ∅ and dG�T ((v;w), [yz]∪[zx]) 6 diamV (G). So, we have dG�T ((v;w), [yz]∪[zx]) 6
diamV (G) for every vertex (v;w) in [xy]. Since x, y ∈ J(G � T ), dG�T (p, [yz] ∪ [zx]) 6
diamV (G) + 1/2 for every p ∈ [xy]. Hence, δ(4) 6 diamV (G) + 1/2, and we obtain
δ(G� T ) 6 diamV (G) + 1/2.

Theorem 29. Let T be any tree and G any graph with 0 < diamV (G) = diamT/2.
Then, we have

δ(G� T ) = diamV (G) +
1

4
.

Proof. By Theorem 19, we have that diamV (G) 6 δ(G� T ) 6 diamV (G) + 1/2.
Now we show a geodesic bigon B in G � T with δ(B) = diamV (G) + 1/4. Define

by n := diamV (G) and consider v1, . . . , vn+1 ∈ V (G) with vi ∼ vi+1 for i = 1, . . . , n
and dG(v1, vn+1) = n. Also, consider w1, . . . , w2n+1 ∈ V (T ) with wi ∼ wi+1 for i =
1, . . . , 2n and dT (w1, w2n+1) = diamT = 2n. Denote by a (respectively, b) the midpoint
of [(v1;w1), (v2;w1)] (respectively, [(v1;w2n+1), (v2;w2n+1)]). Let us consider

γ∗ := [a(v1;w1)]
⋃{

2n⋃
i=1

[(v1;wi), (v1;wi+1)]

}⋃
[(v1;w2n+1)b]

and
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γ′ :=[a(v2;w1)]
⋃{

n−1⋃
i=1

[(vi+1;wi), (vi+2;wi+1)]

}⋃
[(vn+1;wn), (vn+1;wn+1)]

⋃
⋃

[(vn+1;wn+1), (vn+1;wn+2)]
⋃{

n−1⋃
j=1

[(vn+2−j;wn+1+j), (vn+1−j;wn+2+j)]

}⋃
⋃

[(v2;w2n+1)b].

Consider the geodesic bigon B := {γ∗, γ′} in G� T . Let p be the midpoint of γ′ and let
p0 be a point in γ′ with dG�T (p0, p) = 1/4; then dG�T (p0, γ

∗) = n + 1/4 and δ(G� T ) >
δ(B) > n+ 1/4.

Hence, by Theorem 25 we have δ(G � T ) ∈ {n + 1/4 , n + 1/2}. Seeking for a
contradiction assume that δ(G � T ) = n + 1/2. Then there are a geodesic triangle 4 =
{x, y, z} in G�T and p ∈ [xy] with dG�T (p, [yz]∪ [zx]) = n+1/2. By Theorem 26 we can
assume that4 is a cycle with x, y, z ∈ J(G�T ). By Theorem 8, diam(G�T ) = 2n+1 and
we conclude that L([xy]) = 2n+1 and p is the midpoint of [xy]. Since diamV (G�T ) = 2n,
we have that x, y are midpoints of edges in G�T , and so, p is a vertex of G�T . We can
write [xy] ∩ V (G � T ) = {(a1; b1), (a2; b2), . . . , (a2n+1; b2n+1)} with a1, . . . , a2n+1 ∈ V (G),
(ai; bi) ∼ (ai+1; bi+1) for i = 1, . . . , 2n and dT (b1, b2n+1) = 2n. Thus, p = (an+1; bn+1) and
p ∈ V (G � {bn+1}). Since T is a tree we have that ([yz] ∪ [zx]) ∩ (G � {bn+1}) 6= ∅; in
particular, dG�T (p, [yz] ∪ [zx]) 6 diamV (G). This is the contradiction we were looking
for, and then δ(G� T ) = diamV (G) + 1/4.

The following lemma will be useful.

Lemma 30. Let Cm be a cycle graph and G any graph with diamV (G) < diamV (Cm).
Let γ = [xy] be a geodesic in G�Cm such that x, y ∈ J(G�Cm). Then, L(PCm(γ)) 6 m/2
where PCm is the projection on Cm.

Proof. If diamV (G) = 0, it is a trivial case. Assume now that diamV (G) > 0.
If L(γ) 6 m/2, then we have the result since L(PCm(γ)) 6 L(γ). Assume that

L(γ) > m/2. Seeking for a contradiction, assume that L(PCm(γ)) > m/2.
Assume that m is even (the case m odd is similar). Since x, y ∈ J(G � Cm) and

L(PCm(γ)) > m/2, there are x′, y′ ∈ γ ∩ J(G � Cm) such that dCm(PCm(x′), PCm(y′)) =
(m + 1)/2. Without loss of generality we can assume that x′ ∈ V (G � Cm) and y′ /∈
V (G � Cm). Let A,A1, A2 ∈ V (G) and B,B1, B2 ∈ V (Cm) such that x′ = (A;B)
and y′ ∈ [(A1;B1), (A2;B2)]. Since dCm(PCm(x′), PCm(y′)) = (m + 1)/2, without loss of
generality we can assume that dCm(B,B1)+1 = dCm(B,B2) = m/2. Since diamV (Cm) >
diamV (G), by Lemma 2 we have dG�Cm((A;B), (A1;B1)) = m/2− 1; thus, dG�Cm(x′, y′)
6 (m− 1)/2. This is the contradiction we were looking for.

The following theorem provides the exact value of the hyperbolicity constant of the
strong product of a cycle Cm and any graph G with diamV (G) 6 diamV (Cm)/2. This
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result is interesting by itself and, furthermore, it will be useful in order to prove the last
theorems of this paper.

Theorem 31. Let Cm be a cycle graph and G any graph with diamV (G) 6 diamV (Cm)/2.
Then, we have

δ(G� Cm) =

{
bm/2c/2 + 1/4, if diamV (G) = diamV (Cm)/2,
m/4, if diamV (G) < diamV (Cm)/2.

(14)

Proof. If diamV (G) = 0, then the equality is trivial. Assume now that diamV (G) > 0.
Let V (Cm) = {w1, . . . , wm} where wi ∼ wi+1 for i = 1, . . . ,m − 1. Let PCm be the
projection on Cm.

First, we prove that δ(G�Cm) < (bm/2c+ 1)/2. Seeking for a contradiction, assume
that there are a geodesic triangle T = {x, y, z} in G�Cm and a point p ∈ γ := [xy] with
dG�Cm(p, [yz]∪[zx]) = (bm/2c+1)/2 = diam(G�Cm)/2. Then L(γ) = diam(G�Cm) and
dG�Cm(p, [yz]∪ [zx]) = diam(G�Cm)/2, and we conclude that p is the midpoint of γ. By
Theorem 26, we can assume that T is a cycle with x, y, z ∈ J(G�Cm). Since diamV (G�
Cm) = diam(G � Cm) − 1, by Theorem 8 we have that x, y are midpoints of edges in
G�Cm. Let Vx (respectively, Vy) be the closest vertex to x (respectively, y) in γ. Let V ′x
(respectively, V ′y) be the closest vertex to x (respectively, y) in [xz] (respectively, [yz]). By
Lemma 2, we have dG�Cm(Vx, Vy) = dCm(PCm(Vx), PCm(Vy)) = bm/2c. Therefore, since
diamV (G) 6 diamV (Cm)/2 we have dCm(PCm(Vx), PCm(p)) = dCm(PCm(p), PCm(Vy)) =
bm/2c/2. By Lemma 30 we have L(PCm(γ)) 6 m/2; since 2

(
bm/2c/2 + 1/2

)
> m/2 we

have either PCm(Vx) = PCm(x) = PCm(V ′x) or PCm(Vy) = PCm(y) = PCm(V ′y). So, we have

dG�Cm(p, [xz] ∪ [yz]) 6 dG�Cm(p, {V ′x, V ′y}) 6 bm/2c/2 6 m/4.

This is the contradiction we were looking for, and we have δ(G� Cm) < (bm/2c + 1)/2.
So, by Theorem 25 we have δ(G� Cm) 6 bm/2c/2 + 1/4.

Assume now that bm/2c = 2 diamV (G). If m is odd (i.e., m = 4k+ 1), then Theorem
15 (a) gives δ(G�Cm) > m/4 = bm/2c/2 + 1/4. So, (14) holds. Assume that m in even
(i.e., m = 4k). Now we show a geodesic bigon B in G�Cm with δ(B) = bm/2c/2+1/4 =
k + 1/4. Note that k = diamV (G) and consider v1, . . . , vk+1 ∈ V (G) with vi ∼ vi+1

for i = 1, . . . , k and dG(v1, vk+1) = k. Denote by a (respectively, b) the midpoint of
[(v1;w1), (v2;w1)] (respectively, [(v1;w2k+1), (v2;w2k+1)]). Let us consider

γ∗ := [a(v1;w1)]
⋃{

2k⋃
i=1

[(v1;wi), (v1;wi+1)]

}⋃
[(v1;w2k+1)b]

and
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γ′ :=[a(v2;w1)]
⋃{

k−1⋃
i=1

[(vi+1;wi), (vi+2;wi+1)]

}⋃
[(vk+1;wk), (vk+1;wk+1)]

⋃
⋃

[(vk+1;wk+1), (vk+1;wk+2)]
⋃{

k−1⋃
j=1

[(vk+2−j;wk+1+j), (vk+1−j;wk+2+j)]

}⋃
⋃

[(v2;w2k+1)b].

Then B := {γ∗, γ′} is a geodesic bigon in G�Cm with δ(B) = k+ 1/4 = bm/2c/2 + 1/4.

Finally, assume that bm/2c > 2 diamV (G). By Theorem 15 (a) it suffices to prove
δ(G� Cm) 6 m/4. If m is odd, then bm/2c/2 + 1/4 = m/4 and (14) holds.

Assume that m is even, then diamV (G) 6 m/4 − 1/2. Fix any geodesic triangle
T = {x, y, z} in G � Cm and p ∈ [xy]. By Remark 27, we can assume that T is a cycle,
x, y, z ∈ J(G�Cm) and p satisfies dG(p, V (G)) ∈ {0, 1/4, 1/2}. If dG�Cm(p, {x, y}) 6 m/4,
then dG�Cm(p, [yz] ∪ [zx]) 6 m/4. Assume that dG�Cm(p, {x, y}) > m/4; since x, y ∈
J(G � Cm) and dG(p, V (G)) ∈ {0, 1/4, 1/2}, we have dG�Cm(p, {x, y}) > m/4 + 1/4.
We have L([xy]) > m/2. Let Vx (respectively, Vy) be the closest vertex to x (respec-
tively, y) in [xy]; then dG�Cm(p, {Vx, Vy}) > m/4 − 1/4. Let V ′x (respectively, V ′y) be
the closest vertex to x (respectively, y) in [xz] (respectively, [yz]). Since m is even and
x, y ∈ J(G � Cm) we have dG�Cm(Vx, Vy) > m/2 and we conclude dG�Cm(Vx, Vy) = m/2.
By Lemma 2 we have dG�Cm(Vx, Vy) = dCm(PCm(Vx), PCm(Vy)) = m/2; by Lemma 30 we
conclude L

(
PCm([xy])

)
= m/2. Since m/2 = bm/2c > diamV (G), we have PCm(Vx) =

PCm(x) = PCm(V ′x) and PCm(Vy) = PCm(y) = PCm(V ′y). Since dG�Cm(p, {Vx, Vy}) 6
dG�Cm(Vx, Vy)/2 = m/4, without loss of generality we can assume that dG�Cm(p, {Vx, Vy})
= dG�Cm(p, Vx) 6 m/4. Let Vp be the closest vertex to p in [xp]. Since dG�Cm(p, Vx) >
m/4−1/4 > m/4−1/2 > diamV (G), we have diamV (G) > dG�Cm(Vp, Vx) = dCm(PCm(Vp),
PCm(Vx)) = dCm(PCm(Vp), PCm(V ′x)) and we conclude dG�Cm(Vp, Vx) = dG�Cm(Vp, V

′
x) and

dG�Cm(p, [xz]∪ [yz]) 6 dG�Cm(p, V ′x) 6 dG�Cm(p, Vx) 6 m/4. Then δ(G�Cm) 6 m/4.

As a consequence of Theorems 19, 28, 29 and 31 we obtain the precise values of the
hyperbolicity constants of the following families of graphs.

Theorem 32. Let T1, T2 be two trees with diamT1 6 diamT2. Then

δ(T1 � T2) =


0, if diamT1 = 0,
diamT1 + 1/2, if 0 < diamT1 < (diamT2)/2,
diamT1 + 1/4, if 0 < diamT1 = (diamT2)/2,
(diamT2 + 1)/2, if diamT1 > (diamT2)/2.

Corollary 33. Let Pn, Pm be two path graphs with 2 6 n 6 m. Then

δ(Pn � Pm) =


m/2, if m− 1 < 2(n− 1),
n− 3/4, if m− 1 = 2(n− 1),
n− 1/2, if m− 1 > 2(n− 1).
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Theorem 34. Let Cn, Cm be two cycle graphs with 3 6 n 6 m. Then

δ(Cn � Cm) =


bm/2c/2 + 1/2, if bm/2c < 2bn/2c,
bm/2c/2 + 1/4, if bm/2c = 2bn/2c,
m/4, if bm/2c > 2bn/2c.

Theorem 35. For every m > 2, n > 3,

δ(Cn � Pm) =



bn/2c+ 1/2, if bn/2c < (m− 1)/2,
bn/2c+ 1/4, if bn/2c = (m− 1)/2,
m/2, if (m− 1)/2 < bn/2c 6 (m− 1),(
bn/2c+ 1

)
/2, if m− 1 < bn/2c < 2(m− 1),

bn/2c/2 + 1/4, if bn/2c = 2(m− 1),
n/4, if bn/2c > 2(m− 1).
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planar graphs, to appear in Central Europ. J. Math.
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