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Abstract

Let L be a distributive lattice and R(L) the associated Hibi ring. We compute
reg R(L) when L is a planar lattice and give bounds for reg R(L) when L is non-
planar, in terms of the combinatorial data of L. As a consequence, we characterize
the distributive lattices L for which the associated Hibi ring has a linear resolution.
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Introduction

Let L be a finite distributive lattice and K[L] the polynomial ring over a field K. The join-
meet or Hibi ideal of L, denoted IL, is generated by all the binomials fab = ab−(a∨b)(a∧b)
where a, b ∈ L are incomparable. The Hibi ring of L is R(L) = K[L]/IL. R(L) is a Cohen-
Macaulay normal domain as it was shown in [6]. Its properties were investigated in [6], [7],
[8]. The Gröbner bases of IL with respect to various monomial orders have been studied;
see, for instance, [1], [5], [6], [11].

Hibi rings are a very natural class of objects in combinatorial commutative algebra,
and they have nice connections to representation theory and other fields; see, e.g., [9].

Our aim is to study the regularity of R(L) for a distributive lattice L. When L is a
planar lattice, we give the regularity formula in Theorem 4 in terms of the combinatorics
of the lattice. For non-planar lattices, we show in Theorem 8 that reg R(L) is greater
than or equal to the maximal number of pairwise incomparable join-irreducible elements
minus 1 and smaller than or equal to the number of join-irreducible elements minus 1.
These two results enable us to derive that IL has a 2-linear resolution if and only if L is
the divisor lattice of 2 · 3a for some a > 1; see Corollary 10. For other nice properties of
this lattice we refer to [5].

Main Results

Let L be a finite distributive lattice of rank d+1 where d is a positive integer, and K[L] the
polynomial ring over a field K. Let IL be the join-meet ideal of L and R(L) = K[L]/IL.

Throughout this paper we assume that the lattice L is simple, that is, it has no cut
edge. By a cut edge of L we mean a pair (a, b) of elements of L with rank(b) = rank(a)+1
such that

|{c ∈ L : rank(c) = rank(a)}| = |{c ∈ L : rank(c) = rank(b)}| = 1.

In particular, a simple distributive lattice of rank d + 1 has at least two elements of rank
1 and at least two elements of rank d.

There is no loss of generality in making this assumption. Let us suppose that L
has a cut edge (a, b). Then it is clear that IL = IL1

+ IL2
where L1 is the sublattice

of L consisting of all elements c ∈ L such that c 6 a, and L2 is the sublattice of L
consisting of all elements c ∈ L such that c > b. Since IL1

and IL2
are ideals generated by

binomials in disjoint sets of variables, we get R(L) = R(L1) ⊗ R(L2) which implies that
reg R(L) = reg R(L1) + reg R(L2).

By Theorem 10.1.3 in [4], we know that the generators of IL form a Gröbner basis of
IL with respect to the reverse lexicographic order on K[L]. Consequently, the initial ideal
of IL is generated by all the squarefree monomials ab where a, b ∈ L are incomparable
elements. This implies that the Hilbert series HR(L)(t) of R(L) coincides with the Hilbert
series of the Stanley-Reisner ring K[∆(L)] where ∆(L) is the order complex of L, that is,
the simplicial complex whose facets are the maximal chains of L. In particular, R(L) and
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K[∆(L)] have the same h-vector hR(L). Since R(L) is Cohen-Macaulay, we may choose in
R(L) a regular sequence of linear forms, u = u1, . . . , udim R(L). Then R(L) and R(L)/uR(L)
have the same h–vector. By [10, Theorem 20.2], we have reg R(L) = reg(R(L)/uR(L)),
and, since dim(R(L)/uR(L)) = 0, the regularity of R(L)/uR(L) is given by the degree of
its h–vector [3, Exercise 20.18]. Consequently, reg R(L) = deg hR(L).

The coefficients of hR(L) = hK[∆(L)] have a nice combinatorial interpretation which we
are going to recall below.

Let P be the subposet of L of the join-irreducible elements. By Birkoff’s Theorem, L
equals the distributive lattice I(P ) of all poset ideals of P. If |P | = d+1 for some positive
integer d, then rank L = d + 1 and dim(R(L)) = d + 2.

By [2] or [12, Section 2], we have

hK[∆(L)](t) =
∑

S⊂[d]

β(S)t|S| (1)

where β(S) is the number of the linear extensions of the poset P whose descent set is S.
We recall that if π = (a1, . . . , ad+1) is a permutation of [d + 1], then the descent set of π
is defined by D(π) = {i : ai > ai+1}.

By [2, Section 2], the number β(S) may be also interpreted as follows. Let λ be an
edge-labeling of L. This means that each edge x → y in the Hasse diagram of L has
a label λ(x → y). Here x → y means that y covers x in L. Then each chain in L,
say x0 → x1 → x2 → · · · → xk, is labeled by the k-tuple (λ(x0 → x1), . . . , λ(xk−1 →
xk)). We compare two such k-tuples, say (a1, . . . , ak) and (b1, . . . , bk), lexicographically,
that is, (a1, . . . , ak) >lex (b1, . . . , bk) if the most-left nonzero component of the vector
(a1 − b1, . . . , ak − bk) is positive.

Definition 1 ([2]). The edge-labeling λ of L is called an EL-labeling if for every interval
[x, y] in L:

(i) there is a unique chain c : x = x0 → x1 → · · · → xk = y such that λ(x0 → x1) 6

λ(x1 → x2) 6 . . . 6 λ(xk−1 → xk);

(ii) for every other chain b : x = y0 → y1 → · · · → yk = y we have λ(b) >lex λ(c).

For a maximal chain c : min L = x0 → x1 → · · · → xd+1 = max L in L, we define the
descent set D(c) = {i ∈ [d] : λ(xi−1 → xi) > λ(xi → xi+1)}.

We recall now Theorem 2.2 in [2].

Theorem 2. [2] Let L be a graded poset of rank d + 1. For S ⊂ [d], β(S) equals the
number of maximal chains c in L such that D(c) = S.

Planar distributive lattices

Let N
2 be the infinite distributive lattice of all the pairs (i, j) where i, j are nonnegative

integers. The partial order is defined as (i, j) 6 (k, ℓ) if i 6 k and j 6 ℓ. A planar
distributive lattice is a finite sublattice L of N2 with (0, 0) ∈ L which has the following
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property: for any (i, j), (k, ℓ) ∈ L there exists a chain c in L of the form c : x0 < x1 <
· · · < xt with xs = (is, js) for 0 6 s 6 t, (i0, j0) = (i, j), and (it, jt) = (k, ℓ), such that
is+1 + js+1 = is + js + 1 for all s.

In the planar case, we may compute the regularity of R(L) in terms of the cyclic
sublattices of L. A sublattice of L is called cyclic if it looks like in Figure 1 with some
possible cut edges in between the squares. By a square in L we mean a sublattice with
elements a, b, c, d such that a → b → d, a → c → d, and b, c are incomparable.

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1: Cyclic sublattice

Lemma 3. Let C be a cyclic lattice with r squares. Then reg R(C) = r.

Proof. IC is generated by a regular sequence of length r since inrev(IC) is generated by a
regular sequence of monomials. Therefore, the Koszul complex of the generators of IC is
the minimal free resolution of R(C) over K[C] and, hence, reg R(C) = r.

Theorem 4. Let L be a planar distributive lattice. Then reg R(L) equals the maximal
number of squares in a cyclic sublattice of L.

In order to prove this theorem, we need some preparatory results.
Let L be a simple planar distributive lattice of rank d + 1. Let c0 : x0 < x1 < · · · <

xd < xd+1 be the chain of L with xt = (it, jt) for all 0 6 t 6 d + 1 and (i0, j0) =
(0, 0), (id+1, jd+1) = max L, having the following property: for any (k, ℓ) ∈ L with k = it

for some t, we have ℓ 6 jt. In other words, c0 is the ”most upper” chain of L. We label the
edges of c0 by λ(xt → xt+1) = t+1 for 0 6 t 6 d. Next, we label all the edges in the Hasse
diagram of L as follows. If it+1 = it + 1, in other words xt → xt+1 is an horizontal edge,
then we label by t + 1 all the edges of L of the form (it, j) → (it+1, j). If jt+1 = jt + 1,
that is, xt → xt+1 is a vertical edge, then we label by t + 1 all the edges of L of the form
(i, jt) → (i, jt+1).

Lemma 5. Let c : min L = y0 < y1 < · · · < yd+1 = max L be an arbitrary maximal chain
in L, c 6= c0. Then:

(i) λ(c) >lex λ(c0).
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(ii) there exists q such that λ(yq−1 → yq) > λ(yq → yq+1).

Proof. (i) Since c 6= c0, we may choose s = min{t : xt 6= yt}. Let xt = (it, jt) and
yt = (kt, ℓt) for all t. Assume that is−1 = is. The case js = js−1 can be treated in a similar
way. Since xs 6= ys, we must have ks = is−1 + 1. Let r = max{t : t > s − 1, it = is−1}.
Then λ(ys−1 → ys) = λ(xr → xr+1) > λ(xs−1 → xs), which implies that λ(c) >lex λ(c0).

For proving (ii), we consider again the case is−1 = is and keep the notation of (i). Let
q = max{t : t > s − 1, ℓt = ℓs−1}. Then we get

λ(yq → yq+1) = λ(xs−1 → xs) < λ(xr → xr+1) = λ(ys−1 → ys) 6 λ(yq−1 → yq).

The case js = js−1 can be done similarly.

Proposition 6. The above defined edge-labeling of L is an EL-labeling.

Proof. Let [x, y] be an interval of L. We first prove condition (i) in Definition 1. In the
first step, we show that, starting with an arbitrary chain c from x to y, we may find a
chain γ whose successive edges are labeled in increasing order. This shows the existence
of the chain in (i). In the second step we show the uniqueness.

For an arbitrary chain c : x = x0 = (i0, j0) → x1 = (i1, j1) → · · · → xk = (ik, jk) = y,
we say that xt is an upper corner of c if jt = jt−1 + 1 and it+1 = it + 1. Similarly, xt is a
lower corner of c if it = it−1 + 1 and jt+1 = jt + 1. It is almost obvious that if xt is not
a corner or is an upper corner, than λ(xt−1 → xt) < λ(xt → xt+1). Indeed, if xt is not
a corner, then the edges xt−1 → xt and xt → xt+1 are both either horizontal or vertical
and, by the chosen labeling, we get λ(xt−1 → xt) < λ(xt → xt+1). Let now xt be an upper
corner. We look at the edges (it, k) → (it+1, k) and (ℓ, jt−1) → (ℓ, jt) in the chain c0. By
the choice of c0, we have ℓ 6 it and k > jt which implies that (ℓ, jt) 6 (it, jt) 6 (it, k).
Consequently, we get

λ(xt−1 → xt) = λ((ℓ, jt−1) → (ℓ, jt)) < λ((it, k) → (it+1, k)) = λ(xt → xt+1).

Let now xt be a lower corner of c with λ(xt−1 → xt) > λ(xt → xt+1). We will replace xt

in c by x′
t = (i′

t, j′
t) where i′

t = it−1 and j′
t = jt+1. Now we need to explain that the edges

xt−1 → x′
t and x′

t → xt+1 do appear in the Hasse diagram of L. Let (it−1, j) → (it, j) and
(i, jt) → (i, jt+1) be the edges of c0 with the same labels as xt−1 → xt and xt → xt+1,
respectively. As λ(xt−1 → xt) > λ(xt → xt+1), by the choice of c0, we must have i 6 it−1

and jt+1 6 j. Hence xt−1 → x′
t and x′

t → xt+1 are edges in L.
Now we look at the chain c

′ obtained from c by replacing xt with x′
t. If it still has a

lower corner, say yt, with λ(yt−1 → yt) > λ(yt → yt+1), we replace yt by y′
t as we have

done before in the chain c. In this way, after finitely many such successive replacements,
we get a new chain, say γ, from x to y, whose edges are labeled in increasing order.

For uniqueness, we proceed as follows. By Lemma 5, c0 is the unique maximal chain
of L with the property that its edges are labeled in increasing order. Let us assume that
we have γ1 and γ2 chains from x to y whose edges are labeled in increasing order. We
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extend these two chains to maximal chains in L, say Γ1 and Γ2. By suitable replacements
of ”bad” lower corners in Γ1 and Γ2 we reach the same maximal chain c0. But these
replacements do not affect γ1 and γ2, which implies that γ1 = γ2.

Condition (ii) in Definition 1 may be checked as in the proof of Lemma 5 (ii).

Proof of Theorem 4. Let L be endowed with the above defined edge labeling and assume
that the maximum number of squares in a cyclic sublattice of L is r. By Theorem 2 and
equation (1), we have to show that

r = max{|S| : there exists a maximal chain c in L with D(c) = S}.

Let c : min L = x0 < x1 < · · · < xd+1 = max L be a maximal chain in L with D(c) =
{i1, . . . , im}. This means that for every 1 6 j 6 m, we have

λ(xij−1 → xij
) > λ(xij

→ xij+1).

As we have already seen in the proof of Proposition 6, xi1
, . . . .xim

must be lower corners
of c for which there exists x′

i1
, . . . , x′

im
∈ L such that, for every 1 6 j 6 m, xij−1 → x′

ij
and

x′
ij

→ xij+1 are edges in the Hasse diagram of L. Therefore, we get a sublattice L′ of L
whose elements are the vertices of c together with x′

i1
, . . . , x′

im
which is a cyclic sublattice

with m squares. Consequently, it follows that

r > max{|S| : there exists a maximal chain c in L with D(c) = S}.

For the other inequality, let L′ be a cyclic sublattice of L which contains r squares;
see Figure 2.

• •

•• • •

•• • • •

••

Figure 2: The sublattice L′

Let b be the upper chain (drawn by the fat line in Figure 2) in L′ and c the lower
chain. Every lower corner in a square is a lower corner in c which gives an element in the
descent set D(c). Hence,

r 6 D(c) 6 max{|S| : there exists a maximal chain c in L with D(c) = S}.
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Non-planar distributive lattices

In the case of non-planar distributive lattices we give only bounds for the regularity of
the Hibi ring.

Lemma 7. Let Bn be the Boolean lattice of rank n. Then reg R(Bn) = n − 1.

Proof. Let P = {p1, . . . , pn} be the join-irreducible elements of Bn. P is an antichain, that
is, pi is incomparable to pj for any i 6= j. By using equation (1), it follows that reg R(Bn) =
max{|S| : there exists a linear extension of the poset P whose descent set is S}. As P is
an antichain, it follows that this maximum is n − 1, corresponding to the permutation π
of P given by π(pi) = pn+1−i for 1 6 i 6 n. Thus, reg R(Bn) = n − 1.

Theorem 8. Let L = I(P ) be a non-planar distributive lattice. Then

|P | − 1 > reg R(L) > max{|Q| : Q is a set of pairwise incomparable

join-irreducible elements of L} − 1.

Proof. The first inequality is trivially true since, by equation (1), deg hR(L) 6 |P | − 1. Let
us prove the second inequality.

Let Q = {p1, . . . , pr} be a maximal set of pairwise incomparable join-irreducible el-
ements of L. It follows that for any other join-irreducible element p ∈ P we have ei-
ther p < pi for some i or p > pj for some j. On the set P of join-irreducible elements
of L we consider a new order, ≺, defined as follows: ≺ is a linear order on the set
P ′ = {p ∈ P : p < pi for some i} and on the set P ′′ = {p ∈ P : p > pj for some j}
which extends the original order on P, that is, p < q implies p ≺ q. Moreover, we set
max≺ P ′ ≺ pi ≺ min≺ P ′′ for all 1 6 i 6 r. By the definition of ≺, it follows that, for any
p, q ∈ P, if p 6 q, then p � q. By using [13, Proposition 15.4], we get β(P,6)(S) > β(P,�)(S)
for any S ⊂ [d]. Together with equation (1), this implies that

reg R(L) = deg hK[∆(L)] > deg hK[∆(L′)] = reg R(L′), (2)

where L′ is the distributive lattice of the poset ideals of (P, �). It is obvious by the
definition of ≺ that the regularity of R(L′) is equal to the regularity of R(Br) where Br is
the Boolean lattice of rank r. Therefore, Lemma 7 and inequality (2) lead to the desired
inequality.

The next example shows that both inequalities in Theorem 8 may be strict.

Example 9. Let P = {p1, p2, p3, p4, p5} be the poset with p1 < p4, p2 < p4, p2 < p5, p3 <
p5 and L = I(P ). Then reg R(L) = 3 and the maximal number of pairwise incomparable
elements of P is equal to 3.

As a corollary of the above theorems, we may characterize the distributive lattices L
with the property that the Hibi ring R(L) has a linear resolution over the polynomial ring
K[L].
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Corollary 10. Let L be a distributive lattice. Then R(L) has a linear resolution if and
only if L is the divisor lattice of 2 · 3a for some a > 0.

Proof. It is well known that if L is the divisor lattice of 2·3a for some a > 0, then R(L) has
a linear resolution. Let now L be a distributive lattice such that R(L) has a linear resolu-
tion. If L is non-planar, then it has at least three pairwise incomparable join-irreducible
elements, thus reg R(L) > 2, which is a contradiction to our hypothesis. Therefore, L
must be planar. In this case, the conclusion follows immediately as a consequence of
Theorem 4.
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