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Abstract

An interval vector is a (0, 1)-vector in Rn for which all the 1’s appear consecu-
tively, and an interval-vector polytope is the convex hull of a set of interval vectors
in Rn. We study three particular classes of interval vector polytopes which exhibit
interesting geometric-combinatorial structures; e.g., one class has volumes equal to
the Catalan numbers, whereas another class has face numbers given by the Pascal
3-triangle.
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1 Introduction

An interval vector is a (0, 1)-vector x ∈ Rn such that, if xi = xk = 1 for i < k, then
xj = 1 for every i 6 j 6 k. In [2] Dahl introduced the class of interval-vector polytopes,
which are formed by taking the convex hull of a set of interval vectors in Rn. Our goal is
to derive combinatorial properties of certain interval-vector polytopes.

For i 6 j, let αi,j := ei + ei+1 + · · ·+ ej, where ei is the ith standard unit vector. The
interval length of αij is j − i + 1. Let S ⊂ N. For a fixed n, let IS be the set of interval
vectors in Rn with interval length in S. (If S is small, we may leave out the brackets in
the set notation; e.g., we will denote I{i,j} by Ii,j.) We will denote the set of all non-zero
interval vectors in a given dimension as I[n]. Let Pn(IS) be the convex hull of IS ⊂ Rn.

There are three classes of interval vector polytopes that we will consider in this paper.
In Section 3 we study the complete interval vector polytope Pn(I[n]), the convex hull of
all interval vectors in Rn except the zero vector. In Section 4 we look at the fixed interval
vector polytope Pn(Ii) given by the convex hull of all interval vectors with interval length
i. In Section 5 we introduce the first in a class of pyramidal interval polytopes : the first
pyramidal interval vector polytope Pn(I1,n−1), the convex hull of all interval vectors in
Rn with interval length 1 or n− 1. (The reason for the term pyramidal interval polytope
will also become clear in Section 5.) In Section 6 we generalize this to the ith pyramidal
interval vector polytope Pn(I1,n−i). We examine combinatorial characteristics of these
polytopes such as the f -vector and volume and discover unexpected relations to well-
known numerical sequences.

Let t be a positive integer variable. For a lattice polytope P (i.e., the vertices of
P all have integer coordinates), the Ehrhart polynomial LP(t) is the counting function
yielding the number of lattice points in tP := {tv | v ∈ P}. Ehrhart [5] proved that LP(t)
is indeed a polynomial; see, e.g., [1] for more about Ehrhart polynomials. The Ehrhart
polynomial contains useful geometric information about a polytope; in particular, the
leading coefficient of the Ehrhart polynomial gives the volume of the polytope.

In [9], Postnikov defines the complete root polytope Qn ⊂ Rn as the convex hull of
0 and ei − ej for all i < j where ei is the ith standard unit vector. He showed (among
many other things) that the volume of Qn+1 is Cn := 1

n+1

(
2n
n

)
, the nth Catalan number.

In Section 3 we prove, in a discrete-geometric sense, that Qn+1 and the complete interval
vector polytope Pn(I[n]) are interchangeable, that is, the two polytopes have the same
Ehrhart polynomial.

Theorem 1. LQn+1(t) = LPn(I[n])(t) .

Corollary 2. The volume of the complete interval vector polytope Pn(I[n]) equals the nth

Catalan number.

A unimodular simplex in Rd is an n-dimensional lattice simplex ∆ whose edge direction
at any vertex form a lattice basis for Zd ∩ aff(∆), where aff(∆) is the affine hull of ∆. In
Section 4 we prove:

Theorem 3. The fixed interval vector polytope Pn(Ii) is an (n− i)-dimensional unimod-
ular simplex.
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Given an n-dimensional polytope P with fk k-dimensional faces, the f -vector of P is
written as f(P) := (f−1, f0, f1, . . . , fn) where f−1, fn := 1 (see, e.g., [7] for more about
f -vectors). In Section 5 we show:

Theorem 4. For n > 3, the f -vector of the first pyramidal interval vector polytope
satisfies fk(Pn(I1,n−1)) =

(
n−1
k

)
+
(
n+1
k+1

)
.

The f -vector of Pn(I1,n−1) is thus the nth row of the Pascal 3-triangle (see, e.g., [10,
Sequence A028262]), in particular, it is symmetric. We also show that the volume of the
1st pyramidal interval vector polytope is simple:

Theorem 5. For n > 3, vol(Pn(I1,n−1)) = 2(n− 2) .

Finally, in Section 6 we lay out future work on ith pyramidal interval vector polytopes.

2 Preliminaries

In this paper, we will be analyzing the properties of certain classes of convex polytopes
which are formed by taking the convex hull of finitely many points in Rn. The convex
hull of a set A = {v1, v2, . . . , vm} ⊂ Rn, denoted conv(A), is defined as{

λ1v1 + λ2v2 + · · ·+ λmvm | λ1, λ2, . . . , λm ∈ R>0 and
m∑
i=1

λi = 1

}
. (1)

The polytope conv(A) is contained in the affine hull aff(A) of A, defined as in (1) but
without the restriction that λ1, λ2, . . . , λm > 0. We call a set of points affinely (resp.
convexly) independent if each point is not in the affine (resp. convex) hull of the rest. The
vertex set of a polytope is the minimal convexly independent set of points whose convex
hull form the polytope. A polytope is d-dimensional if the dimension of its affine hull
is d. We denote the dimension of the polytope P as dim(P). We call a d-dimensional
polytope a d-simplex if it has d+ 1 vertices.

A lattice point is a point with integral coordinates. A lattice polytope is a polytope
whose vertices are lattice points. The normalized volume of a polytope P , denoted vol(P),
is the volume with respect to a unimodular simplex (recall definition in Section 1). We
will refer to the normalized volume of a polytope as its volume. Note that the leading
coefficient of the Ehrhart polynomial of a lattice polytope P is 1

d!
vol(P).

A hyperplane is a set of the form

H := {x ∈ Rn | a1x1 + · · ·+ anxn = b} ,

where not all aj’s are 0. The half-spaces defined by this hyperplane are formed by the
two weak inequalities corresponding to the equation defining the hyperplane. A face of
P is the intersection of a hyperplane and P such that P lies completely in one half-
space of the hyperplane. This face is a polytope called a k-face if its dimension is k.
A vertex is a 0-face and an edge is a 1-face. Given an n-dimensional polytope P with
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fk k-dimensional faces, the f -vector of P is written as f(P) := (f−1, f0, . . . , fn). For
example, a triangle 4 is a 2-dimensional polytope with 3 vertices and 3 edges and thus
has f -vector f(4) = (1, 3, 3, 1).

3 Complete Interval Vector Polytopes

In [2] Dahl provides a method for determining the dimension of these polytopes which
we will use throughout this paper. We utilized the software packages polymake [6] and
LattE [4, 8] to find most of the patterns described by our results.

Proof of Theorem 1. Each of the vertices of Qn are vectors with entries that sum to zero,
so any linear combination (and specifically any convex combination) of these vertices also
has entries who sum to zero. Define B := {x ∈ Rn |

∑n
i=1 xi = 0}; thus Qn ⊂ B, and B

is an (n− 1)-dimensional affine subspace of Rn.
Consider the linear transformation T given by the n× n lower triangular matrix with

entries ti,j = 1 if i > j and ti,j = 0 otherwise. Then

T (B) ⊆ A := {x ∈ Rn |xn = 0} .

Since (the matrix representing) T has determinant 1, it is injective when restricting the
domain to B. For the same reason, we know that for any y ∈ A, there exists x ∈ Rn

such that y = T (x). But since yn =
∑n

i=1 xi = 0, then x ∈ B, so that T |B : B → A is
surjective, and therefore a linear bijection.

Also, the projection Π : A→ Rn−1 given by

Π ((x1, . . . , xn−1, 0)) = (x1, . . . , xn−1),

is clearly a linear bijection.
Now we show that the linear bijection Π◦T |B : B → Rn−1 is a lattice-preserving map,

i.e., an isomorphism from B ∩ Zn to Zn−1 (viewed as additive groups). First we find a
lattice basis for B. Consider

C := {ei,n = ei − en | i < n} .

We notice that any integer point of B can be represented as(
a1, . . . , an−1,−

n−1∑
i=1

ai

)
=

n−1∑
i=1

aiei,n

and so C is a lattice basis.
Note that Π ◦ T (ei,n) = ei + · · ·+ en−1 =: ui. Therefore

Π ◦ T (C) = {ui | i 6 n− 1} =: U .

We notice that en−1 = un−1 and ei = ui − ui+1, so that each of the standard unit vectors
ei of Rn−1 is an integral combination of the vectors in U . Since the standard basis is a
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lattice basis, so is U , thus Π◦T |B is a lattice-preserving map. Since our bijection is linear
and lattice-preserving, all we have left to show is that the vertices of Qn map to those
of Pn−1(I[n−1]). By linearity, Π ◦ T (0) = 0, and given any vertex αi,j of Pn−1(I[n−1]), we
know that Π ◦ T (ei,j+1) = αi,j where i < j + 1 6 n so that Π ◦ T |B maps vertices to
vertices.

Corollary 2 follows directly from this theorem and [9], since the leading coefficient of
the Ehrhart polynomial of Pn is 1

n!
times the volume of Pn.

4 Fixed Interval Vector Polytopes

The following construction is due to [2]. We define the set of elementary vectors as
containing all ei,j = ei − ej, each unit vector ei, and the zero vector. Let T be the
lower triangular matrix from the proof of Theorem 1. We notice that T (ei) = αi,n and
T (ei,j) = αi,j−1. So the image of an elementary vector is an interval vector. Since T is
invertible, for any set of interval vectors I, there is a unique set E of elementary vectors
such that T (E) = I, namely E = T−1(I).

Thus for any interval vector polytope Pn(IS) ⊂ Rn, we can construct the corresponding
flow-dimension graph GIS = (V,E) as follows. Let ES = T−1(IS). Let the vertex set
V = [n]. Specify a subset V1 = {j ∈ V | ej ∈ ES}, and define the directed edge set
E = {(i, j) | ei,j ∈ ES}. Let k0 denote the number of connected components C of the
graph G (ignoring direction) so that C ∩ V1 is empty.

Recall that the fixed interval vector polytope Pn(Ii) is the convex hull of all interval
vectors in Rn with interval length i. For example, the fixed interval vector polytope with
n = 5, i = 3 is

P5(I3) = conv
(
(1, 1, 1, 0, 0) , (0, 1, 1, 1, 0) , (0, 0, 1, 1, 1)

)
and its flow-dimension graph is depicted in Figure 1.

Figure 1: The flow-dimension graph of P5(I3).

Theorem 6 (Dahl [2]). If 0 ∈ aff(IS), then the dimension of Pn(IS) is n − k0. Else, if
0 /∈ aff(IS) then the dimension of Pn(IS) is n− k0 − 1.

the electronic journal of combinatorics 20(3) (2013), #P22 5



For a fixed i,
T−1(Ii) = Ei = {ek,k+i | k 6 n− i} ∪ {en−i+1} .

The corresponding flow-dimension graph is GPn(Ii) = (V,E) where V = {1, . . . , n} and
E = {(k, k + i) | k ∈ [n− i]}. Then V1 = {n− i+ 1} corresponds to en−i+1 ∈ Ei.

Two nodes a, b in a graph G = (V,E) are said to be connected if there exists a path
from a to b, that is there exist q0, . . . , qs ∈ V such that (a, q0), (q0, q1), . . . , (qs, b) ∈ E.

Lemma 7. Let a, b be nodes in the flow-dimension graph GPn(Ii). Then a and b are
connected if and only if a ≡ b mod i.

Proof. The edges in GPn(Ii) are of the form (k, k + i), and therefore the nodes of a path
in GPn(Ii) are all in the same congruence class modulo i.

Proposition 8. Pn(Ii) is an (n− i)-dimensional simplex.

Proof. For a given dimension and interval length, an interval vector is uniquely determined
by the location of the first 1, hence we can determine the number of vertices of Pn(Ii) by
counting all possible placements of the first 1 in an interval of i 1’s. Since the string must
have length i, the number of spaces before the first 1 must not exceed n− i and so there
are n − i + 1 possible locations for the first 1 in the interval to be placed. Thus, Pn(Ii)
has n− i+ 1 vertices.

By Lemma 7 we know there are i connected components in the flow-dimension graph
GPn(Ii) and since V1 has only one element, k0 = i− 1. Thus by Theorem 6 the dimension
of Pn(Ii) is n− i. Therefore Pn(Ii) is an (n− i)-dimensional simplex.

Proof of Theorem 3. It remains to show that Pn(Ii) is unimodular. Consider the affine
space where the sum over every ith coordinate is 1,

A =

{
x ∈ Rn

∣∣∣∣∣ ∑
j≡kmod i

xj = 1, for all k ∈ [i]

}
.

Since the vertices of Pn(Ii) have interval length i, they are in A; thus Pn(Ii) ⊂ A. We
want to show that the following vectors in Pn(Ii) form a lattice basis for A:

w1 = α1,i − αn−i+1,n

w2 = α2,i+1 − αn−i+1,n
...

wn−i = αn−i,n−1 − αn−i+1,n .

We will do this by showing that any integer point p ∈ A can be expressed as an integral
linear combination of the proposed lattice basis, that is, there exist integer coefficients
Y1, . . . , Yn−i so that p = Y1w1 + · · ·+ Yn−iwn−i + αn−i+1,n.

We first notice that p can be expressed asp1, p2, . . . , pn−i, ∑
j6n−i

j≡t−i+1mod i

(−pj) + 1,
∑
j6n−i

j≡t−i+2mod i

(−pj) + 1, . . . ,
∑
j6n−i

j≡tmod i

(−pj) + 1


the electronic journal of combinatorics 20(3) (2013), #P22 6



by solving for the last term in each of the equations defining A. Let

Yt =


p1 if t = 1,
pt − pt−1 if 1 < t 6 i,
pt − Yt−i if i < t 6 n− i.

Then each Yt is an integer. We claim that

Y1w1 + · · ·+ Yn−iwn−i + αn−i+1,n = p.

Clearly the first coordinate is p1 since w1 is the only vector with an element in the first
coordinate. Next consider the tth coordinate of this linear combination for 1 < t 6 i, by
summing the coefficients of all the vectors who have a 1 in the tth position:

Yt + Yt−1 + Yt−2 + · · ·+ Y1 = pt − pt−1 + pt−1 − pt−2 + · · ·+ p2 − p1 + p1 = pt

We next consider the tth coordinate of the combination for i < t 6 n− i by summing the
coefficients of the vectors who have a 1 in the tth position.

Yt + Yt−1 + · · ·+ Yt−i+1 = (pt − Yt−1 − · · · − Yt−i+1) + Yt−1 + · · ·+ Yt−i+1 = pt

Finally, we consider the tth coordinate of the combination for n− i < t 6 n, noticing that
each coordinate from w1 to wt has a −1 in the (t− i)th position, and αn−i+1,n has a 1 in
this position. This gives

−(Y1 + Y2 + · · ·+ Yt−i) + 1.

Applying the two relations we have defined between coordinates, and calling 〈t〉 the least
residue of tmod i, we see that

−(Y1 + Y2 + · · ·+ Yt−i) + 1 = −(Y1 + Y2 + · · ·+ Yt−2i + pt−i) + 1

= −(Y1 + Y2 + · · ·+ Yt−3i + pt−2i + pt−i) + 1

= −

Y1 + Y2 + · · ·+ Y〈t〉 +
∑

i<j6n−i
j≡tmod i

pj

+ 1

= −

 ∑
j6n−i

j≡tmod i

pj

+ 1.

Thus p = Y1w1 + Y2w2 + · · · + Yn−iwn−i + αn−i+1,n and so w1, . . . , wn−i form a lattice
basis of A. Thus the vertices of Pn(Ii) form a lattice basis, and so Pn(Ii) is a unimodular
simplex.
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5 The first pyramidal interval vector polytope

Recall that Pn(I1,n−1) is the convex hull of all vectors in Rn with interval length 1 or
n− 1. For example,

P4(I1,3) = conv
(
(1, 0, 0, 0) , (0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 1) , (1, 1, 1, 0) , (0, 1, 1, 1)

)
,

whose flow-dimension graph is depicted in Figure 2.

Figure 2: GPn(I1,n−1).

Proposition 9. The dimension of Pn(I1,n−1) is n.

Proof. The affine hull of e1, . . . , en is the (n− 1)-dimensional set

{x ∈ Rn |x1 + · · ·+ xn = 1} .

Since α1,n−1 is not in this set, dim(Pn(I1,n−1)) = n.

Recall that the f -vector of a polytope tells us the number of faces the polytope has of
each dimension. Our next task is to compute the f -vector of Pn(I1,n−1).

Lemma 10. Let n > 3. Then B := conv(e1, en, α1,n−1, α2,n) is a 2-dimensional face of
Pn(I1,n−1).

Figure 3: GA.
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Proof. We first consider A = conv(en, α1,n−1, α2,n). The corresponding elementary vectors
of the vertex set are {e1,n, e2, en}. So we build the flow-dimension graph as seen in Figure
2, GA = (V,E) where V = [n], E = {(1, n)} corresponding to e1,n. The subset V1 = {2, n}
(circled in Figure 2) corresponds to e2 and en. This graph has n−1 connected components,
two of which contain elements of V1 so that k0 = n− 3.

If we let λ1en + λ2α1,n−1 + λ3α2,n = 0, we first notice that λ2 = 0 since α1,n−1 is the
only vector with a nonzero first coordinate. But this implies that λ1 = λ3 = 0. Since
the coefficients cannot sum to 1, we conclude that 0 /∈ aff(en, α1,n−1, α2,n). So now by
Theorem 6,

dim(conv(en, α1,n−1, α2,n)) = n− k0 − 1 = n− (n− 3)− 1 = 2.

Finally e1 = (1)α1,n−1 + (−1)α2,n + (1)en is in the affine hull of A and thus does not add
a dimension. We conclude that dim(B) = 2.

Corollary 11. Let I := {e1, e2, . . . , en, α1,n−1, α2,n} . For 2 6 i 6 n − 1 each ei adds a
dimension to Pn(I1,n−1), that is, ei /∈ aff(I \ {ei}).

Proof. This follows from Proposition 9 and Lemma 10. Since B has dimension 2 and
Pn(I1,n−1) has dimension n, then the n − 2 remaining vertices must add the remaining
n− 2 dimensions.

Lemma 12. Let B as in Lemma 10. Then B has f -vector (1, 4, 4, 1).

Proof. Since B has dimension 2, f1 = f0. We know that {en, α1,n−1, α2,n} are three vertices
of B. If e1 ∈ conv(en, α1,n−1, α2,n) then

e1 = λ1en + λ2α1,n−1 + λ3α2,n (2)

where the coefficients sum to 1. Since α1,n−1 is the only vector with a nonzero coordinate
in the first position, λ2 = 1. This in turn implies that λ1 = λ3 = 0, contradicting (2). So
e1 /∈ conv(en, α1,n−1, α2,n) and therefore forms a fourth vertex.

We can tie all this together with the following theorem. First we define a d-pyramid
P as the convex hull of a (d − 1)-dimensional polytope K (the basis of P ) and a point
A /∈ aff(K)) (the apex of P ).

Theorem 13 (see, e.g., [7]). If P is a d-pyramid with basis K then

f0(P ) = f0(K) + 1

fk(P ) = fk(K) + fk−1(K) for 1 6 k 6 d− 2

fd−1(P ) = 1 + fd−2(K) .

We notice that the rows of Pascal’s 3-triangle act in the same manner and we claim
the face numbers for Pn(I1,n−1) can be derived from Pascal’s 3-triangle.
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Proof of Theorem 4. Recall that I = {e1, e2, . . . , en, α1,n−1, α2,n} is the vertex set for
Pn(I1,n−1) with n > 3, and let Rk := conv(I \ {ek, ek+1, . . . , en−1}) for 1 6 k < n.
Then it is clear that Pn(I1,n−1) is the convex hull of the union of the (n− 1)-dimensional
polytope Rn−1 and en−1 /∈ aff(Rn−1) (by Corollary 11), and thus is a pyramid and its
face numbers can be computed as in Theorem 13 from the face numbers of Rn−1.

Notice next that Rn−1 is the convex hull of the (n − 2)-dimensional polytope Rn−2
and en−2 /∈ aff(Rn−2) (again by Corollary 11), so we can compute the face numbers of
Rn−1 from those of Rn−2 as in Theorem 13.

We can continue this process until we get that R3 is the convex hull of R2 and
e2 /∈ aff(R2). But we notice that R2 = B, so by Lemma 12, f0(R2) = f1(R2) = 4. From
here we can build the f -vector of Pn(I1,n−1) recursively, using Theorem 13.

Our next goal is to compute the volume of Pn(I1,n−1). A simple induction proof gives:

Lemma 14. The determinant of the n× n-matrix
0 1 1 · · · 1
1 0 1 · · · 1

. . .

1 · · · 1 0 1
1 1 · · · 1 0


is (−1)n−1(n− 1).

Proof of Theorem 5. In order to calculate the volume of Pn(I1,n−1) we will first triangulate
the 2-dimensional base of the pyramid B from Lemma 10: namely, B is the union of

41 = conv(e1, en, α1,n−1) and 42 = conv(en, α1,n−1, α2,n).

By Corollary 11, each e2, . . . , en−1 adds a dimension so that the convex hull of these
points and 41 is an n-dimensional simplex. The same can be said of 42. Call these
simplices S1 and S2 respectively; thus S1 and S2 triangulate Pn(I1,n−1), and the sum of
their volumes is equal to the volume of Pn(I1,n−1). In order to calculate the volume of
S1 and S2, we will use the Cayley Menger determinant [3]. Consider S1, whose volume is
the determinant of the matrix

[
e1 − α1,n−1 e2 − α1,n−1 · · · en − α1,n−1

]
=



0 −1 −1 · · · −1 −1
−1 0 −1 · · · −1 −1
−1 −1 0 −1 · · · −1

. . .

−1 −1 · · · −1 0 −1
0 0 0 · · · 0 1


.
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Cofactor expansion on the last row will leave us with the determinant, up to a sign, of
the (n− 1)× (n− 1) matrix 

0 −1 −1 · · · −1
−1 0 −1 · · · −1

. . .

−1 · · · −1 0 −1
−1 −1 · · · −1 0

 , (3)

which, when ignoring sign, by Lemma 14 is n− 2. Therefore the volume of S1 is n− 2.
A similar computation gives the volume of S2 as n−2, and so the volume of Pn(I1,n−1)

is 2(n− 2), as desired.

6 The ith pyramidal interval vector polytope

Recall that the ith pyramidal interval vector polytope is Pn(I1,n−i), the convex hull of all
interval vectors in Rn with interval length 1 or n− i.

Example 15. For n = 6 and i = 2,

P6(I1,4) = conv
(
(1, 0, 0, 0, 0, 0) , (0, 1, 0, 0, 0, 0) , (0, 0, 1, 0, 0, 0) , (0, 0, 0, 1, 0, 0)

(0, 0, 0, 0, 1, 0) , (0, 0, 0, 0, 0, 1) , (1, 1, 1, 1, 0, 0) , (0, 1, 1, 1, 1, 0)

(0, 0, 1, 1, 1, 1)
)
.

The following proposition collects certain properties of Pn(I1,n−i). We omit its proof,
since it is similar to the proofs in Section 5.

Proposition 16. The dimension of Pn(I1,n−i) is n. Furthermore, Pn(I1,n−i) can be con-
structed by taking iterative pyramids (with the sequence of top vertices ei+1, ei+2, . . . , en−i)
over the 2i-dimensional base

conv ({e1, e2, . . . , ei, en−i+1, . . . , en, α1,n−i, α2,n−i−1 . . . , αi+1,n}) .

Using polymake to generate f -vectors for varying n, we observed that the f -vectors
of Pn(I1,n−i) correspond to the sum of multiple shifted Pascal triangles; this is again due
to its pyramid property. We also offer the following:

Conjecture 17. The volume of Pn(I1,n−i) equals 2i(n− (i+ 1)).

We conjecture something more concrete: namely, that Pn(I1,n−i) can be triangulated
into 2i simplices, and pyramiding over each of these simplices each yields a volume of
n− (i+ 1).
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Acad. Sci. Paris 254 (1962), 616–618.

[6] Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex
polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV
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