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Abstract

Let c : E(G)→ [k] be a colouring, not necessarily proper, of edges of a graph G.
For a vertex v ∈ V , let c(v) = (a1, . . . , ak), where ai = |{u : uv ∈ E(G), c(uv) = i}|,
for i ∈ [k]. If we re-order the sequence c(v) non-decreasingly, we obtain a sequence
c∗(v) = (d1, . . . , dk), called a palette of a vertex v. This can be viewed as the most
comprehensive information about colours incident with v which can be delivered by
a person who is unable to name colours but distinguishes one from another. The
smallest k for which there exists a c such that c∗ is a proper colouring of vertices
of G is called the colour-blind index of a graph G, and is denoted by dal(G). We
conjecture that there is a constant K such that dal(G) 6 K for every graph G for
which the parameter is well defined. As our main result we prove that K 6 6 for
regular graphs of sufficiently large degree, and for irregular graphs with δ(G) and
∆(G) satisfying certain conditions. The proofs are based on the Lopsided Lovász
Local Lemma. We also show that K = 3 for all regular bipartite graphs, and for
complete graphs of order n > 8.

Keywords: graph colouring, distinguishing adjacent vertices, Lovász Local Lemma

1 Introduction

We use standard terminology and notation of graph theory. The set {1, . . . , k} of k
smallest positive integers is denoted by [k]. Given a simple graph G = (V,E), let c :
E → [k] be an egde-colouring, not necessarily proper. For a vertex v ∈ V , let c(v) =
(a1, . . . , ak), where ai = |{u : uv ∈ E(G), c(uv) = i}|, for i ∈ [k]. If c is a proper colouring
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of vertices of G, then c distinguishes neighbours by multisets, and the smallest possible
k for which such c exists is denoted by ndim(G). Clearly, if a graph G contains K2 as
a component, then such a colouring does not exist. Karoński,  Luczak and Thomason
proved the following upper bound.

Theorem 1. [5] For every graph G without K2 as a component,

ndim (G) 6 183.

This was considerably improved by Addario-Berry et al.

Theorem 2. [2] For every graph G without K2 as a component,

ndim (G) 6 4.

Moreover, ndim(G) 6 3 if δ(G) > 1000.

b

b

b

b

b

b

(1,2) (1,2)

Figure 1: A colour-blind person could not distinguish the two vertices of degree three.

In this paper, we introduce another type of distinguishing adjacent vertices by edge-
colourings, as it would be done by a colour-blind person. If a colour-blind person looked
at two green edges and one red, they would see two edges of the same colour and one
of another colour. The same they would see if they looked at two red edges and one
green (see Figure 1). If we re-order the sequence c(v) = (a1, . . . , ak) non-decreasingly,
we obtain a sequence c∗(v) = (d1, . . . , dk), called a palette of a vertex v. Note that there
is a bijection between the set of all possible palettes of a vertex v of degree d and the
set of all partitions of the integer d. We say that a colour-blind person can distinguish
neighbours in a k-edge-colouring c : E → [k] if c∗(u) 6= c∗(v) for every edge uv ∈ E, i.e., c∗

is a proper colouring of the vertices of G. The smallest possible number k for which such
colouring c exists is called the colour-blind index of a graph G, and is denoted by dal(G).
The notation chosen refers to the English chemist John Dalton, who in 1798 wrote the
first paper on colour-blindness. In fact, because of Dalton’s work, the condition is often
called daltonism.

It has to be noted that there are infinitely many graphs for which the colour-blind
index is not defined, e.g., odd cycles (cp. Observation 7). All graphs with undefined
colour-blind index, known to us, have minimum degree at most three.

Conjecture 3. There exists δ0 such that dal(G) is defined for every graph G with δ(G) >
δ0.

Conjecture 4. There exists a number K such that dal(G) 6 K for every graph G for
which dal(G) exists.

We prove Conjecture 4 for complete graphs, regular bipartite graphs, regular graphs
of sufficiently large degree, and for irregular graphs with δ(G) and ∆(G) satisfying certain
conditions (cp. Theorem 10).
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2 Results

2.1 Complete graphs

Let p(d) denote the number of partitions of an integer d, and let p(d, k) be the number
of partitions of d into at most k components. The following observation is obvious.

Observation 5. If p(n− 1) < n, then dal(Kn) is undefined. Moreover, if dal(Kn) exists
then p(n− 1, dal(Kn)) > n.

b

b

b

bb

(0,0,1,3)

(0,0,2,2)

(0,0,0,4)

(0,1,1,2)(1,1,1,1)

b

b
b

b

b

b
b

(0,1,5)

(0,2,4)
(0,3,3)

(1,1,4)

(1,2,3)

(2,2,2)
(0,0,6)

Figure 2: Colourings of K5 and K7 with palettes of vertices.

Theorem 6. The colour-blind index of a complete graph is undefined for n 6 4, and

dal(Kn) =

{
4 if 5 6 n 6 6,
3 if n > 7.

Proof. It follows immediately from Observation 5 that dal(Kn) is undefined for n 6 4 since
p(1) = 1, p(2) = 2, p(3) = 3. Moreover, if dal(Kn) is defined then dal(Kn) > 3 because
p(n− 1, 2) = ⌈n/2⌉ < n. Also, dal(K5) > 3 and dal(K6) > 3 since p(4, 3) = 4, p(5, 3) = 5.
Figure 2 shows that dal(K5) = 4. This colouring can be extended for K6 by adding a new
vertex and colouring blue all edges incident to it. The suitable colouring of K7 with three
colors is given in Figure 2.
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b
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(0,3,4)
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(2,2,3) (0,1,6)

(1,3,3)

(1,2,4)

(1,1,5)(0,2,5)

Figure 3: A colouring of K8 with three colours.
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To prove the claim for n > 8, we will show that for every s > 4, there exists an
edge-colouring of K2s with three colours such that a colour-blind person can distinguish
neighbours, and the vertex set can be partitioned into two subsets of equal size: a set A
comprised of s vertices with the number of green incident edges greater than the numbers
of blue and red ones (including a vertex v0 having two blue incident edges and almost
the same number of red and green ones, i.e., exactly s − 2 and s − 1, resp.), and a set
B comprised of s − 1 vertices with the number of blue edges greater than the numbers
of green and red ones, and a special vertex with a palette (1, s − 1, s − 1) where 1 is
the number of red edges. Such edge-colouring of K8 is presented in Figure 3. For the
induction step, we first add a new vertex u and colour every new edge uv according to the
following rule: uv is coloured green for v ∈ A, and uv is blue for v ∈ B. Note that this
way we increase only the quantity of the most frequent colour for every vertex, increasing
nothing but the last element of its corresponding partition of 2s. Thus, we obtain an
edge-colouring c of K2s+1 such that a colour-blind person can distinguish neighbours, and
c∗(u) = (0, s, s). To obtain a required colouring of K2s+2, we again add a new vertex u′,
and we colour every new edge u′v as follows: u′v is green for v ∈ A ∪ {u} \ {v0}, u′v is
blue for v ∈ B, and u′v0 is red. Proceeding as before one may verify that this colouring
of K2s+2 meets our requirements (with v0 playing the same role and u′ taking the role of
a special vertex of B in the subsequent induction step).

2.2 Regular bipartite graphs

Observation 7. The colour-blind index of any odd cycle is undefined. For even cycles,

dal(Cn) =

{
2 if n ≡ 0 (mod 4),
3 if n ≡ 2 (mod 4).

Proof. There are only two partitions of 2, the degree of vertices in a cycle: (0, 2) and
(1, 1). Hence for odd n, dal(Cn) is undefined since odd cycles are not 2-colourable. For
even n, consecutive vertices on a cycle have to have palettes (0, 2) and (1, 1) alternately.
Thus, each edge has to have one adjacent edge with the same colour and one with a
different colour. Hence, we need a third colour for n ≡ 2 (mod 4).

Theorem 8. For every d-regular bipartite graph G with d > 2,

dal(G) 6 3.

Proof. We prove the following statement by induction on d: every d-regular bipartite
graph with a bipartition V (G) = A ∪B admits a colouring c of edges with at most three
colours such that c∗(u) = (0, . . . , 0, d) if and only if u ∈ A.

As seen in the proof of Observation 7, the claim holds for every connected component
of a 2-regular bipartite graph G, hence it also holds for G. Let d > 3 and let G be a
d-regular bipartite graph with a bipartition V (G) = A ∪ B. Consider a partial graph
G′ = G −M = (V (G), E(G) r E(M)), where M is a perfect matching of G (it exists
since bipartite graphs are Class 1 and G is regular). By the induction hypothesis, G′ has
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a colouring of edges such that, for every vertex u ∈ A, all edges incident with u are of the
same colour, say cu. Now it suffices to colour each edge e = uv ∈ M , where u ∈ A, with
the colour cu.

2.3 Main results

Theorem 9. For every d-regular graph G of degree d > 2 · 107,

dal(G) 6 6.

Theorem 10. For every R > 1, there exists δ0 such that if G is any graph with minimum
degree δ(G) > δ0 and maximum degree ∆(G) 6 Rδ(G), then

dal(G) 6 6.

3 Proofs of Theorems 9 and 10

3.1 The Local Lemma

To prove Theorems 9 and 10 we shall use the following variation of the Lovász Local
Lemma, due to Erdős and Spencer [4], sometimes referred to as the ‘Lopsided’ Lo-
cal Lemma. Below we recall both its symmetric and general versions from Alon and
Spencer [3] (Lemma 5.1.1, Corollary 5.1.2 and the comments below), the first of which is
more convenient for proving Theorem 9. Given any digraph D and its vertex v, by N+(v)
we shall denote the out-neighbourhood of v in D.

Theorem 11 (Lopsided Symmetric Local Lemma). Let A be a family of (typically
bad) events in any probability space and let D = (A, E) be a directed graph with maximum
out-degree ∆+. Suppose that for each A ∈ A and every C ⊂ ArN+(A),

Pr

(
A|
⋂

C∈C

C

)
6 p, (1)

where
ep(∆+ + 1) 6 1. (2)

Then Pr(
⋂

A∈AA) > 0.

Theorem 12 (Lopsided General Local Lemma). Let A be a family of (typically bad)
events in any probability space and let D = (A, E) be a directed graph. Suppose that there
are real numbers xA ∈ [0, 1) (A ∈ A) such that, for each A ∈ A and every C ⊂ ArN+(A),

Pr

(
A|
⋂

C∈C

C

)
6 xA

∏

B←A

(1− xB). (3)

Then Pr(
⋂

A∈AA) >
∏

A∈A(1− xA) > 0.
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Here B ← A (or A → B) means that there is an arc from A to B in D, so called
lopsidependency graph. We use this nonstandard notation to avoid confusion with arcs in
a different directed graph introduced in our construction below. Note that we may assume
that A /∈ C, since otherwise inequalities (3) and (1) trivially hold (for every non-negative
p).

3.2 Random process

Suppose now we are given a set {1, 2, . . . , k} of available colours, and for each edge e
of our graph G = (V,E) we independently choose an element of this set randomly and
equiprobably, and denote it by c(e). By a bad event Auv in such random process we shall
mean obtaining c∗(u) = c∗(v) for some edge uv ∈ E. It seems a natural approach to apply
the Local Lemma in order to prove that the probability of choosing a colouring for which
no bad event occurs is then positive.

Note that the colouring generated by such random process is determined by the out-
comes for a set of independent random variables (Xe)e∈E, each associated with a single
edge e ∈ E, and taking one of the values 1, 2, . . . , k with probability 1/k. Thus our ap-
proach for colouring G might be identified with a product probability space in which the
probability of choosing a given edge colouring equals 1/k|E|.

3.3 Probability of a single bad event

Let Sv denote the set of edges incident with a vertex v ∈ V , and for a given edge uv ∈ E,
denote Suv := Su∪Sv. Note that for a given edge e, the event Ae (that the colour palettes
on the ends of e are not distinguishable for a colour-blind person) depends only on the
values of the random variables Xf with f ∈ Se.

Suppose now that k = 6, hence we are picking out edge colours from the set [6] =
{1, 2, . . . , 6}. Consider any fixed colouring of the edges in Su, where u is a vertex of G
with d(u) = d. Thus we are given a fixed partition c∗ = (d1, d2, . . . , d6) of d such that
c∗(u) = c∗. Let v be a neighbour of u with d(v) = d, and suppose that the colours of all
edges incident with v, except for uv, are yet to be chosen randomly and independently.
Let us estimate the probability of a bad event of obtaining c∗(v) = c∗. First note that the
colour of uv is irrelevant for the probability of distinguishing u from v in our circumstances
(since a colour-blind person cannot “name” a given colour). In other words, Pr(c∗(v) =
c∗|c(uv) = i) = Pr(c∗(v) = c∗) for i = 1, 2, . . . , 6. Thus it will be sufficient to bound the
latter of these probabilities for our purposes. Note then that:

Pr(c∗(v) = c∗) 6

(
d

d1, . . . , d6

)
6!

1

6d
, (4)

where the factor 6! is generated by the fact that we do not distinguish between a situation
in which, e.g., colour 1 appears d1 times and colour 2 appears d2 times and the opposite,
while

(
d

d1,...,d6

)
is just the number of distinct partitions of d elements (edges) into six (enu-

merated) subsets S1, . . . , S6 of cardinalities d1, . . . , d6, resp., hence
(

d

d1,...,d6

)
= d!

d1!d2!···d6!
.

the electronic journal of combinatorics 20(3) (2013), #P23 6



Note that the factor
(

d

d1,...,d6

)
is maximized if max{|di − dj|} 6 1, i.e., d1, . . . , d6 are “as

equal as possible”. To see this, suppose that the opposite is true, i.e., d6 > d1 + 2. Then(
d

d1+1,d2,...,d5,d6−1

)
= d6

d1+1

(
d

d1,...,d6

)
>
(

d

d1,...,d6

)
. Hence for d ≡ r (mod 6), r ∈ {0, 1, . . . , 5},

max

(
d

d1, . . . , d6

)
=

d!
((

d−r
6

)
!
)6−r ((d+6−r

6

)
!
)r , (5)

where the maximum is taken over all partitions (d1, . . . , d6) of d.

3.4 Lopsidependency graph

For the graph G = (V,E), we construct our lopsidependency graph D (which in fact is a
digraph) as follows. Let its vertex set A consist of the bad events Ae (with e = uv ∈ E
and d(u) = d(v)) that the ends of e are not distinguishable for a colour-blind person.
Note that no bad event is associated with an edge whose ends have distinct degrees.
Further let us arbitrarily orient every edge of G. The resulting digraph will be denoted

by
−→
G = (V,

−→
E ). For every edge e ∈ E, we shall also denote its corresponding arc by −→e .

Then for every event Ae with −→e = (u, v) ∈ −→E we draw an arc from Ae to every event Ae′

with e′ ∈ ⋃f∈Svr{e}
Sf , e′ 6= e (i.e., e′ is any edge, e′ 6= e, incident to some edge f , f 6= e,

incident to v).

3.5 Conditional probability

Consider an event Auv with −→uv = (u, v) ∈ −→E , d(u) = d(v) = d, and any family of events
C ⊂ A r (N+(Auv) ∪ {Auv}). Note first that the event

⋃
C∈C C, hence also

⋂
C∈C C, is

determined by the values of the random variables Xf with f ∈ E1 :=
⋃

Ae∈C
Se. Moreover,

by the choice of arcs for our lopsidependency graph, none of the edges from Sv, except
possibly uv, belongs to E1. Let us denote E = {e1, e2, . . . , em} with Sv = {e1, e2, . . . , ed}
and ed = uv. Let S be a set of all (partial) colourings of the edges from {ed, . . . , em}
for which

⋂
C∈C C holds, i.e., the set of vectors c̃ = (cd, . . . , cm) ∈ [6]m−d+1 such that

(Xed , . . . , Xem) = c̃ guarantees
⋂

C∈C C. Then (if Pr(
⋂

C∈C C) > 0),

Pr

(
Auv|

⋂

C∈C

C

)

=
Pr(Auv ∩

⋂
C∈C C)

Pr(
⋂

C∈C C)

=

∑
c̃∈S Pr(Auv|(Xed , . . . , Xem) = c̃)Pr((Xed , . . . , Xem) = c̃)

Pr(
⋂

C∈C C)

6 max
c̃∈S

Pr(Auv|(Xed , . . . , Xem) = c̃)
∑

c̃∈S

Pr((Xed , . . . , Xem) = c̃)

Pr(
⋂

C∈C C)

= max
c̃∈S

Pr(Auv|(Xed , . . . , Xem) = c̃)
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6 max
c̃∈[6]m−d+1

Pr(Auv|(Xed , . . . , Xem) = c̃).

Hence by (4) and (5), for d ≡ r (mod 6), r ∈ {0, 1, . . . , 5}, we have

Pr

(
Auv|

⋂

C∈C

C

)
6

d!
((

d−r
6

)
!
)6−r ((d+6−r

6

)
!
)r 6!

1

6d
. (6)

3.6 Regular graphs

Assume that G is a regular graph of degree d ≡ r (mod 6), r ∈ {0, 1, . . . , 5}, where
d > 2 · 107. For every A ∈ A, the number of its outgoing arcs, d+(A), is then at most

(d − 1)d 6 d2 − 1. Consider an event Auv ∈ A with −→uv = (u, v) ∈ −→E and any family of
events C ⊂ A r (N+(Auv) ∪ {Auv}). Then in order to prove the existence of a desired
colouring, by Theorem 11, it is sufficient to show that

d2 · e · Pr

(
Auv|

⋂

C∈C

C

)
6 1.

By inequality (6), it is then enough to prove that

ad := d2 · e · d!
((

d−r
6

)
!
)6−r ((d+6−r

6

)
!
)r 6!

1

6d
6 1.

We shall first show that the sequence (ad)d>6·106 consists of six decreasing subsequences
(a6n+i)n>106 , i = 0, 1, . . . , 5. For this purpose consider the following proportion:

ad
ad−6

=
d2 · d!

((
d−r
6
− 1
)
!
)6−r ((d+6−r

6
− 1
)
!
)r

(d− 6)2 · (d− 6)!
((

d−r
6

)
!
)6−r ((d+6−r

6

)
!
)r

66

=
d2d(d− 1)(d− 2)(d− 3)(d− 4)(d− 5)

(d− 6)2(d− r)6−r(d + 6− r)r

=
d8 − 15d7 + 85d6 − 225d5 + 274d4 − 120d3

d8 − 12d7 + Pr(d)
,

where Pr(d) is a polynomial of degree (at most) six, and

Pr(d) > −
8∑

j=2

(
8

j

)
6jd8−j > −

8∑

j=2

(
8

j

)
6jd6 > −6 · 106d6,

hence
ad
ad−6

6
d8 − 15d7 + d7

d8 − 12d7 − d7
< 1

for d > 6 · 106. To prove that ad 6 1 for d > 2 · 107, it is then sufficient to compute
a20000000 = 0.955248, a20000001 = 0.955247, a20000002 = 0.955247, a20000003 = 0.955248,
a20000004 = 0.955248 and a20000005 = 0.955247 (in fact this sequence attains values below
1 already from d ≈ 1.83 · 107). Theorem 9 follows then by Theorem 11.
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3.7 Irregular graphs

Assume now that we are given a constant R > 1 and a graph G of maximum degree
∆ 6 Rδ. We shall prove that if its minimum degree δ is large enough, i.e., larger than
some constant δ0, then the general version of the Lopsided Local Lemma implies a positive
probability of choosing a desired edge colouring in our random process. We do not give
an explicit formula for δ0, and only use the expression ‘for δ sufficiently large’ when
necessary. This can however be derived from the proof, and it surely grows along with R.

Again consider an event Auv ∈ A with −→uv = (u, v) ∈ −→E , d(u) = d(v) = d ≡ r (mod 6),
r ∈ {0, 1, . . . , 5} (∆ > d > δ > δ0), and any family of events C ⊂ Ar (N+(Auv)∪{Auv}).
This time we shall use the Stirling formula:

n! =
(n
e

)n√
2πneαn , where

1

12n + 1
< αn <

1

12n
(7)

to bound the right hand side of inequality (6) on the conditional probability
Pr(Auv|

⋂
C∈C C). By (6) and (7) we thus obtain:

Pr

(
Auv|

⋂

C∈C

C

)

6

(
d
e

)d√
2πde

1
12d · 6! 1

6d((
d−r
6e

) d−r
6

√
2π d−r

6
e

1
2(d−r)+1

)6−r ((
d+6−r

6e

) d+6−r
6

√
2π d+6−r

6
e

1
2(d+6−r)+1

)r

6

(
d
e

)d√
2πd · 6!

((
d−r
6e

) d−r
6

√
2π d−r

6

)6−r ((
d+6−r

6e

) d+6−r
6

√
2π d+6−r

6

)r
6d

=

(
d
e

)d√
2πd · 6!

((
d−r
e

) d−r
6

√
2π
6

(d− r)
)6−r ((

d+6−r
e

) d+6−r
6

√
2π
6

(d + 6− r)
)r

= 6!
√

2π

√
d

(
2π
6

)6
(d− r)6−r(d + 6− r)r

(
d− r

d

)− (d−r)(6−r)
6

×
(
d + 6− r

d

)− (d+6−r)r
6

= 6!
√

2π

√
d

(
2π
6

)2
(d6 −Q4(d))

6

2π

[(
1− r

d

)− d
r

] r(d−r)(6−r)
6d

× 6

2π

[(
1 +

6− r

d

) d
6−r

]− (6−r)(d+6−r)r
6d

,
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where Q4(d) is a polynomial of degree (at most) four of a variable d (and we must assume
r 6= 0 for the last equality to hold), and

lim
d→∞

6

2π

[(
1− r

d

)− d
r

] r(d−r)(6−r)
6d

=
6

2π
e

r(6−r)
6 < e

r(6−r)
6 ,

lim
d→∞

6

2π

[(
1 +

6− r

d

) d
6−r

]− (6−r)(d+6−r)r
6d

=
6

2π
e−

(6−r)r
6 < e−

(6−r)r
6 .

Hence for d sufficiently large, we have (including the case r = 0):

Pr

(
Auv|

⋂

C∈C

C

)
6 6!

√
2π

√
d

d6
e

r(6−r)
6 e−

(6−r)r
6

= 6!
√

2πd−
5
2

=
b

d
5
2

,

where b is a constant (b ≈ 1800).
Now for each d′ ∈ N, denote xd′ := eb

d′
5
2

, and for every bad event Awy with d(w) =

d(y) = d′, set xAwy
= xd′ . For the analyzed bad event Auv, denote by d1, d2, . . . , dd−1 the

degrees of the neighbours of v different from u. Then by our construction (recall that for
every edge e ∈ E, Ae belongs to A only if the ends of e have the same degree),

xAuv

∏

B←Auv

(1− xB) >
eb

d
5
2

d−1∏

i=1

(
1− eb

d
5
2
i

)di

>
eb

d
5
2

d−1∏

i=1

(
1− eb

δ
5
2

)δ

(8)

for δ (i.e., δ0) sufficiently large. To see this, it is enough to define the following function
of a variable x,

f(x) =

(
1− eb

x
5
2

)x

,

and prove that its derivative, f ′(x), is positive for sufficiently large x. Indeed, note first
that:

f ′(x) =

(
1− eb

x
5
2

)x
[

ln

(
1− eb

x
5
2

)
+

5
2

eb

x
5
2

1− eb

x
5
2

]
.

Moreover, since t > ln(1 + t) for t > −1, t 6= 0, we have

ln

(
1− eb

x
5
2

)
+

5
2

eb

x
5
2

1− eb

x
5
2

> ln

(
1− eb

x
5
2

)
+ ln

(
1 +

5
2

eb

x
5
2

1− eb

x
5
2

)
= ln

(
1 +

3

2

eb

x
5
2

)
,

and thus f ′(x) > 0 for x sufficiently large.
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Then if δ0 (thus also δ) is sufficiently large, in particular δ0 > (3Rb)2, by (8) we obtain:

xAuv

∏

B←Auv

(1− xB) >
eb

d
5
2

(
1− eb

δ
5
2

)δd

=
eb

d
5
2



(

1− eb

δ
5
2

)− δ
5
2

eb




− deb

δ
3
2

>
eb

d
5
2



(

1− eb

δ
5
2

)− δ
5
2

eb




−Rδeb

δ
3
2

>
eb

d
5
2



(

1− eb

δ
5
2

)− δ
5
2

eb




−Reb

δ

1
2
0

>
eb

d
5
2



(

1− eb

δ
5
2

)− δ
5
2

eb




− e
3

>
eb

d
5
2

e−1 >
b

d
5
2

> Pr

(
Auv|

⋂

C∈C

C

)
.

Theorem 10 follows then by Theorem 12.

4 Concluding remarks

Note that by the proof above, δ0 tends to infinity while R grows, in particular δ0 > (3Rb)2.
Hence without bounding ∆/δ, we are unable to prove that six colours are sufficient in our
random process. In fact asymptotic estimations imply that within this approach no con-
stant (even large) number of available colours helps to avoid the assumption on ∆/δ. One
of the interesting problems involved is here also the fact that, unlike in many other similar
problems, increasing the number of colours, at some point (quite fast) starts increasing
the probability of a bad event to appear too. To see this, consider, e.g., a situation when
the number of available colours is larger than ∆. Then there is “a reasonable” chance that
all edges incident with a given vertex u have pairwise distinct colours, and this probability
grows with the number of admitted colours. Thus the probability that some neighbour
v of u of the same degree meets the set of pairwise distinct colours is also relatively big.
These would be indistinguishable for a colour-blind person then.
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