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We consider simple undirected graphs G = (V, E) with vertex set V and edge set E. The
open neighborhood of a vertex v € V(@) is denoted by Ng(v), and closed neighborhood
A dominating set D of a graph G is a subset of V(G) such that for all v,
Nelw]ND #0. A y-set of G is a minimum dominating set for G, and its size is denoted
A total dominating set D of a graph G is a subset of V(G) such that for all v,
Ng(v)N'D # (. A vp-set of G is a minimum total dominating set for G, and its size is

by Ng[v].

Y(G).
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Abstract

A dominating set D for a graph G is a subset of V(G) such that any vertex
not in D has at least one neighbor in D. The domination number v(G) is the
size of a minimum dominating set in G. Vizing’s conjecture from 1968 states that
for the Cartesian product of graphs G and H, v(G)y(H) < 7(GOH), and Clark
and Suen (2000) proved that v(G)vy(H) < 2y(GOH). In this paper, we modify the
approach of Clark and Suen to prove similar bounds for total and paired domination
in the general case of the n-Cartesian product graph A0 --[JA,. As a by-product
of these results, improvements to known total and paired domination inequalities
follow as natural corollaries for the standard GUH.
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denoted v(G). A paired dominating set D for a graph G is a dominating set such that
the subgraph of G induced by D (denoted G[D]) has a perfect matching. A ,,-set of G
is a minimum paired dominating set for G, and its size is denoted 7,,(G). In general, for
a graph containing no isolated vertices, 7(G) < 1(G) < 7,.(G).

The Cartesian product graph, denoted GOH, is the graph with vertex set V(G) X
V(H), where vertices gh and ¢’'h’ are adjacent whenever g = ¢’ and (h,h') € E(H), or
h="h and (g,¢") € E(G). Just as the Cartesian product of graphs G and H is denoted
GUOH, the n-product of graphs A;, Ao, ..., A, is denoted as A;[LJA,[]---[JA,, and has
vertex set V(A;) X V(Ag) x -+ - x V(A,), where vertices u; - - - u,, and v - - - v,, are adjacent
if and only if for some i, (u;,v;) € E(A;), and u; = v; for all other indices j # 1.

Vizing’s conjecture from 1968 states that y(G)v(H) < v(GOH). For a thorough
review of the activity on this famous open problem, see [1] and references therein. In
2000, Clark and Suen [3] proved that v(G)vy(H) < 27(GOH) by a sophisticated double-
counting argument which involved projecting a ~-set of the product graph GLJH down
onto the graph H. In this paper, we slightly modify the Clark and Suen double-counting
approach and instead project subsets of GLJH down onto both graphs G and H, which
allows us to prove several theorems/corollaries relating to total and paired domination.
In this section, we state the results, and in Section 2, we prove the results.

Theorem 1. Given graphs Ay, As, ..., A, containing no isolated vertices,

n

V(A [T (A < ny(ADAO---0A,) .

=2

In 2008, Ho [4] proved 1:(G)v:(H) < 27(GOH), an inequality for total domination
precisely analogous to the Clark and Suen inequality for domination. In this paper, we
extend this result to the n-product case, and then Ho’s inequality becomes a special case
of a more general result.

Theorem 2. Given graphs Ay, As, ..., A, containing no isolated vertices,
[e(4) < nu(ADAD---0A4,) .
i=1

In 2007, Bresar, Henning and Rall [2] proved that 7, (G)yu-(H) < 87,,(GOH), and in
2010, Hou and Jiang [5] proved that v, (G)v,.(H) < 77, (GOH). We extend these results
to the n-product case, and attain an improvement to these inequalities as a corollary:

Theorem 3. Given graphs A, ..., A, containing no isolated vertices,
[T (4) <271 (@20 = Dyp(A0---0A4,)
i=1

Corollary. Given graphs G and H containing no isolated vertices,

Yor (G)Ypr (H) < 67, (GOH) .
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2 Main Results

We begin by introducing some notation which will be utilized throughout the proofs in
this section. Given S C V(A;0---0A,), the projection of S onto graph A; is defined as

Da(S)={aeV(A)|Fu - u, €S with a =u;} .

We partition the set of edges E(A;0---0A,) into n sets. Thus, we define E; to be

E, = {(u1 Uy, Uy -vn) | (u;,v;) € E(A;), and u; = v;, for all other indices j # z} )

An edge e € F; is said to be an Fj-edge. For u € V(A;0---0A,,), the i-neighborhood of
u is defined as follows:

Nog, (u) = {v € V(A O---0A,) | v and u are connected by Ei—edge} )

Finally, we present a proposition utilized throughout our proofs. Although the more
general n-dimensional case stated in Prop. 2 is the proposition referenced within the
proofs, we begin by separately stating the 2-dimensional case to clarify the overall idea.

Proposition 1. Let M be a matriz containing only 0/1 entries. Then at least one of the
following two statements are true:

(a) each column contains a 1,
(b) each row contains a 0 .

Prop. 1 refers only to binary matrices, or matrices containing only 0/1 entries. Prop.
2 refers to m-ary matrices, or (in this case) matrices containing only entries in {1,...,n}.
Furthermore, Prop. 1 refers only to two-dimensional matrices, or d; X dy matrices M.
Prop. 2 refers to n-dimensional matrices, or d; X dy X - -+ X d,, matrices M.

Definition 1. Let M be a dy X dy X - -+ X d,,, n-ary matrixz. Then M is a j-matrix if there

evists a j € {1,...,n} (not necessarily unique), such that each of the dy x --- x d;_; X
1 xdjp1 x -+ xd, submatrices of M contains an entry with value j.
Proposition 2. Fvery d; X dy X --- X d,, n-ary matrix M is a j-matriz for some j €
{1,...,n} (not necessarily unique).

Note that, given any d; x dy X -+ X d,, matrix, there are d; submatrices of the form
dy X+ xdj_1 Xx1xXdjiq X---Xxd,. Following standard MATLAB notation, we will denote
such a submatrix as M[:,...,:,4;,:,...,:] with 1 <¢; < d;.

Example 1. Here we see a 4 x 3 x 3, 3-ary (the entries are contained in the set {1,2,3})
matriz M. Using the notation specified above, M|2,:,:] is denoted by the gray shaded
region and M|, 1,:] is denoted by yellow shaded region. M is both 1-matriz and 2-matriz,
but not a 3-matriz.
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Proof. For a pigeon-hole principle style proof, let M be a dy X dy X - -+ X d,, n-ary matrix
which is not a j-matrix for 1 < j < n — 1. We will show that M is an n-matrix.
Consider j = 1. Since M is not a 1-matrix, there exists at least one 1 X dy X d3 x---xd,

submatrix that does not contain a 1. Without loss of generality, let M][iq,:,...,:] with
1 < 71 < d; be such a matrix. Next, consider 7 = 2. Since M is also not a 2-matrix,
let M[: d9,:...,:] with 1 <y < dybead; Xx1xdsx---xd, submatrix that does not
contain a 2. Therefore, M[iy,ds,:,...,:]isa 1l x 1 xdz X --- X d,, submatrix that contains
neither a 1 nor a 2. We continue this pattern for 1 < 57 < n—1. Since M is not a j-matrix
for 1 < j<n-—1,let Mliy,...,ip_1,:] be the 1 x 1---1 X d,, submatrix containing no
elements in the set {1,--- ,n — 1}. Therefore, for all 1 < i < d,,, Mliy, ... 01,1 = n,
all of the dy x --- x d,_1 x 1 submatrices of M contain an entry with value n. Thus, M
1S an n-matrix. ]

We now present the proofs of Theorems 1 through 3.

2.1 Proof of Theorem 1

Proof. Let {ug,... ,u}y(Al)} be a y-set of A;. Partition V(A;) into sets Dj,.. "Di(An
such that uj € Dj C Ny, [uj] for 1 < j < 7(A;). Having partitioned V(A;) based on
a minimum dominating set, we will now partition each of V(Ay),...,V(A,) based on a
minimum total dominating set. Fori = 2,...,n, let {u, ... ,uit(Ai)} be a 7;-set of A;, and
Di,..., Dl 4, be the corresponding partitions of V'(A;) such that D} C Ny, (u}). Note
that this implies u’; ¢ D3,

Now let @ ={D},.... D}, } x {D%,..., D2, } x -+ x {D},...,D , % Then Q

forms a partition of V(A,0---0A,) with |Q| = v(4,) H%(AZ-).
i=2
Let D be a ~y-set of A;0J---0A,. Then, for each u € V(A;0---0A,,) not in D, there

exists an i such that Ngy,(u) N D is non-empty. Based on this observation, we define an
n-ary |V(A;)| x --- x |V(A,)| matrix F' such that:
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1 if (uy---u,) € D, else
Imin  Where iy = min{i | Noa,(ug -+ u,) N D # 0} .

F(ul,...,un):{

Observe that F(uq,...,u,) = 1 has two meanings: either (uy---u,) € D or (uy---u,) is
dominated an an A;-edge.

Forj=1,...,n,let d; C @ be the set of the elements in () such that the corresponding
submatrices of F are ] matrices. By Prop. 2, each element of () belongs to at least one

d;-set. Then, ~y H'yt Z |d;].
j=1

Claim 1. |d;| < |D|.
Proof. Similar to Q, let B = {D?, ..., D?MAQ)} X x{Dy,... ,th(An)}. For convenience,

denote B as {By, ..., B|p|}, where |B| = H%(A

=2
Forp=1,...,|B|, let Z,=DnN(A; x B,), and

S, = {D, | the submatrix of F' determined by D} x B, is a 1-matrix,
with 2 € {1,...,7(41)}} .

Note that if D} x B, is a 1-matrix for some z € {1,...,7(A1)} and p € {1,...,|B|}, then
for each w € D}, the submatrix of F' corresponding to {w} x B, contains a 1. Therefore,
{w} x B, contains a vertex in D or a vertex that is dominated by an A;-edge. In either
case, {w} x B, contains a vertex that is dominated by Z,. Thus, the projection of D} x B,
on A; (i.e. D)) is dominated by the projection of Z, on Aj.

We now claim that for p = 1,...,|B], |S,| < |Z . Let S, ={D;,D;,...,D}} and
let @4,(Z,) be the projection of Z, on Ay. Then, @4,(Z,) domrnates Ut _ DZ1 , and for
i & {i1,42,...,%}, uj dominates D1 Thus, @4,(Z,) U {ull E: {2’1,12, ) s a
dominating set for A1 Now, |®a, (Z,)U{ul | i & {ir,ia, ..., 0} }]| = v(A1), and {ui |i¢
{i1, iz, ... i} }| = v(Ay) —t. Thus (P4, (Z,)| = t. Hence, |S,| =t < |Pa,(Z,)] < |Z,].

|B] 1B
Finally, we see that [da] =Y |S,| <Y |2, = |D|. O

p=1 p=1
Claim 2. For j=2,...,n, |d;| <|D|.

Proof. We prove here that |d | <|D|, but a similar proof can be performed for any other

j =2 Let B={Dj,....,D},\} x{Df,....D2 ,,} x---x{Dy™},....D¥ .} For
(n—1)

convenience, denote B as {Bi, ..., Bjp|}, where |B| = v(A,) H (A

1=2

nl)

Forp=1,...,|B|,1let Z,= DN (B, x A,), and
Sp = {DZ | the submatrix of F' determined by B, x D is an n-matrix,
with z € {1,...,7%(A,)}} .
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Note that if B, x D! is a n-matrix for some p € {1,...,|B|} and = € {1,...,%(A4,)},
then, for each w € DZ, the submatrix of F' corresponding to B, x {w} contains an n.
Therefore, each B, x {w} contains a vertex that is dominated by an A,-edge. Therefore,
each vertex in the projection of B, x DI on A, (i.e., each vertex w € DI C V(A4,)) is
dominated by a vertex from ®4,(Z,), other than itself. In other words, the projection of
B, x DI on A, (i.e. D}) is non-self-dominated by the projection of Z, on A,.

We now claim that for p = 1,...,|B|, |S,| < |Z,]. Let S, = {DZ,DZ,...,DZ}
and let @4, (Z,) be the projection of Z, on A,. Then, U,_, DZ is non-self-dominated
by ®4,(Z,), and P4, (Z,) U {ul | i ¢ {i,is,...,4}} is a total dominating set of A,.
Zp) U{up | i ¢ {iiz, ... i} }| = %(An), and |[{uf | i ¢ {i1,iz,..., 0} }| =
1 (A,) —t. Thus, |@4,(Z,)| > t. Hence, |S,| =t < |Pa,(Z,)| < |Z,|. Finally, we see that

1Bl 1B

|dn|:Z|Sp| <Z|Zp|:|D|- [

p=1 p=1

To conclude the proof, we observe that

n

y(AD) [T w(4) <D lds| < n|D| = ny(A0 - 0A,) .
=2

Jj=1

We conclude this section with the following corollary.

Corollary. Given graphs G and H containing no isolated vertices,

max{3(G)y(H), %(C)y(H)} < 2(GOH) .

2.2 Proof of Theorem 2

Proof. For i = 1,...,n, let {u’i,...,ufYt(Ai)} be a vy;-set of A;, and Di, ..., DZ ) be the
corresponding partitions of V(A;) such that D} C Ny, (u?).
Let Q@ = {Dj,.. % (A} X e X {D]‘,...,Df{t(An)}. Then @ forms a partition of

n

V(AO---0A,) with |Q| = H%

Let D be a 7;-set of A1D -0A,,. Then, for each u € V(A;0---0A,,), there exists
an ¢ such that Nga,(u) N D is non-empty. Based on this observation we define an n-ary
[V(Ay)| x -+ x |[V(A,)| matrix F' such that:

F(uy,...,uy,) =min{i | Noa,(u1---u,) N D #0} .
For j = 1,...,n, let d; C @ be the set of the elements in ) which are j-matrices. By
Prop. 2, each element of () belongs to at least one d;-set. Then, H’yt(Ai) < Z |d;].

i=1
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Claim 3. For j=1,...,n, |d;| <|D|.

Proof. The proof is copy of proof of Claim 2, except that here B = {Dj, .. Dlt(Al)} X
(n—1)

xADP L D Y and | Bl = H Y(Ay). O
Thus we have, H%(Ai) < Z |d;| < n|D| =nvy(AO---04,). O
i=1 =

We conclude by observing that Ho’s inequality follows as a corollary to Thm. 2.

Corollary (Ho [4]). Given graphs G and H containing no isolated vertices,

Y(G)v(H) < 2v(GOH) .

2.3 Proof of Theorem 3

Proof. For i = 1,...,n, let k; = v,r(4;)/2, and {1, yi,..., 2,y } be a y,-set of A,
where for each A; and 1 < j < ki, (2}, y}) € E(4;). Partition each V(A4;) into sets
Di,...,Dj , such that {a:j,yj} C D} C Ny, 2] UNAi[yj] for 1 <j < k.

Let @ = {Dj,.. Dkl} X -+ x {D},.. D" '}. Then @ forms a partition of

V(A O---0A,) with |Q| = var /2— var

Let D be a 7,-set of A, D -0A,. Then for each ue V(A O---0A,), there exists
an ¢ such that Ny, (u) N D is non-empty. Based on this observation, we define n different
matrices F* with ¢ = 1,...,n, where each of the n matrices is an n-ary [V(A;)| x --- x
|V (A,)| matrix F* such that:

; ) if uy---u, €D, else
F(ul>"'aun): . . . .
Jmin where Jmin = Hlll’l{ J ‘ NDAj (ul tee un) NnD 7é @} .
Thus, each of the n matrices F* with i = 1, ..., n differs only in the entries that correspond

to vertices in the paired dominating set D.

For j=1,...,nand i =1,...,n, let dé- C @ be the set of the elements in () which
are j-matrices in the matrix F*. By Prop. 2, each element of () belongs to at least one
dé-—set for each i = 1,...,n. Now, if an element ¢ € () belongs to the d;—set, then ¢ also
belongs to the d?—set. To see this, if M; and M; are the submatrices determined by ¢ with
respect to the matrices F* and FV, respectively, then all the entries that do not match in
M; and M; have value ] in M;. Thus each q € Q belongs to at least one di-set for some

ie{l,...,n}. Then, H’ypr Z|d§
i=1
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Similar to @, let B ={D{,..., Dy } x --- x {D{~', ... D! } For convenience, we

denote B as {Bi,..., Bjp}, where |B| = H%"“ ; = 51 H%”" ;). Since D is a
Ypr-set, the subgraph of 4,00 --0A, 1nduced by D has a perfect matchlng Let
D; = {u € D | the matching edge incident to u is in E;} .

Then, D can be written as the disjoint union of the subsets D;. For p = 1,... |B| and
1=1,...,n, let Z;:Diﬂ(Bprn), and

S, = {D2 | the submatrix of F™ determined by B, x D! is an n-matrix,
with z € {1,...,ka}} .

|B]
Then, |d7| =) [S,] -
p=1

Claim 4. Forp=1,...,|B|, 2|S,| <2|Z)|+--- + 2|2} '+|Z}|.

Proof. Let S, = {D},D},,...,D}.}, and for j = 1,...,n, let V; = @An(Zg). Note that
V| < |Z)|. Additionally, let C' = {7 | j & {j1,jo,- - e}y ULy} [ 5 ¢ {nsgose - et}

Let M be the matching on V,,UC formed by taking all of the {27, y}} edges induced by
the vertices in (', and then adding the edges from a maximal matching on the remaining
unmatched vertices in V,,. Then, £ =V, U---UV,, UC is a dominating set of A,, with M
as a matching. Let M; = V(M) and My = (V,, UC)\M;. We note that M; consists of all
the vertices in C' plus the matched vertices from V,,, and M, contains only the unmatched
vertices from V,.

In order to obtain a perfect matching, we recursively modify F by choosing an un-
matched vertex a in E, and then either matching it with an appropriate vertex, or re-
moving it from E. Specifically, if N4, (a)\V (M) is non-empty, there exists a vertex
a’ € Na,(a)\V (M) such that we can add o’ to E and (a,a’) to the matching M. Other-
wise, a is incident on only matched vertices, and we can safely remove it from E without
altering the fact that F is a dominating set.

Our recursively modified £ (denoted by Eie.) is now a paired dominating set of A,,.
Furthermore, in the worst case, we have doubled the unmatched vertices from V,,, and
also doubled the vertices in V4,...,V,,_1. Thus,

< | Breel < 2|Vil+ -+ 4 2|Vt [+ M| +2]| M| .
This implies that 2k, —|C| < 2|Vi|+---+2|V,_1|+]Z}]. Since 2k, —|C| = 2|S,|, therefore,

2|8, < 2Vi|+ - +2{Vaa |+ Z)| < 2|1Z) |1+ - - +2|Z” "+1271 . O
Using Claim 4, we now see
1B |B] n ‘ |B|
2315, < Y (2301201 1751) = 21D = 175 = 2D| - D,
p=1 p=1 j=1 p=1
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Therefore, 2|d"| < 2|D| — |D,|. Similarly, we can show that 2|d:| < 2|D| — |D;| for
1 =1,...,n. To conclude the proof, we see

n

1 n n )
FHW(AZ') =2k ko) <2 |di| <20|D| =) |D;| = (20— 1)|D| ,
=1 =1

i=1

[T (A) <2771 (20 = 1)y (AO---0A4,) .
=1

]

We conclude this section by observing that an improvement to the Hou-Jiang [5]
inequality v, (G)ypr (H) < Ty, (GOH) follows as a corollary:

Corollary. Given graphs G and H containing no isolated vertices,

Ypr (G)Ypr (H) < 67, (GOH)
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