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Abstract

A dominating set D for a graph G is a subset of V (G) such that any vertex
not in D has at least one neighbor in D. The domination number γ(G) is the
size of a minimum dominating set in G. Vizing’s conjecture from 1968 states that
for the Cartesian product of graphs G and H, γ(G)γ(H) 6 γ(G�H), and Clark
and Suen (2000) proved that γ(G)γ(H) 6 2γ(G�H). In this paper, we modify the
approach of Clark and Suen to prove similar bounds for total and paired domination
in the general case of the n-Cartesian product graph A1� · · ·�An. As a by-product
of these results, improvements to known total and paired domination inequalities
follow as natural corollaries for the standard G�H.

1 Introduction

We consider simple undirected graphs G = (V,E) with vertex set V and edge set E. The
open neighborhood of a vertex v ∈ V (G) is denoted by NG(v), and closed neighborhood
by NG[v]. A dominating set D of a graph G is a subset of V (G) such that for all v,
NG[v] ∩D 6= ∅. A γ-set of G is a minimum dominating set for G, and its size is denoted
γ(G). A total dominating set D of a graph G is a subset of V (G) such that for all v,
NG(v) ∩ D 6= ∅. A γt-set of G is a minimum total dominating set for G, and its size is
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denoted γt(G). A paired dominating set D for a graph G is a dominating set such that
the subgraph of G induced by D (denoted G[D]) has a perfect matching. A γpr-set of G
is a minimum paired dominating set for G, and its size is denoted γpr(G). In general, for
a graph containing no isolated vertices, γ(G) 6 γt(G) 6 γpr(G).

The Cartesian product graph, denoted G�H, is the graph with vertex set V (G) ×
V (H), where vertices gh and g′h′ are adjacent whenever g = g′ and (h, h′) ∈ E(H), or
h = h′ and (g, g′) ∈ E(G). Just as the Cartesian product of graphs G and H is denoted
G�H, the n-product of graphs A1, A2, . . . , An is denoted as A1�A2� · · ·�An, and has
vertex set V (A1)×V (A2)×· · ·×V (An), where vertices u1 · · ·un and v1 · · · vn are adjacent
if and only if for some i, (ui, vi) ∈ E(Ai), and uj = vj for all other indices j 6= i.

Vizing’s conjecture from 1968 states that γ(G)γ(H) 6 γ(G�H). For a thorough
review of the activity on this famous open problem, see [1] and references therein. In
2000, Clark and Suen [3] proved that γ(G)γ(H) 6 2γ(G�H) by a sophisticated double-
counting argument which involved projecting a γ-set of the product graph G�H down
onto the graph H. In this paper, we slightly modify the Clark and Suen double-counting
approach and instead project subsets of G�H down onto both graphs G and H, which
allows us to prove several theorems/corollaries relating to total and paired domination.
In this section, we state the results, and in Section 2, we prove the results.

Theorem 1. Given graphs A1, A2, . . . , An containing no isolated vertices,

γ(A1)
n∏
i=2

γt(Ai) 6 nγ(A1�A2� · · ·�An) .

In 2008, Ho [4] proved γt(G)γt(H) 6 2γt(G�H), an inequality for total domination
precisely analogous to the Clark and Suen inequality for domination. In this paper, we
extend this result to the n-product case, and then Ho’s inequality becomes a special case
of a more general result.

Theorem 2. Given graphs A1, A2, . . . , An containing no isolated vertices,

n∏
i=1

γt(Ai) 6 nγt(A1�A2� · · ·�An) .

In 2007, Bres̆ar, Henning and Rall [2] proved that γpr(G)γpr(H) 6 8γpr(G�H), and in
2010, Hou and Jiang [5] proved that γpr(G)γpr(H) 6 7γpr(G�H). We extend these results
to the n-product case, and attain an improvement to these inequalities as a corollary:

Theorem 3. Given graphs A1, . . . , An containing no isolated vertices,

n∏
i=1

γpr(Ai) 6 2n−1(2n− 1)γpr(A1� · · ·�An) .

Corollary. Given graphs G and H containing no isolated vertices,

γpr(G)γpr(H) 6 6γpr(G�H) .
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2 Main Results

We begin by introducing some notation which will be utilized throughout the proofs in
this section. Given S ⊆ V (A1� · · ·�An), the projection of S onto graph Ai is defined as

ΦAi
(S) = {a ∈ V (Ai) | ∃ u1 · · ·un ∈ S with a = ui} .

We partition the set of edges E(A1� · · ·�An) into n sets. Thus, we define Ei to be

Ei =
{(
u1 · · ·un, v1 · · · vn

)
| (ui, vi) ∈ E(Ai), and uj = vj, for all other indices j 6= i

}
.

An edge e ∈ Ei is said to be an Ei-edge. For u ∈ V (A1� · · ·�An), the i-neighborhood of
u is defined as follows:

N�Ai
(u) =

{
v ∈ V (A1� · · ·�An) | v and u are connected by Ei-edge

}
.

Finally, we present a proposition utilized throughout our proofs. Although the more
general n-dimensional case stated in Prop. 2 is the proposition referenced within the
proofs, we begin by separately stating the 2-dimensional case to clarify the overall idea.

Proposition 1. Let M be a matrix containing only 0/1 entries. Then at least one of the
following two statements are true:

(a) each column contains a 1,

(b) each row contains a 0 .

Prop. 1 refers only to binary matrices, or matrices containing only 0/1 entries. Prop.
2 refers to n-ary matrices, or (in this case) matrices containing only entries in {1, . . . , n}.
Furthermore, Prop. 1 refers only to two-dimensional matrices, or d1 × d2 matrices M .
Prop. 2 refers to n-dimensional matrices, or d1 × d2 × · · · × dn matrices M .

Definition 1. Let M be a d1×d2×· · ·×dn, n-ary matrix. Then M is a j-matrix if there
exists a j ∈ {1, . . . , n} (not necessarily unique), such that each of the d1 × · · · × dj−1 ×
1× dj+1 × · · · × dn submatrices of M contains an entry with value j.

Proposition 2. Every d1 × d2 × · · · × dn, n-ary matrix M is a j-matrix for some j ∈
{1, . . . , n} (not necessarily unique).

Note that, given any d1 × d2 × · · · × dn matrix, there are dj submatrices of the form
d1×· · ·×dj−1×1×dj+1×· · ·×dn. Following standard Matlab notation, we will denote
such a submatrix as M [:, . . . , :, ij, :, . . . , :] with 1 6 ij 6 dj.

Example 1. Here we see a 4× 3× 3, 3-ary (the entries are contained in the set {1, 2, 3})
matrix M . Using the notation specified above, M [2, :, :] is denoted by the gray shaded
region and M [:, 1, :] is denoted by yellow shaded region. M is both 1-matrix and 2-matrix,
but not a 3-matrix.
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Proof. For a pigeon-hole principle style proof, let M be a d1× d2× · · · × dn n-ary matrix
which is not a j-matrix for 1 6 j 6 n− 1. We will show that M is an n-matrix.

Consider j = 1. Since M is not a 1-matrix, there exists at least one 1×d2×d3×· · ·×dn
submatrix that does not contain a 1. Without loss of generality, let M [i1, :, . . . , :] with
1 6 i1 6 d1 be such a matrix. Next, consider j = 2. Since M is also not a 2-matrix,
let M [:, i2, :, . . . , :] with 1 6 i2 6 d2 be a d1 × 1 × d3 × · · · × dn submatrix that does not
contain a 2. Therefore, M [i1, i2, :, . . . , :] is a 1× 1× d3× · · · × dn submatrix that contains
neither a 1 nor a 2. We continue this pattern for 1 6 j 6 n−1. Since M is not a j-matrix
for 1 6 j 6 n − 1, let M [i1, . . . , in−1, :] be the 1 × 1 · · · 1 × dn submatrix containing no
elements in the set {1, · · · , n − 1}. Therefore, for all 1 6 i 6 dn, M [i1, . . . , in−1, i] = n,
all of the d1 × · · · × dn−1 × 1 submatrices of M contain an entry with value n. Thus, M
is an n-matrix.

We now present the proofs of Theorems 1 through 3.

2.1 Proof of Theorem 1

Proof. Let {u11, . . . , u1γ(A1)
} be a γ-set of A1. Partition V (A1) into sets D1

1, . . . , D
1
γ(A1)

such that u1j ∈ D1
j ⊆ NA1 [u

1
j ] for 1 6 j 6 γ(A1). Having partitioned V (A1) based on

a minimum dominating set, we will now partition each of V (A2), . . . , V (An) based on a
minimum total dominating set. For i = 2, . . . , n, let {ui1, . . . , uiγt(Ai)

} be a γt-set of Ai, and

Di
1, . . . , D

i
γt(Ai)

be the corresponding partitions of V (Ai) such that Di
j ⊆ NAi

(uij). Note

that this implies uij /∈ Di
j.

Now let Q = {D1
1, . . . , D

1
γ(A1)
} × {D2

1, . . . , D
2
γt(A2)

} × · · · × {Dn
1 , . . . , D

n
γt(An)

}. Then Q

forms a partition of V (A1� · · ·�An) with |Q| = γ(A1)
n∏
i=2

γt(Ai).

Let D be a γ-set of A1� · · ·�An. Then, for each u ∈ V (A1� · · ·�An) not in D, there
exists an i such that N�Ai

(u) ∩D is non-empty. Based on this observation, we define an
n-ary |V (A1)| × · · · × |V (An)| matrix F such that:
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F (u1, . . . , un) =

{
1 if (u1 · · ·un) ∈ D , else

imin where imin = min{i | N�Ai
(u1 · · ·un) ∩D 6= ∅} .

Observe that F (u1, . . . , un) = 1 has two meanings: either (u1 · · ·un) ∈ D or (u1 · · ·un) is
dominated an an A1-edge.

For j = 1, . . . , n, let dj ⊆ Q be the set of the elements in Q such that the corresponding
submatrices of F are j-matrices. By Prop. 2, each element of Q belongs to at least one

dj-set. Then, γ(A1)
n∏
i=2

γt(Ai) 6
n∑
j=1

|dj|.

Claim 1. |d1| 6 |D|.

Proof. Similar to Q, let B = {D2
1, . . . , D

2
γt(A2)

}×· · ·×{Dn
1 , . . . , D

n
γt(An)

}. For convenience,

denote B as {B1, . . . , B|B|}, where |B| =
n∏
i=2

γt(Ai).

For p = 1, . . . , |B|, let Zp = D ∩ (A1 ×Bp), and

Sp =
{
D1
x | the submatrix of F determined by D1

x ×Bp is a 1-matrix,

with x ∈ {1, . . . , γ(A1)}
}
.

Note that if D1
x×Bp is a 1-matrix for some x ∈ {1, . . . , γ(A1)} and p ∈ {1, . . . , |B|}, then

for each w ∈ D1
x, the submatrix of F corresponding to {w}×Bp contains a 1. Therefore,

{w} × Bp contains a vertex in D or a vertex that is dominated by an A1-edge. In either
case, {w}×Bp contains a vertex that is dominated by Zp. Thus, the projection of D1

x×Bp

on A1 (i.e. D1
x) is dominated by the projection of Zp on A1.

We now claim that for p = 1, . . . , |B|, |Sp| 6 |Zp|. Let Sp = {D1
i1
, D1

i2
, . . . , D1

it} and
let ΦA1(Zp) be the projection of Zp on A1. Then, ΦA1(Zp) dominates ∪tx=1D

1
ix , and for

i /∈ {i1, i2, . . . , it}, u1i dominates D1
i . Thus, ΦA1(Zp) ∪

{
u1i | i /∈ {i1, i2, . . . , it}

}
is a

dominating set for A1. Now,
∣∣ΦA1(Zp)∪

{
u1i | i /∈ {i1, i2, . . . , it}

}∣∣ > γ(A1), and
∣∣{u1i | i /∈

{i1, i2, . . . , it}
}∣∣ = γ(A1) − t. Thus, |ΦA1(Zp)| > t. Hence, |Sp| = t 6 |ΦA1(Zp)| 6 |Zp|.

Finally, we see that |d1| =
|B|∑
p=1

|Sp| 6
|B|∑
p=1

|Zp| = |D|.

Claim 2. For j = 2, . . . , n, |dj| 6 |D|.

Proof. We prove here that |dn| 6 |D|, but a similar proof can be performed for any other
j > 2. Let B = {D1

1, . . . , D
1
γ(A1)
} × {D2

1, . . . , D
2
γt(A2)

} × · · · × {Dn−1
1 , . . . , Dn−1

γt(An−1)
}. For

convenience, denote B as {B1, . . . , B|B|}, where |B| = γ(A1)

(n−1)∏
i=2

γt(Ai).

For p = 1, . . . , |B|, let Zp = D ∩ (Bp × An), and

Sp =
{
Dn
x | the submatrix of F determined by Bp ×Dn

x is an n-matrix,

with x ∈ {1, . . . , γt(An)}
}
.
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Note that if Bp × Dn
x is a n-matrix for some p ∈ {1, . . . , |B|} and x ∈ {1, . . . , γt(An)},

then, for each w ∈ Dn
x , the submatrix of F corresponding to Bp × {w} contains an n.

Therefore, each Bp × {w} contains a vertex that is dominated by an An-edge. Therefore,
each vertex in the projection of Bp × Dn

x on An (i.e., each vertex w ∈ Dn
x ⊆ V (An)) is

dominated by a vertex from ΦAn(Zp), other than itself. In other words, the projection of
Bp ×Dn

x on An (i.e. Dn
x) is non-self-dominated by the projection of Zp on An.

We now claim that for p = 1, . . . , |B|, |Sp| 6 |Zp|. Let Sp = {Dn
i1
, Dn

i2
, . . . , Dn

it}
and let ΦAn(Zp) be the projection of Zp on An. Then, ∪tx=1D

n
ix is non-self-dominated

by ΦAn(Zp), and ΦAn(Zp) ∪
{
uni | i /∈ {i1, i2, . . . , it}

}
is a total dominating set of An.

Now,
∣∣ΦAn(Zp) ∪

{
uni | i /∈ {i1, i2, . . . , it}

}∣∣ > γt(An), and
∣∣{uni | i /∈ {i1, i2, . . . , it}}∣∣ =

γt(An)− t. Thus, |ΦAn(Zp)| > t. Hence, |Sp| = t 6 |ΦAn(Zp)| 6 |Zp|. Finally, we see that

|dn| =
|B|∑
p=1

|Sp| 6
|B|∑
p=1

|Zp| = |D|.

To conclude the proof, we observe that

γ(A1)
n∏
i=2

γt(Ai) 6
n∑
j=1

|dj| 6 n|D| = nγ(A1� · · ·�An) .

We conclude this section with the following corollary.

Corollary. Given graphs G and H containing no isolated vertices,

max{γ(G)γt(H), γt(G)γ(H)} 6 2γ(G�H) .

2.2 Proof of Theorem 2

Proof. For i = 1, . . . , n, let {ui1, ..., uiγt(Ai)
} be a γt-set of Ai, and Di

1, . . . , D
i
γt(Ai)

be the

corresponding partitions of V (Ai) such that Di
j ⊆ NAi

(uij).
Let Q = {D1

1, . . . , D
1
γt(A1)

} × · · · × {Dn
1 , . . . , D

n
γt(An)

}. Then Q forms a partition of

V (A1� · · ·�An) with |Q| =
n∏
i=1

γt(Ai).

Let D be a γt-set of A1� · · ·�An. Then, for each u ∈ V (A1� · · ·�An), there exists
an i such that N�Ai

(u) ∩D is non-empty. Based on this observation we define an n-ary
|V (A1)| × · · · × |V (An)| matrix F such that:

F (u1, . . . , un) = min{i | N�Ai
(u1 · · ·un) ∩D 6= ∅} .

For j = 1, . . . , n, let dj ⊆ Q be the set of the elements in Q which are j-matrices. By

Prop. 2, each element of Q belongs to at least one dj-set. Then,
n∏
i=1

γt(Ai) 6
n∑
j=1

|dj|.
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Claim 3. For j = 1, . . . , n, |dj| 6 |D|.

Proof. The proof is copy of proof of Claim 2, except that here B = {D1
1, . . . , D

1
γt(A1)

} ×

· · · × {Dn−1
1 , . . . , Dn−1

γt(An−1)
}, and |B| =

(n−1)∏
i=1

γt(Ai).

Thus we have,
n∏
i=1

γt(Ai) 6
n∑
j=1

|dj| 6 n|D| = nγt(A1� · · ·�An).

We conclude by observing that Ho’s inequality follows as a corollary to Thm. 2.

Corollary (Ho [4]). Given graphs G and H containing no isolated vertices,

γt(G)γt(H) 6 2γt(G�H) .

2.3 Proof of Theorem 3

Proof. For i = 1, . . . , n, let ki = γpr(Ai)/2, and {xi1, yi1, . . . , xiki , y
i
ki
} be a γpr-set of Ai,

where for each Ai and 1 6 j 6 ki, (xij, y
i
j) ∈ E(Ai). Partition each V (Ai) into sets

Di
1, . . . , D

i
ki

, such that {xij, yij} ⊆ Di
j ⊆ NAi

[xij] ∪NAi
[yij] for 1 6 j 6 ki.

Let Q = {D1
1, . . . , D

1
k1
} × · · · × {Dn

1 , . . . , D
n
kn
}. Then Q forms a partition of

V (A1� · · ·�An) with |Q| =
n∏
i=1

γpr(Ai)/2 =
1

2n

n∏
i=1

γpr(Ai).

Let D be a γpr-set of A1� · · ·�An. Then, for each u ∈ V (A1� · · ·�An), there exists
an i such that N�Ai

(u)∩D is non-empty. Based on this observation, we define n different
matrices F i with i = 1, . . . , n, where each of the n matrices is an n-ary |V (A1)| × · · · ×
|V (An)| matrix F i such that:

F i(u1, . . . , un) =

{
i if u1 · · ·un ∈ D , else

jmin where jmin = min{ j | N�Aj
(u1 · · ·un) ∩D 6= ∅} .

Thus, each of the n matrices F i with i = 1, . . . , n differs only in the entries that correspond
to vertices in the paired dominating set D.

For j = 1, . . . , n and i = 1, . . . , n, let dij ⊆ Q be the set of the elements in Q which
are j-matrices in the matrix F i. By Prop. 2, each element of Q belongs to at least one
dij-set for each i = 1, . . . , n. Now, if an element q ∈ Q belongs to the dij-set, then q also

belongs to the djj-set. To see this, if Mi and Mj are the submatrices determined by q with
respect to the matrices F i and F j, respectively, then all the entries that do not match in
Mi and Mj have value j in Mj. Thus, each q ∈ Q belongs to at least one dii-set for some

i ∈ {1, . . . , n}. Then,
1

2n

n∏
i=1

γpr(Ai) 6
n∑
i=1

|dii|.
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Similar to Q, let B = {D1
1, . . . , D

1
k1
} × · · · × {Dn−1

1 , . . . , Dn−1
kn−1
}. For convenience, we

denote B as {B1, . . . , B|B|}, where |B| =
n−1∏
i=1

γpr(Ai)/2 =
1

2n−1

n−1∏
i=1

γpr(Ai). Since D is a

γpr-set, the subgraph of A1� · · ·�An induced by D has a perfect matching. Let

Di = {u ∈ D | the matching edge incident to u is in Ei} .

Then, D can be written as the disjoint union of the subsets Di. For p = 1, . . . , |B| and
i = 1, . . . , n, let Zi

p = Di ∩ (Bp × An), and

Sp =
{
Dn
x | the submatrix of F n determined by Bp ×Dn

x is an n-matrix,

with x ∈ {1, . . . , kn}
}
.

Then, |dnn| =
|B|∑
p=1

|Sp| .

Claim 4. For p = 1, . . . , |B|, 2|Sp| 6 2|Z1
p |+ · · ·+ 2|Zn−1

p |+|Zn
p |.

Proof. Let Sp = {Dn
j1
, Dn

j2
, . . . , Dn

jt}, and for j = 1, . . . , n, let Vj = ΦAn(Zj
p). Note that

|Vj| 6 |Zj
p|. Additionally, let C =

{
xnj | j /∈ {j1, j2, . . . , jt}

}
∪
{
ynj | j /∈ {j1, j2, . . . , jt}

}
.

Let M be the matching on Vn∪C formed by taking all of the {xnj , ynj } edges induced by
the vertices in C, and then adding the edges from a maximal matching on the remaining
unmatched vertices in Vn. Then, E = V1 ∪ · · · ∪ Vn ∪C is a dominating set of An with M
as a matching. Let M1 = V (M) and M2 = (Vn ∪C)\M1. We note that M1 consists of all
the vertices in C plus the matched vertices from Vn, and M2 contains only the unmatched
vertices from Vn.

In order to obtain a perfect matching, we recursively modify E by choosing an un-
matched vertex a in E, and then either matching it with an appropriate vertex, or re-
moving it from E. Specifically, if NAn(a)\V (M) is non-empty, there exists a vertex
a′ ∈ NAn(a)\V (M) such that we can add a′ to E and (a, a′) to the matching M . Other-
wise, a is incident on only matched vertices, and we can safely remove it from E without
altering the fact that E is a dominating set.

Our recursively modified E (denoted by Erec) is now a paired dominating set of An.
Furthermore, in the worst case, we have doubled the unmatched vertices from Vn, and
also doubled the vertices in V1, . . . , Vn−1. Thus,

2kn 6 |Erec| 6 2|V1|+ · · ·+ 2|Vn−1|+|M1|+2|M2| .

This implies that 2kn−|C| 6 2|V1|+ · · ·+2|Vn−1|+|Zn
p |. Since 2kn−|C| = 2|Sp|, therefore,

2|Sp| 6 2|V1|+ · · ·+ 2|Vn−1|+|Zn
p | 6 2|Z1

p |+ · · ·+ 2|Zn−1
p |+|Zn

p | .

Using Claim 4, we now see

2

|B|∑
p=1

|Sp| 6
|B|∑
p=1

(
2

n∑
j=1

|Zj
p| − |Zn

p |
)

= 2|D| −
|B|∑
p=1

|Zn
p | = 2|D| − |Dn| .
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Therefore, 2|dnn| 6 2|D| − |Dn|. Similarly, we can show that 2|dii| 6 2|D| − |Di| for
i = 1, . . . , n. To conclude the proof, we see

1

2n−1

n∏
i=1

γpr(Ai) = 2(k1 · · · kn) 6 2
n∑
i=1

|dii| 6 2n|D| −
n∑
i=1

|Di| = (2n− 1)|D| ,

n∏
i=1

γpr(Ai) 6 2n−1(2n− 1)γpr(A1� · · ·�An) .

We conclude this section by observing that an improvement to the Hou-Jiang [5]
inequality γpr(G)γpr(H) 6 7γpr(G�H) follows as a corollary:

Corollary. Given graphs G and H containing no isolated vertices,

γpr(G)γpr(H) 6 6γpr(G�H) .
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