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Abstract

If G is a looped graph, then its adjacency matrix represents a binary matroid
MA(G) on V (G). MA(G) may be obtained from the delta-matroid represented by
the adjacency matrix of G, but MA(G) is less sensitive to the structure of G. Jaeger
proved that every binary matroid is MA(G) for some G [Ann. Discrete Math. 17
(1983), 371-376].

The relationship between the matroidal structure of MA(G) and the graphical
structure of G has many interesting features. For instance, the matroid minors
MA(G) − v and MA(G)/v are both of the form MA(G

′ − v) where G′ may be
obtained from G using local complementation. In addition, matroidal considerations
lead to a principal vertex tripartition, distinct from the principal edge tripartition
of Rosenstiehl and Read [Ann. Discrete Math. 3 (1978), 195-226]. Several of these
results are given two very different proofs, the first involving linear algebra and
the second involving set systems or ∆-matroids. Also, the Tutte polynomials of the
adjacency matroids of G and its full subgraphs are closely connected to the interlace
polynomial of Arratia, Bollobás and Sorkin [Combinatorica 24 (2004), 567-584].

Keywords: adjacency, delta-matroid, interlace polynomial, local complement, ma-
troid, minor, Tutte polynomial

1 Introduction

A distinctive feature of matroid theory is that there are so many equivalent ways to
define matroids, each providing its own special insight into the nature of the structure
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being defined. We refer to the books of Oxley [26], Welsh [35] and White [36, 37, 38] for
thorough discussions. Here is one way to define a particular kind of matroid:

Definition 1. A binary matroid M is an ordered pair (V, C(M)), which satisfies the
following circuit axioms:

1. V is a finite set and C(M) ⊆ 2V .
2. ∅ /∈ C(M).
3. If C1, C2 ∈ C(M) then C1 6⊆ C2.
4. If C1 6= C2 ∈ C(M) then the symmetric difference (C1\C2) ∪ (C2\C1) = C1∆C2

contains at least one C ∈ C(M).

If M and M ′ are matroids on V and V ′ then M ∼= M ′ if there is a bijection between
V and V ′ under which C(M) and C(M ′) correspond.

We consider 2V as a vector space over GF (2) in the usual way: if S, S1 and S2 are
subsets of V then 0 · S = ∅, 1 · S = S and S1 + S2 = S1∆S2.

Definition 2. If M is a binary matroid on V then the cycle space Z(M) is the subspace
of 2V spanned by C(M).

The importance of the cycle space of a binary matroid is reflected in the well known
fact that two fundamental ideas of matroid theory, nullity and duality, correspond under
Z to two fundamental ideas of linear algebra, dimension and orthogonality: dimZ(M) is
the nullity of M , and if M∗ is the dual of M then Z(M∗) is the orthogonal complement
of Z(M). (See [26, 35, 37] for details.) Ghouila-Houri [19] showed that the importance
of the cycle space is reflected in another special property, mentioned by some authors
[8, 22, 37] but not stated explicitly in most accounts of the theory.

Theorem 3. [19] Let V be a finite set. Then the function

Z : {binary matroids on V } → {GF (2)-subspaces of 2V }

is bijective.

Theorem 3 tells us that any construction or function which assigns a subspace of 2V

to some object may be unambiguously reinterpreted as assigning a binary matroid to
that object. There are of course many notions of linear algebra that involve assigning
subspaces to objects. For instance, an m × n matrix A with entries in GF (2) has four
associated subspaces: the row space and right nullspace are orthogonal complements in
GF (2)n, and the column space and left nullspace are orthogonal complements in GF (2)m.
According to Theorem 3, we could just as easily say that an m × n matrix with entries
in GF (2) has four associated binary matroids, a pair of duals on an m-element set, and a
pair of duals on an n-element set. For a symmetric matrix the row space and the column
space are the same, and the left and right nullspace are the same.

Let G be a graph. A familiar construction associates to G its polygon matroid M(G),
the binary matroid on E(G) whose circuits are the minimal edge-sets of circuits of G.
In this paper we discuss a different way to associate a binary matroid to G, which was
mentioned by Jaeger in 1983 [21, 22]; the notion seems to have received little attention in
the intervening decades.
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Definition 4. Let G be a graph, and let A(G) be the Boolean adjacency matrix of G, i.e.,
the V (G)× V (G) matrix with entries in GF (2), in which a diagonal entry avv is 1 if and
only if v is looped and an off-diagonal entry avw is 1 if and only if v 6= w are adjacent.
Then the adjacency matroid MA(G) is the binary matroid on V = V (G) represented by
A(G), i.e., its circuits are the minimal nonempty subsets S ⊆ V such that the columns of
A(G) corresponding to elements of S are linearly dependent.

Here are three comments on Definition 4:
1. We understand the term graph to include multigraphs; that is, we allow graphs

to have loops and parallel edges. Although Definition 4 applies to an arbitrary graph
G, A(G) does not reflect the number of edges connecting two adjacent vertices, or the
number of loops on a looped vertex. Consequently, the reader may prefer to think of
A(G) and MA(G) as defined only when G is a looped simple graph.

2. In light of Theorem 3, MA(G) may be described more simply as the binary matroid
whose cycle space Z(MA(G)) is the nullspace of A(G).

3. Many graph-theoretic properties of a graph G do not match conveniently with
matroid-theoretic properties of MA(G). For example, recall that a loop in a matroid M is
an element λ such that {λ} ∈ C(M), and a coloop is an element κ such that κ /∈ γ for all
γ ∈ C(M). In the polygon matroid of G, a loop is an edge incident on only one vertex,
and a coloop is a cut edge. Propositions 5 and 6 indicate that the adjacency matroid of G
has very different properties: looped vertices of G cannot be loops ofMA(G), and coloops
of MA(G) do not in general have anything to do with connectedness of G.

Proposition 5. A vertex v ∈ V (G) is a loop of MA(G) if and only if v is isolated and
not looped in G.

Proposition 6. Suppose v ∈ V (G), and let G′ be the graph obtained from G by toggling
the loop status of v. Then v is a coloop of at least one of the adjacency matroids MA(G),
MA(G

′).

Proposition 5 follows immediately from Definition 4, but proving Proposition 6 requires
a little more work; it follows readily from Lemma 41 below.

Theorem 3 and the equality Z(M∗) = Z(M)⊥ directly imply the following.

Theorem 7. Let G and G′ be two n-vertex graphs, let f : V (G) → V (G′) be a bijection,
and let 2f : 2V (G) → 2V (G′) be the isomorphism of GF (2)-vector spaces induced by f . Then
the following three conditions are equivalent.

1. f defines an isomorphism MA(G) ∼= MA(G
′).

2. 2f maps the column space of A(G) onto the column space of A(G′).
3. 2f maps the nullspace of A(G) onto the nullspace of A(G′).

Also, the following three conditions are equivalent.
1. f defines an isomorphism MA(G) ∼= MA(G

′)∗.
2. 2f maps the column space of A(G) onto the nullspace of A(G′).
3. 2f maps the nullspace of A(G) onto the column space of A(G′).
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Every graph with at least one edge has the same adjacency matroid as infinitely many
other graphs, obtained by adjoining parallels. Even among looped simple graphs, there
are many examples of nonisomorphic graphs with isomorphic adjacency matroids. For
instance, the simple path of length two has the same adjacency matroid as the graph that
consists of two isolated, looped vertices. However, a looped simple graph is determined
up to isomorphism by the adjacency matroids of its full subgraphs.

Definition 8. Let G be a graph, and suppose S ⊆ V (G). Then G[S] denotes the full
subgraph of G induced by S, i.e., the subgraph with V (G[S]) = S that includes the same
incident edges as G.

If v ∈ V (G) then G[V (G)\{v}] is also denoted G− v.

Theorem 9. Let G and G′ be looped simple graphs, and let f : V (G) → V (G′) be a
bijection. Then the following are equivalent.

1. f is a graph isomorphism.
2. For every S ⊆ V (G), f defines a matroid isomorphism MA(G[S]) ∼= MA(G

′[f(S)]).
3. For every S ⊆ V (G) with |S| 6 2, the matroids MA(G[S]) and MA(G

′[f(S)]) have
the same nullity.

Proof. The implications 1 ⇒ 2 ⇒ 3 are obvious. The implication 3 ⇒ 1 follows from
these facts: A vertex v ∈ V (G) is looped (resp. unlooped) if and only if the nullity of
MA(G[{v}]) is 0 (resp. 1). If v 6= w ∈ V (G) are both unlooped, then they are adjacent
(resp. nonadjacent) in G if and only if the nullity of MA(G[{v, w}]) is 0 (resp. 2). If
v ∈ V (G) is looped and w ∈ V (G) is unlooped, then they are adjacent (resp. nonadjacent)
in G if and only if the nullity of MA(G[{v, w}]) is 0 (resp. 1). If v 6= w ∈ V (G) are both
looped, then they are adjacent (resp. nonadjacent) in G if and only if the nullity of
MA(G[{v, w}]) is 1 (resp. 0).

The polygon matroids of graphs constitute a special subclass of the binary matroids.
Jaeger proved that the adjacency matroids of graphs, instead, include all the binary
matroids:

Theorem 10. [21] Let M be an arbitrary binary matroid. Then there is a graph G with
M = MA(G).

Jaeger also gave an original characterization of the polygon matroids of graphs, which
involves interlacement in 4-regular graphs. Recall that a connected 4-regular graph has at
least one Euler circuit, i.e., a closed trail that includes every edge. In general, a 4-regular
graph has at least one Euler system, which includes one Euler circuit of each connected
component. An Euler system C of a 4-regular graph F has an associated alternance graph
or interlacement graph I(C), a simple graph defined as follows [7, 27]: The vertex-set of
I(C) is V (F ), and two vertices v 6= w are adjacent in I(C) if and only if there is some
circuit of C on which they appear in the order v...w...v...w.

Theorem 11. [22] The polygon matroids of graphs are the duals of the adjacency matroids
of looped interlacement graphs.
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We recall the proofs of Theorems 3 and 10 in Section 2, and in Sections 3 and 4 we give
a new proof of Theorem 11. This new proof consists of two parts, which are interesting
enough to state separately. (See Section 3 for definitions.)

Theorem 12. If P is a circuit partition of a 4-regular graph F and C is an Euler system
of F that is compatible with P , then the polygon matroid of the touch-graph of P is dual
to the adjacency matroid of a particular looped version of the interlacement graph of C.

Theorem 13. Every graph without isolated, unlooped vertices is the touch-graph of some
circuit partition in some 4-regular graph.

Theorems 12 and 13 are not of only abstract interest. Touch-graphs of circuit partitions
in 4-regular graphs are fairly easy to understand, and many properties of general adjacency
matroids may be motivated by dualizing properties of touch-graphs. It turns out that the
general theory of adjacency matroids is closely connected to two important notions that
also generalize properties of 4-regular graphs: the ∆-matroids introduced by Bouchet
[9, 10, 11] and the interlace polynomials introduced by Arratia, Bollobás and Sorkin
[2, 3, 4]. These close connections are indicated by the fact that local complementation
plays a significant role in all three theories.

Definition 14. Let G be a graph with a vertex v. Then the local complement Gv is the
looped simple graph obtained from G by toggling the loop status of every neighbor of v,
and toggling the adjacency status of every pair of neighbors of v.

In this definition (and throughout the paper) we use the term neighbors to describe
distinct, adjacent vertices. Consequently, local complementation may be described more
explicitly as follows: Gv is the looped simple graph related to G as follows: if v 6= w 6=
x 6= v and both w and x are neighbors of v in G, then Gv has an edge wx if and only if w
and x are not adjacent in G; if w 6= x ∈ V (G) and at least one of w, x is not a neighbor
of v in G, then Gv has an edge wx if and only if w and x are adjacent in G; if w 6= v is a
neighbor of v in G then there is a loop on w in Gv if and only if w is not looped in G; and
if w is not a neighbor of v in G then there is a loop on w in Gv if and only if w is looped
in G. Note that for every graph G, (Gv)v is the looped simple graph obtained from G by
replacing each set of parallels with a single edge.

There are two matroid minor operations, deletion and contraction.

Definition 15. If M is a matroid on V and v ∈ V then the deletion M−v is the matroid
on V \{v} with C(M − v) = {γ ∈ C(M) | v /∈ γ}.

IfM is a binary matroid, thenM−v is the binary matroid on V \{v} with Z(M−v) =
Z(M) ∩ 2V \{v}.

Definition 16. If M is a matroid on V and v ∈ V , then the contraction M/v is the
matroid on V \{v} with C(M/v) = {minimal nonempty subsets γ ⊆ V \{v} | γ ∪ {v}
contains an element of C(M)}.

the electronic journal of combinatorics 20(3) (2013), #P27 5



IfM is a binary matroid, let [v] denote the subspace of 2V spanned by {v}; we identify
2V \{v} with 2V /[v] in the natural way. Then M/v is the binary matroid on V \{v} with
Z(M/v) = (Z(M) + [v])/[v].

Our first indication of the importance of local complementation for adjacency matroids
is the fact that the matroid minors MA(G)/v and MA(G)− v can always be obtained by
deleting v from graphs related to G through local complementation.

Theorem 17. If v ∈ V (G) is a looped vertex then MA(G)/v = MA(G
v − v).

Theorem 18. Suppose v is an unlooped vertex of G.

1. If v is isolated then MA(G)/v = MA(G− v).

2. If w is an unlooped neighbor of v then MA(G)/v = MA((G
w)v − v).

3. If w is a looped neighbor of G then MA(G)/v = MA(((G
v)w)v − v).

Theorem 19. If v is not a coloop of MA(G) then MA(G)− v = MA(G− v).

In general, Theorem 19 fails for coloops. For example, let v and w be the vertices of
the simple path P2 of length two. Then w is isolated and unlooped in P2−v; consequently
C(MA(P2 − v)) = {{w}} even though C(MA(P2)) = ∅.

Observe that if M is a matroid on V and v ∈ V , then M − v = M/v if and only
if v is either a loop or a coloop. (For if v appears in any circuit γ with |γ| > 1 then
γ\{v} contains a circuit of M/v but γ\{v} contains no circuit of M − v.) It follows that
the failure of Theorem 19 for coloops is not a significant inconvenience: if v is a coloop
of MA(G) then we may refer to Theorem 17 or Theorem 18 to describe MA(G) − v =
MA(G)/v.

Another instance of the importance of local complementation is the fact that matroid
deletions from MA(G) and MA(G

v) always coincide.

Theorem 20. If v ∈ V (G) then MA(G)− v = MA(G
v)− v.

The connection between the entire matroidsMA(G) andMA(G
v) is more complicated.

Recall that if M and M ′ are matroids on disjoint sets V and V ′ then their direct sum
M ⊕M ′ is the matroid on V ∪ V ′ with C(M ⊕M ′) = C(M)∪C(M ′). Also, if v is a single
element then U1,1({v}) denotes the matroid on {v} in which v is a coloop, and U1,0({v})
denotes the matroid on {v} in which v is a loop. Clearly M = (M − v)⊕U1,1({v}) if and
only if v is a coloop of M , and M = (M − v)⊕ U1,0({v}) if and only if v is a loop of M .

Theorem 21. 1. If v ∈ V (G) is unlooped then MA(G
v) = MA(G).

2. If v ∈ V (G) is a coloop of both MA(G) and MA(G
v), then MA(G

v) = MA(G).
3. If v ∈ V (G) is looped and not a coloop of one of MA(G),MA(G

v), then v is a coloop
of the other and MA(G

v) ≇ MA(G). More specifically, if {MA(G),MA(G
v)} = {M1,M2}

with v not a coloop of M1, then v is a coloop of M2 and M2 = (M1 − v)⊕ U1,1({v}).
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Unlike Theorem 7, Theorem 21 does not explain all isomorphisms of adjacency ma-
troids. For instance, the simple path of length two has the same adjacency matroid as a
disconnected graph consisting of two looped vertices; but local complementation cannot
disconnect a connected graph.

Theorems 17 – 21 are proven in Section 5, using elementary linear algebra. In Section
6 we discuss Theorem 23, which provides another illustration of the connections tying
adjacency matroids to delta-matroids and the theory of the interlace polynomials. It is a
matroid version of Lemma 2 of Balister, Bollobás, Cutler, and Pebody [5]. A preliminary
definition will be useful.

Definition 22. If v is a vertex of G then G(v) denotes the graph obtained from G by
removing every loop incident on v, G(v, ℓ) denotes the graph obtained from G(v) by at-
taching a loop at v, and G(v, ℓi) denotes the graph obtained from G(v, ℓ) by isolating v
(i.e., removing all non-loop edges incident on v).

Theorem 23. Let v be a vertex of G. Then two of the three adjacency matroidsMA(G(v)),
MA(G(v, ℓ)), MA(G(v, ℓi)) are the same, and the other is different. The cycle space of
the different matroid contains the cycle space shared by the two that are the same, and its
dimension is greater by 1.

The adjacency matroid MA(G(v, ℓi)) may be described in two other ways. As v is an
isolated, looped vertex of G(v, ℓi), it is a coloop of MA(G(v, ℓi)); hence MA(G(v, ℓi)) =
MA(G(v, ℓi)− v)⊕ U1,1({v}) =MA(G− v)⊕ U1,1({v}). Another description comes from
Theorem 17, which tells us that MA(G − v) = MA(G

v(v, ℓ))/v. Also, the fact that v is
not a loop of MA(G

v(v, ℓ)) implies that MA(G
v(v, ℓ))/v and MA(G

v(v, ℓ)) have the same
nullity. For ease of reference we state these observations as a proposition.

Proposition 24. If v ∈ V (G) then v is a coloop of

MA(G(v, ℓi)) =MA(G− v)⊕ U1,1({v}) = (MA(G
v(v, ℓ))/v)⊕ U1,1({v}).

Consequently MA(G(v, ℓi)), MA(G − v), MA(G
v(v, ℓ))/v and MA(G

v(v, ℓ)) all have the
same nullity.

Recall that according to Proposition 6, v must be a coloop of at least one of the
matroids MA(G(v)), MA(G(v, ℓ)). Consequently v must fall under one (and only one) of
these cases:

1. v is a coloop of both MA(G(v)) and MA(G(v, ℓ))

2. v is a coloop of MA(G(v)) and not MA(G(v, ℓ))

3. v is a coloop of MA(G(v, ℓ)) and not MA(G(v))

As each vertex of G must fall under precisely one of the cases 1 – 3, we obtain a
partition of V (G) into three subsets. We refer to this partition of V (G) as the principal
vertex tripartition of G. In Section 7 we prove that the three subsets of the principal
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vertex tripartition correspond precisely to the three alternatives of Theorem 23: v falls
under case 1 if and only if MA(G(v)) = MA(G(v, ℓ)); v falls under case 2 if and only
if MA(G(v)) = MA(G(v, ℓi)); and v falls under case 3 if and only if MA(G(v, ℓ)) =
MA(G(v, ℓi)). Moreover, v falls under case 1 in G if and only if v falls under case 2 in Gv,
and vice versa. Theorem 25 below includes all of these results, and also gives a few more
details; in particular, the final assertion of case 1 corrects an error in [29].

Theorem 25. Let v be a vertex of G. Then the listMA(G(v)),MA(G(v, ℓ)),MA(G(v, ℓi)),
MA(G

v(v)), MA(G
v(v, ℓ)), MA(G

v(v, ℓi)) includes either two or three distinct matroids.
Only one of these distinct matroids does not include v as a coloop, and this matroid
determines the others as follows.

1. If v is a coloop of both MA(G(v)) and MA(G(v, ℓ)) then v is not a coloop of
MA(G

v(v, ℓ)),

MA(G(v, ℓi)) = (MA(G
v(v, ℓ))/v)⊕ U1,1({v}) and

MA(G(v)) =MA(G(v, ℓ)) =MA(G
v(v)) =MA(G

v(v, ℓi))

= (MA(G
v(v, ℓ))− v)⊕ U1,1({v}).

Moreover, MA(G(v, ℓi)) and MA(G
v(v, ℓ)) have the same nullity, say ν + 1; the nullity of

MA(G(v)) is ν and

Z(MA(G(v, ℓi))) ∩ Z(MA(G
v(v, ℓ))) = Z(MA(G(v))).

This case requires that Gv − v have at least one looped vertex.
2. If v is not a coloop of MA(G(v, ℓ)) then the assertions of case 1 hold, with the roles

of G and Gv interchanged.
3. If v is not a coloop of MA(G(v)) then

MA(G
v(v)) =MA(G(v)) and

MA(G(v, ℓ)) =MA(G
v(v, ℓ)) =MA(G(v, ℓi)) =MA(G

v(v, ℓi))

= (MA(G(v))− v)⊕ U1,1({v}).

Moreover, the nullity of MA(G(v)) is 1 more than the nullity of MA(G(v, ℓ)), and

Z(MA(G(v, ℓ))) ⊂ Z(MA(G(v))).

The principal vertex tripartition is reminiscent of the principal edge tripartition of
Rosenstiehl and Read [28], but there is a fundamental difference between the two tripar-
titions. The principal edge tripartition of G is determined by the polygon matroid of G,
but the principal vertex tripartition of G is not determined by the adjacency matroid of
G:

Theorem 26. The adjacency matroid and the principal vertex tripartition are indepen-
dent, in the sense that two graphs may have isomorphic adjacency matroids and distinct
principal vertex tripartitions, or nonisomorphic adjacency matroids and equivalent prin-
cipal vertex tripartitions.
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After verifying Theorem 26 in Section 8, in Sections 9 – 11 we turn our attention to
the close connection between adjacency matroids and ∆-matroids.

Definition 27. [9] A delta-matroid (∆-matroid for short) is an ordered pair D = (V, σ)
consisting of a finite set V and a nonempty family σ ⊆ 2V that satisfies the symmetric
exchange axiom: For all X, Y ∈ σ and all u ∈ X∆Y , X∆{u} ∈ σ or there is a v ∈ X∆Y
such that v 6= u and X∆{u, v} ∈ σ (or both).

We often write X ∈ D rather than X ∈ σ. The name ∆-matroid reflects the fact that
if M is a matroid, the family of bases B(M) satisfies the symmetric exchange property;
indeed B(M) satisfies the stronger basis exchange axiom: if X, Y ∈ B(M) and u ∈ X\Y
then there is some v ∈ Y \X with X∆{u, v} ∈ B(M).

Definition 28. [9] If G is a graph then its associated ∆-matroid is DG = (V (G), σ) with

σ = {S ⊆ V (G) | A(G[S]) is nonsingular}.

DG is determined by the adjacency matroids MA(G[S]): S ∈ DG if and only if
MA(G[S]) is a free matroid (i.e., C(MA(G[S])) = ∅). There is more to the relation-
ship between DG and the matroids MA(G[S]) than this obvious observation, though.
Recall that if M is a matroid on V then an independent set of M is a subset of V that
contains no circuit of M , and a basis of M is a maximal independent set. For S ⊆ V (G)
let I(MA(G[S])) and B(MA(G[S])) denote the families of independent sets and bases
(respectively) of the adjacency matroid MA(G[S]).

Theorem 29. Let G be a graph, and suppose S ⊆ V (G).
1. MA(G[S]) is the matroid on S with

B(MA(G[S])) = {maximal B ⊆ S | B ∈ DG}.

2. MA(G[S]) is the matroid on S with

I(MA(G[S])) = {I ⊆ S | there is some X ∈ DG with I ⊆ X ⊆ S}.

3. DG[S] is the ∆-matroid (S, σ) with

σ =
⋃

T⊆S

B(MA(G[T ])).

Although Theorem 29 applies to arbitrary subsets S ⊆ V (G), the heart of the theorem
is the result that part 1 holds for S = V (G); as noted by Brijder and Hoogeboom [14],
this result is a special case of the strong principal minor theorem of Kodiyalam, Lam and
Swan [24].

In Sections 10 and 11 we reprove Theorems 17 – 21 within the contexts of set systems
and ∆-matroids. In particular, Theorem 17 and Theorem 19 are generalized to set systems
and ∆-matroids, respectively. In a similar vein, Theorem 5.6 of [14] shows that some
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aspects of the principal vertex tripartition extend to matroids associated with arbitrary
∆-matroids.

In Section 12 we discuss the connection between the interlace polynomials introduced
by Arratia, Bollobás and Sorkin [2, 3, 4] and the Tutte polynomials of the adjacency
matroids of a graph and its full subgraphs. This connection seems to be fundamentally
different from the connection between the one-variable interlace polynomial of a planar
circle graph and the Tutte polynomial of an associated checkerboard graph, discussed by
Arratia, Bollobás and Sorkin [3] and Ellis-Monaghan and Sarmiento [18].

2 Theorems 3 and 10

For the convenience of the reader, in this section we provide proofs of theorems of Ghouila-
Houri [19] and Jaeger [21] mentioned in the introduction.

2.1 Proof of Theorem 3

It is well known that axiom 4 of Definition 1 may be replaced by the following seemingly
stronger requirement [26, 35, 37]:

4′. If C1, C2, ..., Ck ∈ C(M) do not sum to ∅ in 2V then there are pairwise disjoint
C ′

1, ..., C
′
k′ ∈ C(M) such that

k∑

i=1

Ci =
k′⋃

i=1

C ′
i.

This axiom is useful in the proof of Theorem 3:
LetM be a binary matroid on V . We can certainly construct Z(M) from C(M), using

the addition of 2V . It turns out that we can also construct C(M) from Z(M):

C(M) = {minimal nonempty subsets of V that appear in Z(M)}.

The proof is simple: axiom 4′ implies that every nonempty element of Z(M) contains a
circuit, so every minimal nonempty element of Z(M) is an element of C(M); conversely,
axiom 3 tells us that no circuit contains another, so it is impossible for a circuit to contain
a minimal nonempty element of Z(M) other than itself.

This implies that the function Z is injective.
Now, let W be any subspace of 2V . If W = {∅} then W = Z(U), where U is the

free matroid on V (i.e., C(U) = ∅). Suppose dimW > 1, and let C(W ) be the set of
minimal nonempty subsets of V that appear in W . It is a simple matter to verify that
C(W ) satisfies Definition 1; hence C(W ) is the circuit-set of a binary matroid M(W ).
As C(M(W )) = C(W ) ⊆ W , and Z(M(W )) is spanned by C(M(W )), Z(M(W )) is a
subspace of W .

Could Z(M(W )) be a proper subspace of W? If so, then there is some w ∈ W that is
not an element of Z(M(W )). By definition, C(W ) must include some element γ that is
a subset of w. Then w + γ = w∆γ = w\γ is also an element of W − Z(M(W )), and its
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cardinality is strictly less than that of w. We deduce that W − Z(M(W )) does not have
an element of smallest cardinality. This is ridiculous, so Z(M(W )) cannot be a proper
subspace of W .

It follows that the function Z is surjective.

2.2 Proof of Theorem 10

In light of Theorems 3 and 7 of Section 1, proving Theorem 10 is the same as proving the
following.

Proposition 30. Let A be a k × n matrix with entries in GF (2). Then there is a
symmetric n× n matrix B whose nullspace is the same as the right nullspace of A.

Proof. If the right nullspace space of A is GF (2)n, the proposition is satisfied by the zero
matrix; if the right nullspace of A is {0} then the proposition is satisfied by the identity
matrix.

Otherwise, the right nullspace of A is a proper subspace of GF (2)n. Using elementary
row operations, we obtain from A an r×n matrix C in echelon form, which has the same
right nullspace as A. (Here r is the rank of A.) There is a permutation π of {1, ..., n} such
that the matrix obtained by permuting the columns of C according to π is of the form

C ′ =
(
Ir C ′′

)

where Ir is an identity matrix. If (C ′′)tr denotes the transpose of C ′′, then

B′ =

(
Ir C ′′

(C ′′)tr (C ′′)tr · C ′′

)

is a symmetric matrix. B′ has the same right nullspace as C ′, for if
(
Ir C ′′

)
· κ = 0 then

certainly (
(C ′′)tr (C ′′)tr · C ′′

)
· κ = (C ′′)tr ·

(
Ir C ′′

)
· κ = 0.

Consequently, a matrix B satisfying the statement may be obtained by permuting the
rows and columns of B′ according to π−1.

3 Theorem 12

Our proof of Theorem 11 is rather different from Jaeger’s original argument [22]. We begin
with the definition of touch-graphs, which appeared implicitly in Jaeger’s later work [23]
and were subsequently discussed explicitly by Bouchet [8]. Recall that a trail in a graph
is a walk which may include repeated vertices, but may not include repeated edges. A
closed trail is also called a circuit ; one such circuit may contain another, so it is important
to distinguish these circuits from matroid circuits.

Definition 31. Let F be a 4-regular graph. A circuit partition or Eulerian decomposition
of F is a partition P of the edge-set E(F ) into pairwise disjoint subsets, each of which is
the edge-set of a closed trail in F .
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Definition 32. If P is a circuit partition of F then the touch-graph Tch(P ) is a graph
with a vertex for each element of P and an edge for each vertex of F ; the edge corre-
sponding to v ∈ V (F ) is incident on the vertex or vertices corresponding to element(s) of
P incident at v.

Observe that a walk v1, e1, v2, ..., ek−1, vk in F gives rise to a walk in Tch(P ); for
1 < i < k the edge of Tch(P ) corresponding to vi connects the vertex or vertices of
Tch(P ) corresponding to the circuit(s) of P containing ei−1 and ei. Also, adjacent vertices
of Tch(P ) must correspond to circuits of P contained in a single connected component
of F , because the edge of Tch(P ) connecting them corresponds to a vertex of F incident
on both circuits. Consequently, there is a natural correspondence between the connected
components of F and those of Tch(P ).

As mentioned in the introduction, an Euler system of a 4-regular graph F is a set that
includes one Euler circuit of each connected component of F . The alternance graph or
interlacement graph of an Euler system C of F is the simple graph I(C) with V (I(C)) =
V (F ), in which two vertices v 6= w are adjacent if and only if they appear in the order
v...w...v...w on some circuit of C [7, 27]. We also use I(C) to denote the adjacency matrix
A(I(C)).

Suppose P is an arbitrary circuit partition of F , C is an arbitrary Euler system of
F , and v ∈ V (F ). Choose a preferred orientation of each circuit of C, and use these
orientations to direct the edges of F . Suppose we choose a circuit of P that is incident
on v, and we walk toward v on an edge e of this circuit that is in-directed according to
the preferred orientation. If we continue to follow this circuit of P , how do we leave v?
There are three possibilities: (φ) we leave on the out-directed edge we would use if we
were following the incident circuit of C, (χ) we leave on the out-directed edge we would
not use if we were following the incident circuit of C, or (ψ) we leave on the in-directed
edge we did not use before.

It is not difficult to see that the φ, χ, ψ designation at v would be the same if we
were to choose the other in-directed edge instead of e, or if we were to choose the other
orientation of the incident circuit of C. Consequently we run no risk of confusion by
referring to the φ, χ, ψ designation as the transition of P with respect to C at v. Clearly
P is determined by its transitions with respect to any Euler system, and each of the 3|V (F )|

systems of choices of transitions yields a circuit partition of F .

Definition 33. Under these circumstances, the relative interlacement graph IP (C) is
obtained from I(C) by removing each vertex of type φ, and attaching a loop to each vertex
of type ψ.

We also use IP (C) to denote the adjacency matrix A(IP (C)). An important property
of IP (C) is the circuit-nullity formula:

Theorem 34. If F has c(F ) connected components then

ν(IP (C)) = |P | − c(F ),

where ν denotes the GF (2)-nullity.
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Figure 1: Given choices of transitions at other vertices, two of the three transitions at v
produce touch-graphs in which v is a loop.

We refer to [30, 31, 33] for discussions and proofs of the circuit-nullity formula. These
references are recent, but special cases of Theorem 34 have been known for almost 100
years; the earliest of these special cases seems to be the one that appears in Brahana’s
study of systems of curves on surfaces [12]. Jaeger [23] proved the special case of the
circuit-nullity formula in which C and P are compatible, i.e., P does not involve the φ
transition with respect to C at any vertex of F . This special case is more general than it
might appear at first glance, as Kotzig [25] proved that if P is any circuit partition of F ,
then F has an Euler system C that is compatible with P .

Observe that the rank of the polygon matroid of Tch(P ) is |V (Tch(P ))| − c(Tch(P )),
which equals |P |−c(F ). The circuit-nullity formula tells us that this rank equals ν(IP (C)).
In case C and P are compatible, Jaeger sharpened this equality by identifying the
nullspace of IP (C):

Theorem 35. [23] Let F be a 4-regular graph with a circuit partition P and a compatible
Euler system C. Then the nullspace of IP (C) and the cycle space of Tch(P ) are orthogonal
complements in GF (2)V (F ).

Theorem 35 suffices for our present purposes, but we might mention that a modified
version of the result holds in the general (non-compatible) case; see [33].

In view of Theorem 3, Theorem 35 is equivalent to the following precise version of
Theorem 12:

Theorem 36. Let F be a 4-regular graph with a circuit partition P and a compatible
Euler system C. Then MA(IP (C))

∗ is the polygon matroid of Tch(P ).

We sketch a quick proof of Theorem 36, which uses the circuit-nullity formula.

the electronic journal of combinatorics 20(3) (2013), #P27 13



Lemma 37. Suppose F is a 4-regular graph with a circuit partition P and an Euler
system C, and suppose x is a vertex of IP (C). Two different circuits of P are incident
at x if and only if ρ(IP (C)) = ρ(IP (C)− x).

Proof. Let P ′ be the circuit partition obtained from P by changing the transition at x:
the circuit of P ′ incident at x follows the circuit of C incident at x.

If two different circuits of P are incident at x, then P ′ is obtained from P by unit-
ing these two circuits. (See Figure 1.) It follows from the circuit-nullity formula that
ν(IP ′(C)) = ν(IP (C)) − 1. As IP ′(C) is IP (C) − x, we conclude that ρ(IP (C)) =
ρ(IP (C)−x). Conversely, if ρ(IP (C)) = ρ(IP (C)−x) then ν(IP (C)) = 1+ν(IP ′(C)), so
the circuit-nullity formula tells us that |P | = 1 + |P ′|; consequently two different circuits
of P are incident at x.

Recall that an independent set of a matroid is a set that contains no circuit.

Corollary 38. Let F be a 4-regular graph with a circuit partition P and an Euler system
C. Suppose k > 1 and X = {x1, ..., xk} ⊆ V (IP (C)). For 1 6 i 6 k let Pi be the
circuit partition that involves the same transition as C at each of x1, ..., xi, and the same
transition as P at every other vertex. Then the following are equivalent:

1. X is an independent set of the polygon matroid of Tch(P ).

2. ρ(IP (C)−X) = ρ(IP (C)).

3. |Pi| = |P | − i for each i > 1.

Proof. If X = ∅ then all three properties hold, and if |X| = 1 then their equivalence
follows from Lemma 37 and the fact that x1 is a non-loop edge of Tch(P ) if and only if
two different circuits of P are incident there.

We proceed by induction on |X| = k > 1. Observe that IPi
(C) = IP (C)− {x1, ..., xi}

for each i > 0.
If any one of the three properties fails for {x1, ..., xk−1} then by induction, all three

fail for {x1, ..., xk−1}; clearly then all three also fail for X.
Suppose all three properties hold for {x1, ..., xk−1}. Property 3 implies that if 1 6 i <

k, then Tch(Pi) is obtained from Tch(P ) by first contracting the edges corresponding to
x1, ..., xi, and then attaching loops to the vertices of Tch(P )/{x1, ..., xi} corresponding to
x1, ..., xi.

If property 1 holds forX then xk is a non-loop edge in Tch(P )/{x1,..., xk−1}, and hence
also in Tch(Pk−1). That is, two different circuits of Pk−1 are incident at xk. Lemma 37
then implies that ρ(IPk−1

(C)− xk) = ρ(IPk−1
(C)); this equals ρ(IP (C)) because property

2 holds for {x1, ..., xk−1}. As IP (C)−X = IPk−1
(C)− xk, property 2 holds for X.

If property 2 holds for X then as property 2 also holds for {x1, ..., xk−1}, ρ(IPk−1
(C))

= ρ(IPk−1
(C)− xk). Lemma 37 tells us that two different circuits of Pk−1 are incident at

xk, so |Pk| = |Pk−1| − 1. As property 3 holds for {x1, ..., xk−1}, it also holds for X.
Finally, if property 3 holds for X then |Pk| = |Pk−1|−1, so two different circuits of Pk−1

are incident at xk. That is, the edge of Tch(Pk−1) corresponding to xk is not a loop. It
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follows that the edge of Tch(P ) corresponding to xk is not a loop in Tch(P )/{x1, ..., xk−1}.
As property 1 holds for {x1, ..., xk−1}, it follows that X is independent in Tch(P ).

Note by the way that property 1 of Corollary 38 is independent of the choice of an order
for the elements of X, so despite its appearance, property 3 must also be independent of
order.

The last step of the proof of Theorem 36 is the following.

Proposition 39. Let F be a 4-regular graph with a circuit partition P and an Euler
system C. Suppose X = {x1, ..., xk} ⊆ V (IP (C)). Then ρ(IP (C)−X) = ρ(IP (C)) if and
only if X is an independent set of MA(IP (C))

∗.

Proof. Recall that MA(IP (C))
∗ is defined by the fact that its independent sets are the

complements of the spanning sets of MA(IP (C)). That is, X is an independent set
of MA(IP (C))

∗ if and only if the columns of IP (C) corresponding to elements of Y =
V (IP (C))−X span the column space W of IP (C).

If ρ(IP (C) − X) = ρ(IP (C)) then Y has ρ(IP (C)) independent columns, and these
must certainly span W .

Conversely, if W is spanned by the columns of IP (C) corresponding to elements of
Y then there must be a subset B ⊆ Y such that the columns of IP (C) corresponding
to elements of B constitute a basis of W . As IP (C) is symmetric, the strong principal
minor theorem of Kodiyalam, Lam and Swan [24] (see Theorem 40 below) tells us that the
principal submatrix of IP (C) corresponding to B is nonsingular. This principal submatrix
is a submatrix of IP (C)−X, so ρ(IP (C)−X) > |B| = ρ(IP (C)). The opposite inequality
is obvious, so ρ(IP (C)−X) = ρ(IP (C)).

As mentioned in the introduction, the duality between touch-graphs and the adjacency
matroids of looped circle graphs motivates many properties of general adjacency matroids.
For instance, suppose C is an Euler system of a 4-regular graph F , P is a circuit partition
compatible with C, and v ∈ V (F ). Then Figure 1 makes it clear that if P ′ is the circuit
partition obtained from P by changing the transition at v to the other transition that
does not appear in C, then v is a loop in at least one of the graphs Tch(P ), Tch(P ′). It
follows that v is a loop of at least one of the matroids MA(IP (C))

∗, MA(IP ′(C))∗. Thus
touch-graphs motivate Proposition 6.

Similarly, touch-graphs motivate Theorem 21 of the introduction. Let F be a 4-regular
graph with a vertex v and an Euler system C. Kotzig [25] observed that F also has an
Euler system C ∗ v, which involves the same transition as C at every vertex other than
v, and at v involves the transition that is orientation-inconsistent with respect to C. Let
P be a circuit partition of F that is compatible with C. Then the following observations
explain the duals of the three assertions of Theorem 21. 1. If v is unlooped in IP (C) then
P involves the transition at v that is consistent with the orientation of C, P is compatible
with C∗v and IP (C∗v) is the local complement IP (C)

v. ThenMA(IP (C)) =MA(IP (C)
v)

because both are dual to the polygon matroid of Tch(P ). 2. Suppose v is looped in IP (C),
and let P ′ be the circuit partition obtained from P by changing the transition at v to the
one that is orientation-inconsistent with C ∗v. Then IP (C)

v = IP ′(C ∗v). If v is a loop in
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both Tch(P ) and Tch(P ′), then Tch(P ) = Tch(P ′) and henceMA(IP (C)) =MA(IP (C)
v)

as both are dual to the polygon matroid of Tch(P ) = Tch(P ′). 3. Suppose v is looped
in IP (C), but not a loop in Tch(P ). Again, let P ′ be the circuit partition obtained from
P by changing the transition at v to the one that is orientation-inconsistent with C ∗ v.
Then Tch(P ′) is the graph obtained from Tch(P ) by contracting v and then attaching a
loop at the vertex corresponding to v, so the dual of the polygon matroid of Tch(P ′) is
isomorphic to the matroid obtained from the dual of the polygon matroid of Tch(P ) by
deleting v and replacing it with a coloop.

4 Theorem 13

Let G be any graph with no isolated, unlooped vertex. Then a 4-regular graph F with a
distinguished circuit partition P may be constructed from G in two steps, as follows.

Step 1. For each vertex v ∈ V (G), list the incident non-loop edges as ev1, ..., e
v
dv

in some
order. Then construct a 4-regular graph H with a vertex for each non-loop edge of G, in
such a way that for each v ∈ V (G), H has dv edges; the ith of these edges connects the
vertex corresponding to evi to the vertex corresponding to evi+1 (with subindices considered
modulo dv). H has a distinguished circuit partition whose elements correspond to the
non-isolated vertices of G.

Step 2. Suppose G has ℓ loops. If ℓ = 0 then let F = H, and let P be the distinguished
circuit partition. Otherwise, let H0 = H and list the loops of G as e1, ..., eℓ in some order.
Suppose 1 6 i 6 ℓ and Hi−1 has been constructed with a distinguished circuit partition
whose circuits correspond to some of the vertices of G. If the vertex of G incident on ei
does not correspond to a distinguished circuit of Hi−1, then Hi is obtained from Hi−1 by
adjoining a new vertex with a “figure eight” on it; that is, a single distinguished circuit
consisting of two loops. The new distinguished circuit corresponds to the vertex of G
incident on ei, and the new vertex corresponds to ei. If the vertex of G incident on ei does
correspond to a distinguished circuit of Hi−1, then Hi is obtained from Hi−1 by inserting
a looped vertex “in the middle” of some edge of this circuit. The original edge disappears,
and the corresponding distinguished circuit of Hi includes the three new edges and all the
other edges of the original distinguished circuit of Hi−1.

At the end of this process we have obtained Hℓ = F , with a distinguished circuit
partition P such that Tch(P ) ∼= G.

The construction is illustrated in Figure 2, where distinguished circuit partitions are
indicated by the convention that when following a distinguished circuit through a vertex,
one does not change the “edge style” (bold, dashed or plain). The “edge style” may
change in the middle of an edge, though.

Note that there is considerable freedom in the construction, both in choosing the edge-
orders ev1, ..., e

v
dv

and in locating the non-isolated, looped vertices introduced in Step 2.
Consequently the resulting 4-regular graph is far from unique. In Figure 2, for example,
F is a planar graph with two pairs of parallel non-loop edges, and F ′ is a non-planar
graph with only one pair of parallel non-loop edges. The fact that F is planar and F ′

is non-planar hints at the fact that when we order the non-loop edges incident at each
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Figure 2: Bold, dashed and plain “edge styles” indicate distinguished circuit partitions P
and P ′ with Tch(P ) and Tch(P ′) isomorphic to G.
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vertex of G, we have chosen a rotation system for the graph obtained from G by removing
all loops; equivalently, we have imbedded this graph on some orientable surface. The
resulting 4-regular graph H is the medial graph of this imbedded graph.

5 Local complements and matroid minors

The reader familiar with the interlace polynomials of Arratia, Bollobás and Sorkin [2, 3, 4]
will recognize some of the concepts and notation that appear in our discussion of adja-
cency matroids, but it is important to keep a significant difference in mind: The interlace
polynomials of G are related to principal submatrices of A(G), i.e., square submatrices
obtained from A(G) by removing some columns and the corresponding rows. The adja-
cency matroid of G, instead, is related to rectangular submatrices obtained by removing
only columns from A(G).

5.1 Theorems 17 and 20

Suppose v ∈ V (G); let

A(G) =



∗ 1 0
1 A B
0 C D


 and A(Gv) =



∗ 1 0
1 Ac B
0 C D


 .

Here bold numerals indicate rows and columns with all entries equal, the first row and
column correspond to v, ∗ is 0 or 1 according to the loop status of v, and Ac is the matrix
obtained by toggling all the entries of A. To prove Theorem 20, observe that elementary
row operations transform 


1 0
A B
C D


 into




1 0
Ac B
C D


 .

It follows that if κ is a column vector then

1 0
A B
C D


 · κ = 0 if and only if




1 0
Ac B
C D


 · κ = 0.

That is, these two matrices have the same right nullspace. It follows that Z(MA(G)− v)
= Z(MA(G

v)− v), and hence MA(G)− v = MA(G
v)− v, as asserted by Theorem 20.

Theorem 17 follows from another calculation using elementary row operations. Ma-
trices of the forms 


1 1 0
1 A B
0 C D


 ,



1 1 0
0 Ac B
0 C D


 and

(
Ac B
C D

)

have the same GF (2)-nullity, so if v is looped and v 6∈ S ⊆ V (G) then S ∪ {v} contains
a circuit of MA(G) if and only if S contains a circuit of MA(G

v − v). It follows that if v
is looped, then MA(G)/v = MA(G

v − v).
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5.2 Theorem 19 and the strong principal minor theorem

We turn now to Theorem 19. Suppose v is not a coloop of MA(G). Then A(G) is a
symmetric matrix of the form 


∗ 1 0
1 A B
0 C D


 ,

with the first column corresponding to v and equal to the sum of certain other columns.
It follows that 


1 0
A B
C D


 and

(
A B
C D

)

are related through elementary row operations, so these two matrices have the same right
nullspace: Z(MA(G)− v) = Z(MA(G− v)). Consequently MA(G)− v = MA(G− v), as
asserted by Theorem 19.

By the way, note that this argument still applies if v is a coloop, provided that v is
not a coloop of the adjacency matroid of the graph obtained from G by toggling the loop
status of v.

Theorem 19 is equivalent to the following special case of the strong principal minor
theorem of Kodiyalam, Lam and Swan [24].

Theorem 40. Let A be a symmetric n× n matrix with entries in GF (2) and let S be a
subset of {1, ..., n}, of size r = rank(A). Then the columns of A corresponding to elements
of S are linearly independent if and only if the principal submatrix of A corresponding to
S is nonsingular.

Proof. If the principal submatrix of A corresponding to S is nonsingular then its columns
must be linearly independent. Obviously then the corresponding columns of A, which are
obtained from the columns of the principal submatrix by inserting rows corresponding to
elements of {1, ..., n}\S, must also be linearly independent.

The interesting part of the theorem is the converse: if the columns of A corresponding
to elements of S form an n × r matrix of rank r, then the r × r submatrix obtained by
removing the rows corresponding to elements of {1, ..., n}\S is also of rank r. The proof
is simple: Let A′ be the n× r submatrix of A that includes only the columns with indices
from S; by hypothesis, A and A′ have the same column space. If i ∈ {1, ..., n}\S then the
ith column of A must be the sum of some columns with indices from S, and by symmetry
the ith row of A must be the sum of some rows with indices from S. Consequently the
same is true of the ith row of A′. It follows that removing the ith row of A′ for every
i /∈ S yields an r× r submatrix with the same row space as A′, and hence the same rank
as A.
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5.3 Theorems 18 and 21

To prove part 1 of Theorem 21, suppose v ∈ V (G) is unlooped. Let

A(G) =



0 1 0
1 A B
0 C D


 and A(Gv) =



0 1 0
1 Ac B
0 C D


 .

Elementary row operations transform A(G) into A(Gc), so these matrices have the same
right nullspace. It follows that Z(MA(G)) = Z(MA(G

v)).
We are now ready to prove all three parts of Theorem 18. If v is unlooped and isolated

then v is a loop inMA(G), soMA(G)/v =MA(G)−v; Theorem 19 tells us thatMA(G)−v
= MA(G − v). If v and w are unlooped neighbors then part 1 of Theorem 21 tells us
that MA(G) = MA(G

w); v is looped in Gw, so Theorem 17 tells us that MA(G
w)/v =

MA((G
w)v − v). Finally, if v is unlooped and w is a looped neighbor of v in G then part

1 of Theorem 21 tells us that MA(G) = MA(G
v); w is an unlooped neighbor of v in Gv,

so the preceding sentence tells us that MA(G)/v = MA(G
v)/v = MA(((G

v)w)v − v).
Turning to part 2 of Theorem 21, suppose a looped vertex v is a coloop of both

MA(G) andMA(G
v). Then C(MA(G)) = C(MA(G)−v) and C(MA(G

v)) = C(MA(G
v)−v).

Theorem 20 tells us that MA(G)− v = MA(G
v)− v, so MA(G) = MA(G

v).
Part 3 of Theorem 21 involves the following.

Lemma 41. Suppose v ∈ V (G). Then v is not a coloop of MA(G) if and only if the three
matrices

A(G) =



∗ 1 0
1 A B
0 C D


 ,



1 0
A B
C D


 and



0 0
A B
C D




have the same rank over GF (2). (Here the first row and column of A(G) correspond to
v.)

Proof. If the three matrices have the same rank then in particular, the first two have the
same rank. Consequently the first column of A(G) must equal the sum of certain other
columns; hence there is a circuit of MA(G) that contains v. Conversely, if v is not a
coloop of MA(G) then the column of A(G) corresponding to v must be the sum of the
columns corresponding to some subset Sv ⊆ V (G)\{v}. By symmetry, the sum of the
rows corresponding to Sv must equal the first row of A(G).

Suppose now that v is a looped non-coloop of MA(G). The set Sv must include an
odd number of columns of A, to yield the diagonal entry ∗ = 1 in the column of A(G)
corresponding to v. Replacing A with Ac toggles an odd number of summands in each
row of A, so the sum of the columns of

A(Gv) =



1 1 0
1 Ac B
0 C D
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corresponding to Sv must be the column vector



1
0
0


 .

It follows that the GF (2)-ranks of




1 0
Ac B
C D


 and



1 0 0
0 Ac B
0 C D




are the same. According to Lemma 41, v cannot be a non-coloop of MA(G
v).

By the way, the same argument shows that removing the loop from v cannot produce
a non-coloop in the adjacency matroid of the resulting graph. That is, in the terminology
of Section 4 v is a triple coloop of MA(G

v).
To complete the proof of part 3 of Theorem 21, note that the fact that v is a coloop of

MA(G
v) implies that C(MA(G

v)) = C(MA(G
v)−v). Theorem 20 tells us that C(MA(G

v)−
v) = C(MA(G)−v), and the fact that v is not a coloop ofMA(G) implies that C(MA(G)−
v) is a proper subset of C(MA(G)). It follows that |C(MA(G

v))| < |C(MA(G))|, and
consequently MA(G

v) ≇ MA(G). The equality MA(G
v) = (MA(G

v) − v) ⊕ U1,1({v})
follows immediately from the fact that v is a coloop of MA(G

v), and this equality implies
MA(G

v) = (MA(G)− v)⊕ U1,1({v}) by Theorem 20.

6 Theorem 23 and triple coloops

Theorem 23 is essentially a result about the nullspaces of A(G(v)), A(G(v, ℓ)) and
A(G(v, ℓi)). With a convenient order on the vertices of G, these three matrices are



0 1 0
1 A B
0 C D


 ,



1 1 0
1 A B
0 C D


 and



1 0 0
0 A B
0 C D




respectively. Theorem 23 asserts that two of the nullspaces are the same, say of dimension
ν; the different nullspace contains them, and its dimension is ν + 1. A proof of this
statement is given in [31].

Observe that no element of the nullspace of the right-hand matrix could possibly have
a nonzero first coordinate. Consequently v does not appear in any circuit ofMA(G(v, ℓi));
that is, v is a coloop of MA(G(v, ℓi)), as noted in Proposition 24 of the introduction. In
the special case thatMA(G(v, ℓi)) has a larger cycle space thanMA(G(v)) =MA(G(v, ℓ)),
it follows that v must also be a coloop of MA(G(v)) and MA(G(v, ℓ)). On the other hand,
if MA(G(v)) or MA(G(v, ℓ)) has a larger cycle space than MA(G(v, ℓi)) then either the
matrix displayed on the left or the matrix displayed in the center has a larger nullspace
than the one on the right. Clearly any vector in either of these two nullspaces that is not in
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the nullspace of the right-hand matrix must have a nonzero first coordinate; consequently
v is not a coloop of the corresponding matroid. We deduce the following sharpened form
of Proposition 6.

Corollary 42. If v ∈ V (G) then v is a coloop of MA(G(v, ℓi)) and at least one of the
adjacency matroids MA(G(v)), MA(G(v, ℓ)). It is a coloop of all three if and only if

Z(MA(G(v))) = Z(MA(G(v, ℓ)) ⊂ Z(MA(G(v, ℓi))).

The special case in which v is a coloop of all three matroids is important enough to
merit a special name.

Definition 43. A vertex v ∈ V (G) is a triple coloop of MA(G) if it is a coloop of
MA(G(v)), MA(G(v, ℓ)), and MA(G(v, ℓi)).

Note that the nomenclature is imprecise; although a triple coloop ofMA(G) is certainly
a coloop of MA(G), it is not the matroid structure of MA(G) that determines whether or
not a vertex is a triple coloop. We prefer this imprecise nomenclature over the alternative
“v is a triple coloop of G” because that would also be confusing; a coloop (isthmus) of G
is an edge, not a vertex.

Using this notion, Theorems 19 and 21 may be sharpened as follows.

Theorem 44. 1. If v ∈ V (G) is unlooped then MA(G
v) = MA(G).

2. If a looped vertex v ∈ V (G) is a coloop of both MA(G) and MA(G
v), then MA(G

v)
= MA(G) and v is not a triple coloop of MA(G

v) or MA(G).
3. If v ∈ V (G) is looped and not a coloop of one of MA(G),MA(G

v), then v is a triple
coloop of the other and MA(G

v) ≇ MA(G). More specifically, if {MA(G),MA(G
v)} =

{M1,M2} with v not a coloop of M1, then v is a triple coloop of M2 and M2 = (M1 −
v)⊕ U1,1({v}).

Theorem 45. If v ∈ V (G) is not a triple coloop ofMA(G), thenMA(G)−v =MA(G−v).

Proof. Part 1 of Theorem 44 is the same as part 1 of Theorem 21. The proofs of Theorem
45 and part 3 of Theorem 44 are indicated in the preceding section; both are introduced
with the phrase “by the way.”

It remains to consider part 2 of Theorem 44. Suppose a looped vertex v ∈ V (G) is a
triple coloop of G, and let

A(G) = A(G(v, ℓ)) =



1 1 0
1 A B
0 C D


 .

According to Theorem 23 and Corollary 42,

ν(A(G(v))) = ν(A(G(v, ℓ))) = ν(A(G(v, ℓi)))− 1,
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where ν denotes the GF (2)-nullity. Observe that elementary row and column operations
transform A(G(v, ℓ)) into 


1 0 0
0 Ac B
0 C D


 ,

which is A((Gv(v, ℓi)). It follows that ν(A(G(v, ℓ))) = ν(A(Gv(v, ℓi))). Also, elementary
row operations transform

A(G(v)) =



0 1 0
1 A B
0 C D


 into



0 1 0
1 Ac B
0 C D


 = A(Gv(v)),

so ν(A(G(v))) = ν(A(Gv(v))); hence ν(A(Gv(v, ℓi))) = ν(A(Gv(v))). According to The-
orem 23 and Corollary 42, this equality implies that v is not a coloop of MA(G

v(v, ℓ)) =
MA(G

v).

7 The principal vertex tripartition

Combining various results above, we see that if v ∈ V (G) then the relationships among the
six adjacency matroids MA(G(v)), MA(G(v, ℓ)), MA(G

v(v)), MA(G(v, ℓi)), MA(G
v(v, ℓ)),

MA(G
v(v, ℓi)) must fall into one of three cases.

Case 1. Suppose v is not a coloop of MA(G
v(v, ℓ)). According to part 3 of Theorem

44, v is a triple coloop of MA(G(v, ℓ)). Theorem 23 tells us that

Z(MA(G
v(v))) = Z(MA(G

v(v, ℓi))) ⊂ Z(MA(G
v(v, ℓ)))

and
Z(MA(G(v))) = Z(MA(G(v, ℓ))) ⊂ Z(MA(G(v, ℓi))).

Part 1 of Theorem 21 tells us that MA(G
v(v)) = MA(G(v)). MA(G(v, ℓi)) has v as a

coloop, so the fact that v is not a coloop of MA(G
v(v, ℓ)) implies that MA(G(v, ℓi)) 6=

MA(G
v(v, ℓ)). All in all, we have the following: Z(MA(G(v, ℓi))) and Z(MA(G

v(v, ℓ))) are
distinct nontrivial subspaces of 2V (G) with the same dimension, say ν+1; their intersection
is of dimension ν, and

Z(MA(G
v(v, ℓi))) = Z(MA(G

v(v))) = Z(MA(G(v))) = Z(MA(G(v, ℓ))

= Z(MA(G(v, ℓi))) ∩ Z(MA(G
v(v, ℓ))).

The equalityMA(G
v(v, ℓi)) = (MA(G

v(v, ℓ))−v)⊕U1,1({v}) follows from Theorem 19 and
Proposition 24, andMA(G(v, ℓi)) = (MA(G

v(v, ℓ))/v)⊕U1,1({v}) follows from Proposition
24.

Case 2. Suppose v is not a coloop of MA(G(v, ℓ)). The discussion proceeds as in case
1, with G and Gv interchanged.

Case 3. Suppose v is a coloop of bothMA(G(v, ℓ)) andMA(G
v(v, ℓ)); then parts 1 and

2 of Theorem 44 tell us that MA(G(v)) = MA(G
v(v)), MA(G(v, ℓ)) = MA(G

v(v, ℓ)), and
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v is not a triple coloop of MA(G(v, ℓ)) or MA(G
v(v, ℓ)). Then Theorem 23 and Corollary

42 tell us that

Z(MA(G(v, ℓ))) = Z(MA(G
v(v, ℓ))) = Z(MA(G(v, ℓi))) = Z(MA(G

v(v, ℓi)))

⊂ Z(MA(G(v))) = Z(MA(G
v(v))),

with the dimension of the larger subspace 1 more than the dimension of the smaller.
The equality MA(G(v, ℓi)) = (MA(G(v)) − v) ⊕ U1,1({v}) follows from Theorem 19 and
Proposition 24.

To complete the proof of Theorem 25, we must verify the assertion that if Gv − v is
simple, then v cannot fall under case 1 of the tripartition. Suppose v ∈ V (G) falls under
case 1, and let

A(Gv(v, ℓ)) =



1 1 0
1 A B
0 C D


 ,

with the first row and column corresponding to v. As v is not a coloop of MA(G
v(v, ℓ)),

the first column of A(Gv(v, ℓ)) must equal the sum of the columns corresponding to
elements of some subset T ⊆ V (G)\{v}. Consider the submatrix of A(Gv(v, ℓ)) obtained
by removing the rows and columns corresponding to vertices not in T ∪ {v},

A(Gv(v, ℓ)[T ∪ {v}]) =



1 1 0
1 A′ B′

0 C ′ D′


 .

The sum of the columns of this matrix is 0, so the sum of the entries of the matrix is 0;
that is, the matrix has an even number of nonzero entries. As the matrix is symmetric, an
even number of these nonzero entries occur off the diagonal; consequently an even number
occur on the diagonal, so at least one element of T is looped in Gv.

Essentially the same argument proves that in case 2, at least one element of T is looped
in G. We should point out that a garbled version of this simple argument appeared in
[29], where it was mistakenly understood to imply that there must be at least one looped
vertex in T ∩N(v). This need not be the case, as indicated by the third example in the
next section. The statements of Lemma 4.4 and Corollary 4.6 of [29] should be corrected
by replacing the hypothesis “if a has no looped neighbor” with “if H − a has no looped
vertex.”

8 Three examples

Recall that if k < n then Un,k denotes the n-element matroid whose circuits include all
the (k + 1)-element subsets of the ground set. Also, Un,n denotes the free matroid on n
elements, i.e., C(Un,n) = ∅.

Let K3 be the complete graph with three vertices. Then MA(K3) ∼= U3,2. If v ∈
V (K3) then v is not a coloop of either MA(K3) or MA(K

v
3 ); v falls under case 3 of the
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Figure 3: K3, K3ℓ and P3ℓℓ.

principal vertex tripartition. MA(K3(v, ℓ)) = MA(K3(v, ℓi)) ∼= U3,3, MA(K
v
3 ) = MA(K3),

MA(K3 − v) = MA(K3)− v ∼= U2,2, and MA(K3)/v ∼= U2,1.
Let K3ℓ be the graph obtained from K3 by attaching a loop to one vertex. Then

MA(K3ℓ) ∼= U3,3. If v is one of the unlooped vertices then v is a coloop of MA(K3ℓ), and
v is a triple coloop of MA(K

v
3ℓ); v falls under case 2 of the principal vertex tripartition.

MA(K3ℓ(v, ℓi)) =MA(K3ℓ),MA(K3ℓ(v, ℓ)) ∼= U1,1⊕U2,1, andMA(K3ℓ−v) =MA(K3ℓ)−v =
MA(K3ℓ)/v ∼= U2,2. If w is the looped vertex then w is a coloop of MA(K3ℓ) and a
coloop of MA(K

w
3ℓ), but not a triple coloop of either; w falls under case 3 of the principal

vertex tripartition. MA(K
w
3ℓ) = MA(K3ℓ(w, ℓi)) = MA(K3ℓ), MA(K3ℓ(w)) ∼= U3,2, and

MA(K3ℓ)− w = MA(K3ℓ)/w = MA(K3ℓ − w) ∼= U2,2.
Let P3 be the path of length three, and P3ℓℓ the graph obtained from P3 by attaching

loops at the vertices of degree 1. (Equivalently, P3ℓℓ = Kv
3 .) ThenMA(P3ℓℓ) ∼= U3,2. If v is

the unlooped vertex then v is not a coloop of MA(P3ℓℓ) or MA(P
v
3ℓℓ); v falls under case 3

of the principal vertex tripartition. MA(P3ℓℓ(v, ℓ)) = MA(P3ℓℓ(v, ℓi)) ∼= U3,3, MA(P
v
3ℓℓ) =

MA(P3ℓℓ), MA(P3ℓℓ − v) = MA(P3ℓℓ)− v ∼= U2,2 and MA(P3ℓℓ)/v ∼= U2,1. If w is one of the
looped vertices then w is not a coloop of MA(P3ℓℓ), and w is a triple coloop of MA(P

w
3ℓℓ);

w falls under case 2 of the principal vertex tripartition. MA(P3ℓℓ(w)) = MA(P3ℓℓ(w, ℓi))
= MA(P

w
3ℓℓ)

∼= U3,3, MA(P3ℓℓ − w) = MA(P3ℓℓ)− w ∼= U2,2, and MA(P3ℓℓ)/w ∼= U2,1.
Observe that K3 and P3ℓℓ have isomorphic adjacency matroids, and their principal

vertex tripartitions are distinct. On the other hand, K3ℓ and P3ℓℓ have nonisomorphic
adjacency matroids and equivalent principal vertex tripartitions. We deduce Theorem 26
of the introduction.

Note also that both U3,2 and U3,3 have the property that every permutation of the
ground set is a matroid automorphism. Consequently for each of these matroids, all ele-
ments of the ground set are equivalent under the principal edge tripartition of Rosenstiehl
and Read [28]. In contrast, the elements of MA(K3ℓ) and MA(P3ℓℓ) are not equivalent un-
der the principal vertex tripartition.

9 Set systems and ∆-matroids

In this section we briefly summarize a number of definitions and results related to set
systems and ∆-matroids. We refer to [9] – [11] and [13] – [15] for detailed discussions.
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9.1 Set systems

A set system (over V ) is a tuple D = (V, σ) with V a finite set, called the ground set, and
σ a family of subsets of V . We often write Y ∈ D to mean Y ∈ σ. A set system D is
called proper if σ 6= ∅, and normal if ∅ ∈ D. Let X ⊆ V . If D is proper, then we define
the distance between X ⊆ V and D by dD(X) = min({|X∆Y | | Y ∈ D}). Moreover, we
let dD = dD(∅), so that D is normal if and only if dD = 0. We define the restriction of
D to X by D[X] = (X, σ′) where σ′ = {Y ∈ σ | Y ⊆ X}, and the deletion of X from
D by D − X = D[V − X]. Let min(σ) (max(σ), resp.) denote the family of minimal
(maximal, resp.) sets in σ with respect to set inclusion, and let min(D) = (V,min(σ))
(max(D) = (V,max(σ)), resp.) be the corresponding set systems. A set system D is
equicardinal if for all X1, X2 ∈ D, |X1| = |X2|.

Let D again be a set system. For X ⊆ V we define the pivot (also called twist in the
literature [9]) by D ∗ X = (V, σ ∗ X), where σ ∗ X = {Y∆X | Y ∈ σ}. Associativity
of the symmetric difference implies that (D ∗ X) ∗ Y = D ∗ (X∆Y ). Also, if v ∈ V
we define the contraction D/v by D/v = (D ∗ {v}) − {v} [11, Property 2.1]. Note that
dD(X) = dD∗X ; in particular, D ∗ X is normal if and only if X ∈ D. Also, note that
D ∗ V is obtained from D by complementing every set of D with respect to the ground
set. Thus, it is easy to see that min(D) = max(D ∗V )∗V and max(D) = min(D ∗V )∗V .
For X ⊆ V we define loop complementation by D + X = (V, σ′), where Y ∈ σ′ iff
|{Z ∈ D | (Y \X) ⊆ Z ⊆ Y }| is odd [13]. In particular, if v ∈ V then D + {v} = (V, σ′)
with σ′ = {Y | v /∈ Y ∈ D}∪{Y ∪{v} | Y ∈ D and Y ∪{v} /∈ D}. ForX ⊆ V we define the
dual pivot by D ∗̄X = ((D+X)∗X)+X. It turns out that D ∗̄X = (V, σ′), where Y ∈ σ′

iff |{Z ∈ D | Y ⊆ Z ⊆ Y ∪X}| is odd. It is easy to verify that max(D) = max(D ∗̄X)
for all X ⊆ V .

For convenience, we often write D−{v}, D ∗ {v}, D ∗̄{v} etc. simply as D− v, D ∗ v,
D ∗̄ v etc. Also, we assume left-associativity of the operations. E.g., D ∗̄ v ∗w− v denotes
((D ∗̄ v) ∗ w) − v. Deletion, contraction, pivot, loop complementation, and dual pivot
commute with each other when applied to different elements (see [13]). For example, for
v, w ∈ V and v 6= w, D − v ∗ w = D ∗ w − v, D/v − w = D − w/v, D ∗̄ v ∗ w = D ∗ w ∗̄ v
and D ∗̄ v ∗̄w = D ∗̄w ∗̄ v. Moreover, pivot, loop complementation, and dual pivot are
involutions.

Suppose D = (V, σ) is a set system, and v ∈ V . Then σ = σ′∪σ′′, where Y ∈ σ′ (resp.

Y ∈ σ′′) iff v 6∈ Y ∈ σ (resp. v ∈ Y ∈ σ). We define D−̃v = (V, σ′) and D/̃v = (V, σ′′).

That is, D−̃v is the set system on V that includes the same sets as D − v, and D/̃v is
the set system on V that includes the sets Y ∪ {v} with Y ∈ D/v.

Theorem 46. Let D be a set system on V , and suppose v ∈ V has the property that D−̃v
is a proper set system. We have

max(D−̃v + v) = (max(D ∗ v))/̃v.

That is, max(D−̃v + v) is obtained from max(D ∗ v) by removing the sets that do not
contain v.
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Proof. By definition, D−̃v+v = (V, σ) where σ = {Y, Y ∪{v} | v /∈ Y ∈ D}. Consequently

all sets in max(D−̃v+v) contain v; that is, max(D−̃v+v) = max((D−̃v+v)/̃v). Moreover,
the family of sets of D−̃v + v that include v is {Y ∪ {v} | v /∈ Y ∈ D}, which is equal to

the family of sets of D ∗ v that include v. That is, (D−̃v + v)/̃v = (D ∗ v)/̃v; it follows

immediately that max((D−̃v+ v)/̃v) = max((D ∗ v)/̃v). The equality (max((D ∗ v))/̃v =

max((D ∗ v)/̃v) is obvious; the maximal elements of D ∗ v that contain v are the elements
of D ∗ v that are maximal among those that contain v.

Theorem 46 is the first of several results that extend properties of adjacency matroids
to general set systems or ∆-matroids. As we discuss in Theorem 59 below, this theorem
extends part of Proposition 24 of the introduction.

9.2 ∆-matroids

As mentioned in the introduction, a delta-matroid (∆-matroid for short) is a proper
set system D that satisfies the symmetric exchange axiom: For all X, Y ∈ D and all
u ∈ X∆Y , X∆{u} ∈ D or there is a v ∈ X∆Y with v 6= u such that X∆{u, v} ∈ D
(or both) [9]. Clearly if D is a ∆-matroid then D ∗X is a ∆-matroid for every X ⊆ V .
Also, a proper set system D is a ∆-matroid if and only if for each X ⊆ V , min(D ∗ X)
is equicardinal (see [14]). Equivalently, D is a ∆-matroid if and only if for each X ⊆ V ,
max(D ∗ X) is equicardinal. Moreover, if D is a ∆-matroid and v ∈ V then D − v is a
∆-matroid if and only if D − v is proper.

However D ∗̄ v may be a proper set system without being a ∆-matroid. As in [13,
Example 10], let V be a finite set with |V | > 3, and consider the ∆-matroid D = (V, σ)
with σ = 2V \{∅}. Then it is easy to see that the symmetric exchange axiom does not
hold for D ∗̄V = (V, {∅, V }).

If we assume a matroid M is described by its family of bases, i.e., M is the set system
(V,B) where B is the set of bases of M , then it is shown in [10, Proposition 3] that a
matroid M is precisely an equicardinal ∆-matroid. Moreover, a proper set system D is
a ∆-matroid if and only if for each X ⊆ V , max(D ∗X) is a matroid [11, Property 4.1].
Note that for a matroid M (described by its family of bases), M ∗ V is the dual matroid
of M . Hence, D is a ∆-matroid if and only if for each X ⊆ V , min(D ∗X) is a matroid.
Clearly for any ∆-matroid D, r(min(D)) = dD and ν(max(D)) = dD(V ), where r and
ν denote the rank and nullity of a matroid respectively. The deletion operation of ∆-
matroids coincides with the deletion operation of matroids only for non-coloops. Also, the
contraction operation of ∆-matroids coincides with the contraction operation of matroids
only for non-loops. Fortunately, as deletion and contraction for matroids coincide for
both loops and coloops, matroid-deletion of a coloop is equal to ∆-matroid-contraction
of that element, and matroid-contraction of a loop is equal to ∆-matroid-deletion of that
element.

We will need Theorem 5.5 from [14] (the original formulation is in terms of rank rather
than nullity).

the electronic journal of combinatorics 20(3) (2013), #P27 27



Proposition 47. Let D be a ∆-matroid, and suppose v ∈ V has the property that D + v
is also a ∆-matroid. Then max(D), max(D ∗ v), and max(D+ v) are matroids such that
precisely two of the three are equal, to say D1. Moreover the third, D2, has (D2 − v) ⊕
U1,1({v}) = D1 and ν(D2) = ν(D1) + 1.

Note that consequently, ν(max(D)) = ν(max(D∗v)) if and only if max(D) = max(D∗
v). Also, Theorem 46 tells us that if D−̃v is proper, then max(D−̃v + v) can replace
max(D ∗ v) in Proposition 47: if max(D ∗ v) = D1 then v is a coloop of max(D ∗

v) = (max(D ∗ v))/̃v = max(D−̃v + v), and if max(D ∗ v) = D2 then max(D ∗ v) and

(max(D ∗ v))/̃v = (max(D ∗ v)/v)⊕U1,1({v}) are different matroids (v is a coloop in the
latter but not the former) with the same nullity.

9.3 Representing graphs by ∆-matroids

Let G = (V,E) be a graph. Recall Definition 28: DG is the set system (V, σ) where
σ = {X ⊆ V | A(G)[X] is nonsingular over GF (2)}. It is shown in [9] that DG is a
normal ∆-matroid (by convention, the empty matrix is nonsingular). Moreover, if G is
a looped simple graph then given DG, one can (re)construct G: {u} is a loop in G if
and only if {u} ∈ DG, and {u, v} is an edge in G if and only if ({u, v} ∈ DG)∆(({u} ∈
DG)∧ ({v} ∈ DG)), see [11, Property 3.1]. In this way, the family of looped simple graphs
with vertex-set V can be considered as a subset of the family of ∆-matroids on the ground
set V .

It is shown in [14, Theorem 6.2] that dDG
(X) = ν(A(G)[X]) for all X ⊆ V , where ν

denotes GF (2)-nullity. If v is a looped vertex of G, then it is shown in [20] that DG ∗ v
represents the graph Gv. Moreover, if v is an unlooped vertex of G, then DG ∗̄ v represents
the graph Gv (see [13]). In this way, Gv may be defined using ∆-matroids. However,
DG ∗ v on an unlooped vertex v and DG ∗̄ v on a looped vertex v do not represent graphs
in general:

Proposition 48 (Proof of Theorem 8.2 in [14]). Let G be a graph, and ϕ be any sequence
of pivot, dual pivot and loop complement operations on elements of V (G). Then ∅ ∈
(DG)ϕ if and only if (DG)ϕ = DG′ for some graph G′.

In contrast, max((DG)ϕ) does always have a graph representation.

Theorem 49. Let G be a graph, and let ϕ be any sequence of pivot, dual pivot and local
complement operations on elements of V (G). Then max((DG)ϕ) is a binary matroid.

Proof. Let D = (DG)ϕ. Let X ∈ min(D). Then ∅ ∈ D ∗̄X if and only if |{Z ∈
D | Z ⊆ X}| is odd. Since {Z ∈ D | Z ⊆ X} = {X} by definition of X, we have
∅ ∈ D ∗̄X = (DG)ϕ ∗̄X. By Proposition 48, (DG)ϕ ∗̄X = DG′ for some graph G′. Thus,
max((DG)ϕ) = max((DG)ϕ ∗̄X) = max(DG′) and we are done.

For convenience, we define the pivot of a vertex v on a graph G, denoted G∗v, by Gv if
v is looped, and it is not defined otherwise. Similarly, we define the dual pivot of vertex v
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on G, denoted G ∗̄ v, by Gv if v is unlooped, and it is not defined otherwise. For a graph,
loop complementation of a vertex v ∈ V (G), denoted by G+ v, toggles the existence of a
loop on v. I.e., v is a looped vertex of G iff v is not a looped vertex of G+ v. It is shown
in [13] that DG+v = DG + v (i.e., loop complementation for ∆-matroids generalizes loop
complementation for graphs).

It is easy to verify that for each v ∈ V (G), DG−v = DG − v. Theorem 29 of the
introduction follows readily from this easy observation and the strong principal minor
theorem [24] (see also Theorem 40 above). As we will see in the following sections, the
equality

max(DG) =MA(G)

(whereMA(G) is described by its family of bases) allows us to give various results stated in
the introduction completely different proofs, using ∆-matroids rather than linear algebra
over GF (2).

10 Deletion/contraction and min/max for ∆-matroids

In this section we show, under the assumption of some mild conditions, that both con-
traction and deletion commute with both the min and the max operation for ∆-matroids.
In fact, some results hold for set systems in general. We will apply these results to graphs
in the next section.

Let D be a set system. The notions of loop and coloop for matroids (described by
their families of bases) may be directly generalized to set systems. An element v ∈ V is
called a coloop of D if v ∈ X for each X ∈ D. Clearly, v is a coloop of D if and only if
D − v is not proper. Similarly, v ∈ V is called a loop of D if v is a coloop of D ∗ v, i.e.,
v 6∈ X for each X ∈ D.

We first show that the min operation and the deletion operation on an element v
commute for proper set systems D, provided that D − v is proper. Note that D − v is
proper, i.e., v is not a coloop of D, if and only if v is not a coloop of min(D).

Theorem 50. Let D be a proper set system, and let v ∈ V such that D − v is proper.
Then min(D)− v = min(D − v).

Proof. Since D − v is proper, min(D − v) is well defined. Let X ∈ min(D) − v. Then
X ∈ min(D) and v 6∈ X. Hence, X ∈ min(D − v). Conversely, if X ∈ min(D − v),
then X ∈ D and v 6∈ X. Let Y ⊆ X with Y ∈ min(D). Then clearly, v 6∈ Y and thus
Y ∈ min(D − v). Hence X = Y and X ∈ min(D). Therefore, X ∈ min(D)− v.

Next, we show that the max operation and the deletion operation on a element v
commute for ∆-matroids D, provided that v is not a coloop of max(D).

Theorem 51. Let D be a ∆-matroid, and let v ∈ V such that v is not a coloop of max(D).
Then max(D)− v = max(D − v).
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Proof. Since v is not a coloop of max(D), there is a Z ∈ max(D) with v 6∈ Z. Therefore
D − v is proper, and so max(D − v) is well defined. Let X ∈ max(D) − v. Then
X ∈ max(D) and v 6∈ X. Hence, X ∈ max(D− v). Conversely, if X ∈ max(D− v), then
X ∈ D and v 6∈ X, and X is maximal with this property. As v is not a coloop of max(D),
there is a Z ∈ max(D) with v 6∈ Z. Therefore, Z ∈ max(D) − v. By the first part of
this proof, Z ∈ max(D − v). Now, as D − v is a ∆-matroid, max(D − v) is equicardinal
and so |Z| = |X|. Moreover, since D is a ∆-matroid, max(D) is equicardinal, therefore
X ∈ max(D) and so, X ∈ max(D)− v.

The next example illustrates that Theorem 51 does not hold for set systems in general.
This in contrast with Theorem 50, which does hold for set systems in general.

Example 52. Let D = (V, σ) be a set system with V = {u, v, w} and σ = {{u}, {v},
{v, w}}. Then w is not a coloop of max(D) = (V, {{u}, {v, w}}), and max(D) − w =
({u, v}, {{u}}) while max(D − w) = ({u, v}, {{u}, {v}}).

We formulate now the max (min, resp.) “counterparts” of Theorem 50 (Theorem 51,
resp.). These results show that contraction commutes with the min and max operations.

Theorem 53. Let D be a proper set system and v ∈ V .

1. If v is not a loop of D, then max(D) ∗ v − v = max(D ∗ v − v).

2. If D is moreover a ∆-matroid and v is not a loop of min(D), then min(D) ∗ v− v =
min(D ∗ v − v).

Proof. We start by showing the first result. We have max(D) ∗ v− v = min(D ∗ V ) ∗ V ∗
v − v = min(D ∗ V ) − v ∗ (V \{v}). Now, v is not a coloop of D ∗ V . Thus, D ∗ V − v
is proper. By Theorem 50, min(D ∗ V ) − v ∗ (V \{v}) = min(D ∗ V − v) ∗ (V \{v}) =
min(D ∗ v − v ∗ (V \{v})) ∗ (V \{v}) = max(D ∗ v − v). The proof of the second result is
essentially identical to that of the first result. We have min(D)∗v−v = max(D ∗V )∗V ∗
v− v = max(D ∗ V )− v ∗ (V \{v}). Now, v is not a coloop of min(D) ∗ V = max(D ∗ V ).
By Theorem 51, max(D ∗ V )− v ∗ (V \{v}) = max(D ∗ V − v) ∗ (V \{v}) = max(D ∗ v −
v ∗ (V \{v})) ∗ (V \{v}) = min(D ∗ v − v).

11 From ∆-matroids to graphs

In this section we use results of Sections 9 and 10 to give new proofs of several theorems
about adjacency matroids stated earlier in the paper. These proofs are fundamentally
different from the earlier ones, as they are combinatorial and do not involve matrices.
Recall that as observed in Subsection 9.3, if G is a graph then DG is a ∆-matroid with
MA(G) = max(DG); DG is normal, so no v ∈ V is a coloop of DG.

The following three results are quite straightforward consequences of the fact that for
DG, max commutes with both deletion (of non-coloops) and contraction (of non-loops),
cf. Theorems 51 and 53.
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Theorem 54. If v is not a coloop of MA(G), then MA(G)− v =MA(G− v).

Proof. If v is not a coloop of MA(G), then MA(G)− v = max(DG)− v. By Theorem 51,
max(DG)− v = max(DG − v) = max(DG−v) =MA(G− v).

Theorem 55. If v ∈ V (G) is a looped vertex, then MA(G)/v =MA(G
v − v).

Proof. Since {v} ∈ DG, v is not a loop of DG. Consequently, v is not a loop of max(DG).
We have therefore MA(G)/v = max(DG) ∗ v − v. By Theorem 53, max(DG) ∗ v − v =
max(DG ∗ v− v). Since v is a looped vertex, DG ∗ v = DG∗v, and thus max(DG ∗ v− v) =
max(DG∗v−v) =MA(G ∗ v − v). The result follows as G ∗ v = Gv.

Theorem 56. Suppose v is an unlooped vertex of G.

1. If v is isolated, then MA(G)/v =MA(G− v).

2. If w is an unlooped neighbor of v, then MA(G)/v =MA((G
w)v − v).

3. If w is a looped neighbor of v, then MA(G)/v =MA(((G
v)w)v − v).

Proof. We first prove Result 1. If v is isolated and unlooped, then v is a loop of MA(G).
Hence, MA(G)/v =MA(G)−v. Moreover, v is not a coloop ofMA(G). The result follows
now by Theorem 54.

We now prove Results 2 and 3. Let w be a neighbor of v. As {v, w} ∈ DG, v is not a
loop of DG. Hence, MA(G)/v = max(DG) ∗ v − v. By Theorem 53, max(DG) ∗ v − v =
max(DG ∗v−v). Now, max(DG ∗v−v) = max(DG ∗v−v ∗̄w) = max(DG ∗̄w ∗v−v). On
the one hand, if w is unlooped, then it is easy to verify that G ∗̄w ∗ v is defined. Hence
DG ∗̄w ∗ v = DG ∗̄w∗v. Finally, max(DG ∗̄w∗v − v) =MA(G ∗̄w ∗ v − v) =MA((G

w)v − v).
This proves Result 2. On the other hand, if w is looped, then it is easy to verify that
G ∗̄ v ∗̄w ∗ v is defined. Hence DG ∗̄ v ∗̄w ∗ v = DG ∗̄ v ∗̄w∗v. Finally, max(DG ∗̄w ∗ v− v) =
max(DG ∗̄ v ∗̄w∗v−v) =MA(G ∗̄ v ∗̄w∗v−v) =MA(((G

v)w)v−v). This proves Result 3.

The next result is obtained from Proposition 47.

Theorem 57. 1. If v ∈ V (G) is unlooped, then MA(G
v) =MA(G).

2. If v ∈ V (G) is a coloop of both MA(G) and MA(G
v), then MA(G

v) =MA(G).

3. If v ∈ V (G) is looped and not a coloop of one of MA(G), MA(G
v), then v is a coloop

of the other and MA(G
v) and MA(G) are of different ranks.

Proof. We first show Result 1. If v is unlooped, then Gv = G ∗̄ v. Thus, MA(G) =
max(DG) = max(DG ∗̄ v) = max(DG ∗̄ v) =MA(G

v) and the result follows.
We now show Results 2 and 3. If v is unlooped, then we are done by Result 1. So,

assume v is looped. Then we have Gv = G ∗ v. The result follows now by Proposition 47.

Theorem 58. If v ∈ V (G), then MA(G)− v =MA(G
v)− v.
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Proof. If v is an unlooped vertex, then by Theorem 57.1, MA(G) = MA(G
v) and the

equality holds. Assume now that v is a looped vertex. By Theorem 57.3, v is a coloop of
at least one of MA(G) and MA(G

v). If v is a coloop of both MA(G) and MA(G
v), then

the equality holds by Theorem 57.2.
We assume now without loss of generality that v is a coloop of MA(G) and v is not a

coloop of MA(G
v) (the other case follows by considering graph G := Gv). We have in this

case MA(G) − v = MA(G)/v. By Theorem 55, MA(G)/v = MA(G
v − v). As v is not a

coloop of MA(G
v), by Theorem 54, MA(G

v − v) =MA(G
v)− v and the result follows.

By the way, the interested reader will have no trouble using [14, Theorem 6.2] to prove
Theorems 44 and 45.

It is easy to see that DG−̃v + v = DG(v,li). Hence we obtain the following corollary to
Theorem 46 and Proposition 47. Part 1 follows from part 2, which is part of Proposition
24; and part 3 includes some of the assertions of Theorem 25.

Theorem 59. If G is a graph with a looped vertex v, then the following hold.

1. ν(MA(G
v)) = ν(MA(G(v, ℓi))).

2. B(MA(G(v, ℓi))) = {B ∈ B(MA(G
v)) | v ∈ B}, i.e., MA(G(v, ℓi)) = (MA(G

v)/v)⊕
U1,1({v}).

3. MA(G(v, ℓi)) =MA(G
v) iff ν(MA(G)) > ν(MA(G

v)).

12 The interlace and Tutte polynomials

In this section we discuss the connection between the interlace polynomials of a graph G,
introduced by Arratia, Bollobás and Sorkin [2, 3, 4], and the Tutte polynomials of the
adjacency matroids of G and its subgraphs. (The Tutte polynomial is described by many
authors; see [6] and [34] for instance. Especially thorough accounts are given in the book
chapters by Brylawski and Oxley [38] and Ellis-Monaghan and Merino [17].) In particular,
we show that the fundamental recursion of the two-variable interlace polynomial may be
derived from properties of the leading term of the Tutte polynomial.

Definition 60. Let G be a graph. Then the interlace polynomial of G is

q(G) =
∑

S⊆V (G)

(x− 1)|S|−ν(A(G[S]))(y − 1)ν(A(G[S]))

=
∑

S⊆V (G)

(x− 1)|S| ·

(
y − 1

x− 1

)ν(A(G[S]))

,

where ν denotes GF (2)-nullity.
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Arratia, Bollobás and Sorkin [4] showed that q(G) may also be defined recursively:
1. If v is a looped vertex of G then q(G) = q(G− v) + (x− 1)q(Gv − v).
2. If v and w are unlooped neighbors in G then q(G) = q(G − v) + q(((Gv)w)v − v)

+((x− 1)2 − 1) · q(((Gv)w)v − v − w).
3. If G consists solely of unlooped vertices then q(G) = y|V (G)|.
So far, our discussion of matroids has been focused on their circuits. Here are two

other basic definitions of matroid theory.

Definition 61. Let M be a matroid on a set V . A subset I ⊆ V is independent if I
contains no circuit of M . The rank of a subset S ⊆ V is the cardinality of the largest
independent set(s) in S; it is denoted r(S).

All the notions of matroid theory can be equivalently defined from the independent
sets or the rank function, instead of the circuits. For instance, Definitions 15 and 16 are
equivalent to: if M is a matroid on a set V and v ∈ V then the deletion M − v and the
contraction M/v are the matroids on V \{v} with the rank functions rM−v(S) = r(S) and
rM/v(S) = r(S ∪ {v})− r({v}).

Recall that if G is a graph, then the circuits of MA(G) are the minimal nonempty
subsets S ⊆ V (G) such that the columns of A(G) corresponding to elements of S are
linearly dependent. It follows that the rank in MA(G) of a subset S ⊆ V (G) is simply
the GF (2)-rank of the |V (G)|× |S| submatrix of A(G) obtained by removing the columns
corresponding to vertices not in S. This submatrix of A(G) is obtained from A(G[S])
by adjoining rows corresponding to vertices not in S, so r(S) > |S| − ν(A(G[S])). The
difference between r(S) and |S| − ν(A(G[S])) varies with G and S, in general; however
if r(S) = r(MA(G)) then according to the strong principal minor theorem (see [24] or
Theorem 40), r(S) = |S| − ν(A(G[S])).

Definition 62. Let M be a matroid on a set V . Then the Tutte polynomial of M is

t(M) =
∑

S⊆V

(x− 1)r(V )−r(S)(y − 1)|S|−r(S).

The equations rM/v(S) = r(S ∪ {v}) − r({v}) and rM−v(S) = r(S) imply that the
Tutte polynomial may be calculated recursively using the following steps.

1. If v is a loop of M then t(M) = y · t(M − v).
2. If v is a coloop of M then t(M) = x · t(M/v).
3. If v is neither a loop nor a coloop, then t(M) = t(M/v) + t(M − v).
4. t(∅) = 1.

The distinction between M − v and M/v in steps 1 and 2 is traditional, but for us it is
unimportant as Definitions 15 and 16 have M/v = M − v for loops and coloops.

We single out the leading term of t(M) (the term corresponding to S = V ) for special
attention.

Definition 63. Let M be a matroid on a set V . Then λM(y) = (y − 1)|V |−r(V ).
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Like t(M), λM has a recursive description derived from the equations rM/v(S) =
r(S ∪ {v})− r({v}) and rM−v(S) = r(S):

Proposition 64. 1. If v is a loop of M then λM = (y − 1) · λM−v = (y − 1) · λM/v.
2. If v is a coloop of M then λM = λM−v = λM/v.
3. If v is neither a loop nor a coloop, then λM = (y − 1) · λM−v = λM/v.
4. λ∅ = 1.

If G is a graph then we adopt the abbreviated notation λMA(G) = λG.

Corollary 65. 1. If v is an unlooped vertex of G then λG = λGv .
2. If v is a looped vertex of G then λG = λGv−v.
3. If v is an isolated, unlooped vertex of G then λG = (y − 1) · λG−v.
4. λ∅ = 1.

Proof. If v is an unlooped vertex of G then MA(G) = MA(G
v) by Theorem 21. If v is

a looped vertex of G then v is not a loop of MA(G), so λMA(G) = λMA(G)/v = λGv−v by
Proposition 64 and Theorem 17. If v is an isolated, unlooped vertex of G then v is a loop
of MA(G), so λMA(G) = (y− 1) ·λMA(G)−v = (y− 1) ·λG−v by Theorem 19 and Proposition
64.

If G is a graph then Definitions 60 and 63 imply that

q(G) =
∑

S⊆V (G)

(x− 1)|S| · λG[S](1 +
y − 1

x− 1
) (1)

and hence for each v ∈ V (G),

q(G)− q(G− v) =
∑

v∈S⊆V (G)

(x− 1)|S| · λG[S](1 +
y − 1

x− 1
). (2)

Suppose v is a looped vertex and v ∈ S ⊆ V (G). Then Corollary 65 tells us that λG[S]

= λG[S]v−v. Clearly G[S]
v − v = Gv[S]− v = (Gv − v)[S\{v}], so it follows from equations

(1) and (2) that

q(G)− q(G− v) = (x− 1) ·
∑

v∈S⊆V (G)

(x− 1)|S|−1 · λGv [S]−v(1 +
y − 1

x− 1
)

= (x− 1) ·
∑

S⊆V (G)\{v}

(x− 1)|S| · λ(Gv−v)[S](1 +
y − 1

x− 1
)

= (x− 1) · q(Gv − v).

This yields the first formula of the recursive description of q.
Suppose now that v is an unlooped vertex of G, and w is an unlooped neighbor of v in

G. Let H = (Gv)w; then v and w are looped neighbors in H. Equation (2) tells us that

q(Hv − v)− q(Hv − v − w) =
∑

w∈S⊆V (Hv−v)

(x− 1)|S| · λHv [S](1 +
y − 1

x− 1
).
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Suppose w ∈ S ⊆ V (Hv−v); obviously thenHv[S] =Hv[S∪{v}]−v =H[S∪{v}]v−v.
As v and w are both looped in H[S ∪ {v}] = (Gv)w[S ∪ {v}], Corollary 65 tells us that

λHv [S] = λH[S∪{v}]v−v = λH[S∪{v}] = λ(Gv)w[S∪{v}] = λ((Gv)w[S∪{v}])w−w.

Note that ((Gv)w[S ∪ {v}])w − w = ((Gv)w)w[S ∪ {v}] − w = Gv[(S\{w}) ∪ {v}] =
G[(S\{w}) ∪ {v}]v. As v is unlooped in G[(S\{w}) ∪ {v}], Corollary 65 tells us that

λ((Gv)w[S∪{v}])w−w = λG[(S\{w})∪{v}]v = λG[(S\{w})∪{v}].

We conclude that

q(Hv − v)− q(Hv − v − w)

=
∑

w∈S⊆V (H−v)

(x− 1)|S| · λG[(S\{w})∪{v}](1 +
y − 1

x− 1
)

=
∑

v∈S⊆V (G−w)

(x− 1)|S| · λG[S](1 +
y − 1

x− 1
).

Combining this with equation (2), we see that

q(G)− q(G− v)

= q(Hv − v)− q(Hv − v − w) +
∑

v,w∈S⊆V (G)

(x− 1)|S| · λG[S](1 +
y − 1

x− 1
).

Suppose now that v, w ∈ S ⊆ V (G). Then Proposition 64 and Theorem 18 imply that

λG[S] = λMA(G[S])/w = λ(G[S]v)w−w = λ(Gv)w[S]−w = λH[S\{w}].

As v is looped in H, Corollary 65 states that

λH[S\{w}] = λH[S\{w}]v−v = λHv [S\{v,w}].

We conclude that

q(G)− q(G− v)− q(Hv − v) + q(Hv − v − w)

=
∑

v,w∈S⊆V (G)

(x− 1)|S| · λG[S](1 +
y − 1

x− 1
)

=
∑

v,w∈S⊆V (G)

(x− 1)|S| · λHv [S\{v,w}](1 +
y − 1

x− 1
)

=
∑

S⊆V (Hv−v−w)

(x− 1)|S|+2 · λHv [S](1 +
y − 1

x− 1
)

= (x− 1)2 · q(Hv − v − w).
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This yields the second formula of the recursive description of q.
In the years since Arratia, Bollobás and Sorkin introduced the interlace polynomials

[2, 3, 4], several related graph polynomials have been studied by other researchers [1, 16,
32]. These related polynomials have definitions similar to Definition 60, as sums involving
GF (2)-nullities of symmetric matrices. Consequently they have similar connections with
the leading terms of Tutte polynomials of adjacency matroids.
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