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Abstract

We prove generalized arithmetic-geometric mean inequalities for quasi-means
arising from symmetric polynomials. The inequalities are satisfied by all pos-
itive, homogeneous symmetric polynomials, as well as a certain family of non-
homogeneous polynomials; this family allows us to prove the following combinatorial
result for marked square grids.

Suppose that the cells of a n × n checkerboard are each independently filled or
empty, where the probability that a cell is filled depends only on its column. We
prove that for any 0 6 ` 6 n, the probability that each column has at most ` filled
sites is less than or equal to the probability that each row has at most ` filled sites.

Keywords: symmetric means; symmetric polynomials; arithmetic-geometric mean
inequality

1 Introduction

Let n be a positive integer. We define an n-variable orthant function to be a continuous
function F : Rn

>0 → R>0 such that F (x) = F (x1, . . . , xn) is monotonically increasing in
each xi and that also has a strictly increasing diagonal restriction, fF (y) = F (y, . . . , y).
Given an n-variable orthant function F , we define the following n-variable orthant func-
tions associated with F : the quasi-arithmetic mean, the quasi-geometric mean, and the
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quasi-mean; respectively, they are

AF (x) := f−1F

(
fF (x1) + · · ·+ fF (xn)

n

)
, (1.1)

GF (x) := f−1F

(
n∏
j=1

fF (xj)
1
n

)
,

MF (x) := f−1F (F (x)) .

Note that these means have been studied classically (see [2], Chapter III).
Some care is needed to verify that these definitions are well-defined. One must note

that since fF (y) is strictly increasing and continuous, its range R := fF (R>0) is of the form
R = [fF (0),M) or [fF (0),+∞), according to the value M = limy→+∞ fF (y). Furthermore,
fF is a bijection and f−1F is strictly increasing and continuous. Since R is closed under
taking arithmetic and geometric means of its elements, AF (x) and GF (x) are well-defined.
Since F is monotonically increasing in each variable, it also satisfies

fF (x) 6 F (x) 6 fF (x)

where x := min{xi : 1 6 i 6 n} and x := max{xi : 1 6 i 6 n}. This implies that
F (Rn

>0) = R and so MF (x) is well-defined also.
If M = AF ,GF , or MF , we therefore have that M is a quasi-mean. In particular,

M satisfies the following usual properties of a mean: it is continuous and monotonically
increasing in each variable, x 6 M(x) 6 x for all x ∈ R>0, and M(y, . . . , y) = y
for all y > 0. Note that the f−1F in the definition of M ensures the final “identity”
property, M(y, . . . , y) = y. However, M is not necessarily linearly homogeneous, i.e. we
do not necessarily have M(λx) = λM(x) for all λ > 0 and x ∈ Rn

>0. The function
F (x) = (1 + x1)(1 + x2) provides a simple counterexample for each type of M .

Since fF and hence f−1F are strictly increasing, AF and GF are strictly increasing in
each variable. An arithmetic-geometric mean inequality between GF and AF also easily
follows: for all x ∈ Rn

>0,
GF (x) 6 AF (x),

with equality if and only if all xi are equal. This is also Theorem 85 of [2], with ψ = log fF ,
χ = fF , and q ≡ 1/n. Note that the classical arithmetic-geometric mean inequality can
be recovered from this by setting F (x) = (x1 · · ·xn)1/n.

In this paper we study functions whose quasi-means provide a refinement of the pre-
ceding arithmetic-geometric mean inequality. Namely, we are interested in S, which we
define to be the set of all orthant functions F for which

GF (x) 6MF (x) 6 AF (x), for all x ∈ Rn
>0. (1.2)

Proposition 1.1. The set S satisfies the following properties.

1. If F (x1, . . . , xn) is a homogeneous symmetric polynomial with positive coefficients,
then F ∈ S.
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2. If Fi(x1, . . . , xn) ∈ S for i = 1, 2, then F1 · F2 ∈ S.

Remark 1.2. The set S is not closed under addition. For example, F (x) = 1 +x1x2 is the
sum of two homogeneous functions but GF 6MF fails to hold when x1 6= x2.

For integers ` and n with 0 6 ` 6 n we define

η`(x) :=
∑̀
j=0

∑
I⊆[n]
|I|=j

xI , (1.3)

where we have adopted the common notation xI :=
∏

i∈I xi, along with the convention
x∅ = 1. Note that η` is an orthant function if and only if ` > 1. We denote the diagonal
restriction of η` by

µ`(y) := η`(y, . . . , y) =
∑̀
j=0

(
n

j

)
yj. (1.4)

In Section 3 we will prove the following result, which states that η` ∈ S for 1 6 ` 6 n.

Theorem 1.3. If ` and n are integers with 0 6 ` 6 n and n > 1, then(
n∏
i=1

µ`(xi)

)1/n

6 η`(x) 6
1

n

n∑
i=1

µ`(xi), for all x ∈ Rn
>0.

Equality holds throughout if and only if ` = 0, ` = n, or x1 = · · · = xn.

These quasi-mean inequalities have an appealing application to combinatorial proba-
bility. Let {Xij, 1 6 i, j 6 n} be a collection of independent Bernoulli random variables
with probability pj; in other words, P(Xij = 1) = pj and P(Xij = 0) = 1 − pj. Using
these, we further define the random variables

Cj :=
n∑
i=1

Xij for 1 6 j 6 n,

Ri :=
n∑
j=1

Xij for 1 6 i 6 n.

Using Theorem 1.3, we prove bounds relating the distributions of the Cjs and Ris.

Theorem 1.4. Suppose that p1, . . . , pn ∈ [0, 1]. If ` is an integer with 0 6 ` 6 n, then

P

(
max
16j6n

{Cj} 6 `

)
6 P

(
max
16i6n

{Ri} 6 `

)
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Theorem 1.4 has two immediate combinatorial reformulations: one to marked square
grids and another to random bipartite graphs. First, suppose that markers are indepen-
dently placed in the squares of an n by n grid such that the probability that a marker
is placed in a square depends only on that square’s column. Then for all integers ` with
0 6 ` 6 n, the probability that every column has at most ` markers is less than or equal
to the probability that each row has at most ` markers.

Alternatively, suppose that G is a finite complete bipartite graph with bipartition
(A,B), where |A| = |B| = n. Let H be a random subgraph of G where each edge e of G
is independently selected to belong to H with a probability that depends only on the left
vertex e ∩ A. If ` > 0, then

P

(
max
a∈A
{dH(a)} 6 `

)
6 P

(
max
b∈B
{dH(b)} 6 `

)
.

Remark 1.5. In the grid formulation, both events in the inequality require that at most
n` squares be occupied. Similarly, both events in the bipartite graph formulation require
that there be at most n` edges.

The remainder of the paper is as follows. In Section 2 we study the basic properties
of homogeneous symmetric polynomials and the functions in S, and also prove Proposi-
tion 1.1. In Section 3 we use Lagrange multipliers and polynomial inequalities to prove
Theorem 1.3. We conclude in Section 4, where we describe the relationship between the
quasi-mean inequalities and combinatorial probability, and prove Theorem 1.4.

2 Properties of symmetric polynomials and S
As found in Chapter 7 of [4], one can define various homogeneous (graded) bases for the
ring of symmetric polynomials on n variables; we will make explicit use of the elementary
symmetric polynomials {ej(x) | 0 6 j 6 n}, where the degree j polynomial is defined as
ej(x) :=

∑
{xI : I ⊆ [n], |I| = j}. We will also use the monomial symmetric polynomials,

which are defined as follows.
For a positive integer n, let ∆(n) := {λ ∈ Rn

>0 : λ1 > · · · > λn}, and define the weight
of such a vector λ as |λ| := λ(1) + · · · + λ(n). If λ ∈ ∆(n), the monomial symmetric
polynomial associated to λ is defined as

Mλ(x) :=
1

n!

∑
σ∈Sn

x
λ(1)
σ(1) · · ·x

λ(n)
σ(n). (2.1)

Note that this is homogeneous of degree |λ| .
We now recall various inequalities between symmetric polynomials. Suppose that

λi = (λi(1), . . . , λi(n)) ∈ ∆(n) for i ∈ {1, 2}. We say that λ1 majorizes λ2 if and only if
|λ1| = |λ2|, and

λ1(1) + · · ·+ λ1(j) > λ2(1) + · · ·+ λ2(j)

for all 1 6 j < n. In this case, we write λ1 � λ2. Muirhead’s inequalities can be concisely
stated as follows.
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Theorem (Muirhead [3]). Suppose that λ1,λ2 ∈ ∆(n). The inequality

Mλ1
(x) >Mλ2

(x) (2.2)

is satisfied for all x ∈ Rn
>0 if and only if λ1 � λ2.

Note that [3] only contains the case where both λi have integral parts, while [2]
(Theorem 45, p. 45) contains the general result above. We also recall the following
elementary result from the general theory of series inequalities; see [2] (Theorem 368, p.
261).

Theorem (Rearrangement Inequality). Suppose that a1 > . . . > an > 0 and b1 > . . . >
bn > 0. If σ ∈ Sn is a permutation, then

n∑
i=1

aibi >
n∑
i=1

aibσ(i). (2.3)

Our final preliminary observations address the inequalities in (1.2) individually. Let
L denote the set of orthant functions F that satisfy the left inequality:

GF (x) 6MF (x), for all x ∈ Rn
>0,

and let R denote the set of orthant functions that satisfy the right inequality:

MF (x) 6 AF (x), for all x ∈ Rn
>0.

Clearly we have S = L ∩ R. The following properties follow immediately from the
definitions of the quasi-means.

Proposition 2.1. The classes L and R have the following closure properties:

1. If Fi ∈ L for i = 1, 2, then F a
1 · F b

2 ∈ L for all a, b > 0.

2. If Fi ∈ R for i = 1, 2, then aF1 + bF2 ∈ R for all a, b > 0.

The preceding facts now allow us to prove our first result about S.

Proof of Proposition 1.1. We first prove statement 1. Suppose F is a homogeneous sym-
metric polynomial with positive coefficients and total degree w. It can be written as

F (x) =
k∑
i=1

aiMλi
(x), (2.4)

where ai > 0, λi ∈ ∆(n) and |λi| = w for all i. Writing A :=
∑k

i=1 ai > 0, Muirhead’s
theorem (2.2) then implies that

A ·M(w/n,...,w/n)(x) 6 F (x) 6 A ·M(w,0,...,0)(x), for all x ∈ Rn
>0. (2.5)
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We finish the proof by showing that this is equivalent to the statement F ∈ S. Since
fF (y) = F (y, . . . , y) = Ayw, we find that the leftmost expression in (2.5) is the same as

A · 1

n!
· (x1 · · ·xn)w/n · n! =

(
n∏
i=1

fF (xi)

)1/n

.

Similarly, the rightmost expression in (2.5) equals

A · 1

n!
(xw1 + · · ·+ xwn ) · (n− 1)! =

1

n

n∑
i=1

fF (xi).

This completes the first part of the proof.
We now turn to statement 2. Throughout this part of the proof we write fi as short-

hand for fFi
. By part 1 of Proposition 2.1 we need only show that if Fi ∈ S for i = 1, 2,

then F1 · F2 ∈ R. This is equivalent to showing that

(F1F2)(x) 6
1

n

n∑
i=1

fF1F2(x), (2.6)

and we can immediately rewrite fF1F2 = f1 · f2. Using the assumption that Fi ∈ R, we
find that the left side of (2.6) satisfies

(F1F2)(x) 6

(
1

n

n∑
i=1

f1(xi)

)(
1

n

n∑
i=1

f2(xi)

)
=

1

n2

n∑
i1,i2=1

f1(xi1)f2(xi2). (2.7)

Define the one-step shift cyclical permutation by σ(i) := i + 1 for 1 6 i 6 n − 1, and
σ(n) := 1. Reordering the xi if necessary so that x1 > . . . > xn > 0, we then further
rewrite the sum from (2.7) as

1

n2

n∑
i1,i2=1

f1(xi1)f2(xi2) =
1

n2

n−1∑
j=0

n∑
i=1

f1(xi)f2
(
xσj(i)

)
.

The Rearrangement Inequality, (2.3), now implies that the largest term in the outer
summation occurs when j = 0, so

(F1F2)(x) 6
1

n

n∑
i=1

(f1f2)(xi), (2.8)

which verifies (2.6).
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3 Proof of Theorem 1.3

3.1 Overview

In this section we prove Theorem 1.3, devoting most of our effort to the left inequality. In
particular, we consider the level sets of η`(x) and then apply the technique of Lagrange
multipliers in order to determine the extremal behavior of

U(x) :=
n∏
j=1

µ`(xj)
1
n .

For each R in the range of η` on Rn
>0, define the surface Ω(R) = {x ∈ Rn

>0 : η`(x) = R}.
Given d > 0 and an integer k with 1 6 k 6 n, we define ck(d) = d(e1 + · · · + ek) ∈ Rn,
where ei is the i-th standard basis vector. We refer to a point in Rn

>0 as a k-diagonal
point if it is any coordinate permutation of a point of the form ck(d) for some d > 0.

Lemma 3.1. If 1 6 ` 6 n− 1, 1 < R <∞, and z is a maxima of U(x) on Ω(R) then z
is a k-diagonal point for some k with 1 6 k 6 n.

We will prove Lemma 3.1 in Section 3.2 using the method of Lagrange multipliers (see
Theorem 3.3).

By the symmetry of f and η`, if we restrict our attention to a single point x ∈ Rn
>0, we

may assume that there is some 0 6 k 6 n such that x1, . . . , xk > 0 and xk+1 = · · · = xn =
0. With this in mind, we generalize the functions defined in (1.3) and (1.4) by setting

η`,k (x) := η` (x1, . . . , xk, 0, . . . , 0) , (3.1)

µ`,k(y) := η`(y, . . . , y︸ ︷︷ ︸
k times

, 0, . . . , 0).

These are related to our earlier definitions by η` = η`,n and µ` = µ`,n, and we also have
the further relations

η`,k(x) =
∑
I⊆[k]
|I|6`

xI , µ`,k(y) = η`,k(y, . . . , y) =
∑̀
j=0

(
k

j

)
xj, (3.2)

and finally, η`,k(x) = ηk,k(x) =
∏k

i=1(1 + xi) if ` > k.

Lemma 3.2. If 0 6 ` 6 n, 1 6 k 6 n, and y > 0, then

µk`,n(y) 6 µn`,k(y).

The inequality is tight if and only if ` = 0, ` = n, y = 0 or k = n.

We will prove Lemmas 3.1 and 3.2 in Sections 3.2 and 3.3, respectively. We now show
how they imply Theorem 1.3.
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Proof of Theorem 1.3. If ` = 0 or x = 0, then all terms in the two inequalities are equal
to 1. If x1 = · · · = xn = y then all terms are identically equal to µ`(y). If ` = n, the
left inequality is an identity and the right inequality is an application of the arithmetic-
geometric mean inequality. In general, the right inequality follows from Proposition 1.1
part 1 and Proposition 2.1 part 2. So it suffices to prove the left inequality in the case
where x ∈ Rn

>0, x 6= 0 and 1 6 ` 6 n− 1.
Since η` is strictly increasing in each variable, a non-zero x is contained in the surface

Ω(R) with R = R(x) = η`(x) > η`(0) = 1. Since η`(x) > 1 + xi for all 1 6 i 6 n, Ω(R)
is bounded. Since η`(x) is continuous, Ω(R) is also closed, and hence compact.

This means that there exists at least one point z ∈ Ω(R) at which f(x) takes its
maximum value on Ω(R). Since R > 1, z 6= 0 and, by Lemma 3.1, z = ck(d), for some
1 6 k 6 n and d > 0. By Lemma 3.2, if k < n, then

f(z) = (µ`,n(d))
k
n < µ`,k(d) = η`(z) = R.

However, if k = n, we have f(z) = µ`(d) = η`(z) = R.

3.2 Lagrange multipliers and maxima

In this section we prove Lemma 3.1 using Proposition 3.3.1 of [1], p.284. We restate this
result as Theorem 3.3, a form more suitable to our purposes.

Theorem 3.3 (The method of Lagrange multipliers with inequality constraints.). Let
f, h1, . . . , hm, g1, . . . , gr : Rn → R be continuously differentiable functions. Suppose z is
a point at which f(x) has a local maximum over Ω = {x : h1(x) = · · · = hm(x) =
0, g1(x), . . . , gr(x) > 0}. Suppose also that z is regular, i.e. {∇h1(z), . . . ,∇hm(z)} ∪
{∇gi(z) : i ∈ A(z)} is a linearly independent set where A(x) := {1 6 j 6 r : gj(x) = 0}.
Then there exist unique Lagrange multiplier vectors λ′ ∈ Rm and ρ′ ∈ Rr

>0, such that

∂L
∂xi

(z,λ′,ρ′) = 0, 1 6 i 6 n,

ρ′j = 0, j 6∈ A(z)

where L(x,λ,ρ) := f(x) +
∑m

i=1 λihi(x) +
∑r

j=1 ρjgj(x).

Proof of Lemma 3.1. Theorem 3.3 applies to the present setting with Ω(R) as the set Ω,
constraint function h(x) := η`(x)−R, and inequality constraints gi(x) := xi for 1 6 i 6 n.
The Lagrangian function is then

L(x, λ,ρ) := U(x) + λ(ηl(x)−R) +
n∑
i=1

ρixi.

Let z ∈ Ω(R) be a point at which U(x) attains its maximum value over Ω(R).
Since R > 1, z has at least one non-zero coordinate. By symmetry we may assume
z1, z2, . . . , zk > 0 and zk+1 = . . . = zn = 0 for some k > 1. Since ∇h(z) trivially has
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positive coordinates, ∇h(z) together with ∇gi(z) = ei, for k+ 1 6 i 6 n, form a linearly
independent set. Thus z is regular, and the conditions of Theorem 3.3 are met.

The theorem statement now implies that there is a constant λ′ such that

1

n

µ′`,n(zi)

µ`,n(zi)
U(z) + λ′

∂η`
∂xi

(z) = 0, 1 6 i 6 k.

It is trivial to check that U(z) > 1 and ∂η`
∂xi

(z) > 1 for all i with 1 6 i 6 n. Thus, if we
define

γi :=
1

n

µ′`,n(zi)

µ`,n(zi)
∂η`
∂xi

(z)
, 1 6 i 6 k,

then γ1 = · · · = γk = −λ′/f(z). Note that

γi =

`−1∑
j=0

(
n−1
j

)
zji

µ`,n(zi)
`−1∑
j=0

∑
I⊆[k]−i
|I|=j

zI

, 1 6 i 6 k.

If j, k are non-negative integers, define

Zj,k :=
∑

I⊆[k]\{1,2}
|I|=j

zI .

Suppose that z3, . . . , zk are fixed. We will show that the equality γ1 = γ2 holds if and
only if z1 = z2. By symmetry, this will then prove that z1 = · · · = zk, completing the
proof that z is a k-diagonal point.

Observe that we can write

γ1 =

`−1∑
j=0

(
n−1
j

)
zj1

µ`,n(z1)
(

(1 + z2)
∑`−2

j=0 Zj,k + Z`−1,k

) , (3.3)

and

γ2 =

`−1∑
j=0

(
n−1
j

)
zj2

µ`,n(z2)
(

(1 + z1)
∑`−2

j=0 Zj,k + Z`−1,k

) . (3.4)

Comparing (3.3) and (3.4), it is now clear that γ1 = γ2 if and only if Γ`,k(z1) = Γ`,k(z2),
where

Γ`,k(y) :=

`−1∑
j=0

(
n−1
j

)
yj ·

(
(1 + y)

∑`−2
j=0 Zj,k + Z`−1,k

)
µ`,n(y)

. (3.5)
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To conclude, we show that Γ`,k(y) is strictly decreasing on [0,∞) and, hence, one-to-
one. Note that

Γ`,k(y) = Γ̃`,k(y) ·
(
A+

B

1 + y

)
,

where

Γ̃`,k(y) :=

`−1∑
j=0

(
n−1
j

)
yj · (1 + y)

µ`,n(y)
.

and where A,B > 0 are constants. We show that Γ̃′`,k(y) < 0. This implies Γ̃`,k(y) is
strictly decreasing and hence Γ`,k(y) is strictly decreasing as well. Simple algebra shows
that

Γ̃`,k(y) = 1−
(
n−1
`

)
y`∑`

j=0

(
n
j

)
yj
,

and thus

Γ̃′`,k(y) =

(
n− 1

`

)
·
−`y`−1

∑`
j=0

(
n
j

)
yj + y`

∑`
j=0 j

(
n
j

)
yj−1

µ`,n(y)2
.

The numerator simplifies to

−z`
∑̀
j=0

(`− j)
(
n

j

)
yj < 0,

and the proof is complete.

3.3 Majorization and polynomial inequalities

In this section we use a partial order on polynomials in order to prove Lemma 3.2. Let
f(y) =

∑
n>0 c(n)yn and g(y) =

∑
n>0 d(n)yn be polynomials in y with real coefficients.

We say that f is dominated by g in the coefficient partial order, denoted f v g, if and
only if c(n) 6 d(n) for all n > 0. If f v g, and c(n) < d(n) for some n > 0, then we
denote this by f @ g. We write 0 v f if and only if f has all coefficients non-negative and
0 @ f if and only f has all coefficients non-negative and at least one coefficient positive.

Proposition 3.4. If a > b > 0 are integers, then

µ`,a(y)µ`,b(x) v µ`,a−1(x)µ`,b+1(x).

We have µ`,a(x)µ`,b(x) @ µ`,a−1(x)µ`,b+1(x) if and only if, additionally, a > b+2, a−1 > `,
and ` > 1.

The proof of Proposition 3.4 requires the two following lemmas.
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Lemma 3.5. If A,B,M,N are integers with A > B > 0 and M > N > 0 , then(
A

M

)(
B

N

)
>

(
A

N

)(
B

M

)
.

For these same ranges of parameters, the inequality is strict if and only if A > B, M > N ,
A >M , and B > N .

Proof. If A = B or M = N then both sides of the inequality are identically equal. If
M > A, then M > B and both sides are 0. If N > B, then M > B and, again, both sides
are 0. We may now assume A > B,M > N,A > M, and B > N . Canceling factorials,
the desired inequality becomes

(A−N)M−N > (B −N)M−N ,

where, for non-negative integers n and real numbers α, (α)n :=
∏n−1

i=0 (x− i) is the falling
factorial. Since (α)n > (β)n if α > β > n− 1 > 0, we are done.

Lemma 3.6. Suppose that f1, f2, g1, g2 are polynomials. If 0 v f1 v f2 and 0 v g1 v g2,
then f1g1 v f2g2. If, additionally, f1 @ f2 and 0 @ g2, then f1g1 @ f2g2.

Proof. Denoting the coefficients by fi =
∑

j>0 fi,jy
j and gi =

∑
j>0 gi,jy

j for i = 1, 2, the
conditions of the lemma state that 0 6 f1,j 6 f2,j and 0 6 g1,j 6 g2,j for all j > 0. Writing
their products as f1g1 =

∑
l>0 aly

l and f2g2 =
∑

l>0 bly
l, the coefficients then satisfy

al =
∑

j,k>0,j+k=l

f1,jg1,k 6
∑

j,k>0,j+k=l

f2,jg2,k = bl,

since f1,jg1,k 6 f2,jg2,k for all j, k > 0.
If there is additionally some pair j, k such that 0 6 f1,j < f2,j and 0 < g2,k, then

f1,jg1,k < f2,jg2,k, and therefore the stronger conclusion aj+k < bj+k holds.

Proof of Proposition 3.4. By definition, proving that µ`,a(y)µ`,b(y) v µ`,a−1(y)µ`,b+1(y) is
the same as proving that for each 0 6 m 6 2` we have

M∑
d=M ′

(
a

d

)(
b

m− d

)
6

M∑
d=M ′

(
a− 1

d

)(
b+ 1

m− d

)
, (3.6)

where M ′ := max{0,m− `} and M := min{`,m}. Likewise, the stronger condition that
µ`,a(y)µ`,b(y) @ µ`,a−1(y)µ`,b+1(y) is equivalent to additionally proving that there is an m
with 0 6 m 6 2` for which (3.6) is strict. Applying Pascal’s identity

(
a
d

)
=
(
a−1
d

)
+
(
a−1
d−1

)
to the left-side and

(
b+1
m−d

)
=
(

b
m−d

)
+
(

b
m−d−1

)
to the right, and then cancelling like terms,

(3.6) becomes

M∑
d=M ′

(
a− 1

d− 1

)(
b

m− d

)
6

M∑
d=M ′

(
a− 1

d

)(
b

m− d− 1

)
. (3.7)
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Furthermore, after a summation index shift all of the terms but one in (3.7) cancel, leaving
only d = M ′ on the left-side and d = M on the right:(

a− 1

M ′ − 1

)(
b

m−M ′

)
6

(
a− 1

M

)(
b

m−M − 1

)
.

If M ′ = 0, then this inequality is trivially satisfied, and thus so is (3.6). We therefore
need only consider the case that M ′ = m − `. This means that m > `, so in this case
M = `, and (3.6) is finally equivalent to the inequality(

a− 1

m− `− 1

)(
b

`

)
6

(
a− 1

`

)(
b

m− `− 1

)
.

We now apply Lemma 3.5 with A = a− 1, B = b, M = `, N = m− `− 1 to complete the
proof. The inequality easily follows. It is also easy to see that (3.6) is strict in the cases
where a > b+ 2, a− 1 > `, and 2` > m > `+ 1 (and hence ` > 1).

Remark 3.7. Proposition 3.4 (and its proof) can also be interpreted combinatorially. In
particular, consider two rows consisting of a and b square cells, respectively. The ym

coefficient in ∑̀
i=0

(
a

i

)
yi ·
∑̀
j=0

(
b

j

)
yj

is the number of ways of marking exactly m of the cells subject to the restriction that
there are at most ` marked cells in each row, and the result then states that if a > b, then
there are at least as many ways to mark two rows of length a− 1 and b+ 1 subject to the
same restriction.

Corollary 3.8. If y > 0, λ1,λ2 ∈ ∆(m) each have integer coordinates, and λ1 � λ2

then
m∏
i=1

µ`,λ1(i)(y) v
m∏
i=1

µ`,λ2(i)(y).

.

Proof. Suppose λ1 6= λ2. By definition, there must then be two indices 1 6 α < β 6 m
such that λ1(α) > λ2(α) and λ1(β) < λ2(β). Define λ′

1 by setting

λ′1(α) := λ1(α)− 1, λ′1(β) := λ1(β) + 1,

and λ′1(i) := λ1(i) for all i 6= α, β. Importantly, it is still true that λ′
1 majorizes λ2.

Noting that λ1(α) > λ2(α) > λ2(β) > λ1(β), Proposition 3.4 now states that

µ`,λ1(α)(y)µ`,λ1(β)(y) v µ`,λ′1(α)(y)µ`,λ′1(β)(y)

which, combined with Lemma 3.6, implies that

m∏
i=1

µ`,λ1(i)(x) v
m∏
i=1

µ`,λ′1(i)(x). (3.8)
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If λ′
1 = λ2, then (3.8) gives the statement of the corollary. Otherwise, the above procedure

is repeated (a finite number of steps) until this is the case.

Applying this result with the partitions λ1 = nk and λ2 = kn will finally complete
the proof of Lemma 3.2.

Proof of Lemma 3.2. Corollary 3.8 implies µ`,n(y)k v µ`,k(y)n. Since this partial order re-
quires that all coefficients be dominated, this immediately implies that µ`,n(y)k 6 µ`,k(y)n

for all y > 0. Clearly, if k = n, ` = 0, ` = n, or x = 0, then µ`,n(x)k = µ`,k(x)n. It
therefore remains to be shown that the inequality is strict if 1 6 ` 6 n− 1, k 6 n− 1 and
x > 0.

Proposition 3.4 implies that µ`,nµ`,0 @ µ`,n−1µ`,1. Following the proof method of
Proposition 3.4, we introduce the dummy term µ`,0 = 1 and find

µk`,n = µk−1`,n (µ`,nµ`,0) @ µk−1`,n (µ`,n−1µ`,1) v µn`,k.

The second relation follows from Lemma 3.6, and the third follows from Corollary 3.8.
Since µk`,n @ µn`,k and x > 0, we conclude that µ`,n(x)k < µ`,k(x)n

4 Inequalities for sums of Bernoulli random variables

In this brief section we describe the relationship between our quasi-mean inequalities in
Theorem 1.3 and the distributions of sums of Bernoulli random variables.

Proof of Theorem 1.4. The inequality is trivial if ` = n, so we henceforth assume that
` < n. Furthermore, if pi = 1 for some i with 1 6 i 6 n, then P(Ci 6 `) = 0 and the
inequality is again trivially true. We therefore also assume that pi ∈ [0, 1) for each i.

All of the events {Cj 6 `} are independent, and their individual probabilities are given
by

P(Cj 6 `) =
∑

06m6`

(
n

m

)
pmj (1− pj)n−m.

Thus

P
(

max
16j6n

{Cj} 6 `
)

=
n∏
j=1

∑
06m6`

(
n

m

)
pmj (1− pj)n−m. (4.1)

Similarly, the events {Ri 6 `} are also independent, and their probabilities are given by

P(Ri 6 `) =
∑

06m6`

∑
I⊆[n]
|I|=m

∏
j∈I

pj
∏
j 6∈I

(1− pj),

so

P
(

max
16i6n

{Ri} 6 `
)

=

 ∑
06m6`

∑
I⊆[n]
|I|=m

∏
j∈I

pj
∏
j 6∈I

(1− pj)


n

. (4.2)
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Dividing (4.1) and (4.2) by
∏n

j=1(1− pj), we see that the desired inequality is equivalent
to the left inequality from Theorem 1.3 with xi = pi/(1− pi) for 1 6 i 6 n.
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