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Abstract

For a finite field F,, a Kakeya set K is a subset of Fj that contains a line in every
direction. This paper derives new upper bounds on the minimum size of Kakeya

sets when ¢ is even.

Keywords: Kakeya set; finite vector space; Gold power function

1 Introduction

Let F, be a finite field with g elements. A Kakeya set K C Fy is a set containing a line
in every direction. More formally, K C F} is a Kakeya set if and only if for every x € Fy,
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there exists y € Fy such that {y +tx:t € F,} C K. Wolff in [11] asked whether a lower
bound of the form |K| > C, - ¢" holds for all Kakeya sets K, where C,, is a constant
depending only on n. Dvir [2] first gave such a lower bound with |K| > (1/n!)¢". Later
Dvir, Kopparty, Saraf and Sudan improved the lower bound to |K| > (1/2")¢™ in [4] (see
also [10]). It was shown in [4] that for any n > 1 there exists a Kakeya set K C F} with

K| <270 Dg" + 0(¢" ). (1)

For more information on Kakeya sets, we refer to a recent survey [3].

When ¢ is bounded and n grows, bound (1) is weak, and some recent papers improved
the O-term in it to give better upper bounds for this case. The best currently known bound
was obtained by Kopparty, Lev, Saraf and Sudan in [5], following the ideas from [10, 4]
(see also [9]):

Theorem 1. [5, Theorem 6] Let n > 1 be an integer and q a prime power. There ezists
a Kakeya set K C Fy with

2(1+ q%l) (&21)” if q is odd,
K| < % 14 q_%) (Z‘ITH)H if ¢ is an even power of 2,
% <w> if q is an odd power of 2.

Theorem 1 was proved by constructing a Kakeya set K C Fy from a suitable function
f :F, = F, as follows: For a given ¢t € I, set

Ii(t) .= {f(x) +tx|x € F}.
Further, define
K:={(z1,...,2;,t,0,...,0)|0<j<n—1teF,z,...,x; € I;(t)}.
If f is a non-linear function, then K is a Kakeya set [5] of size
K-S Y00 Z',[ = 2)
j=0 teF, (

Clearly, to construct a small Kakeya set, we need to find a function f : F, — I, for which
the sets I;(t) are small. However, for a generic function f : F, — F, it is difficult to have
a good estimation for the values |I;(t)|, where ¢ € F,. Theorem 1 was proved by taking

- flz

)=
(r) = 2® for ¢ an even power of 2, since then |I;()] < (2¢ + 1)/3 holds for all
el

2% for g odd, since then |I;(t)| < (¢ + 1)/2 holds for all ¢ € Fy;

™+

»Q

Y
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- f(z) = 2724 2 for ¢ an odd power of 2, since then |I¢(t)| < 2(¢+,/g+1)/3 holds
for all t € F,.

Lemma 21 in [5] shows that for any ¢ and any function f : F, — F,, there is an
element ¢ € F, such that |I;(¢)| > ¢/2. Hence for ¢ odd the function f(z) = 2? yields
the best upper bound for the minimum size of Kakeya sets produced by the construction
presented above. For an even ¢, the authors of [5] ask whether and to which extent the
bounds of Theorem 1 can be improved by choosing a better function f. In this paper,
we investigate this question further and derive indeed better upper bounds on the size of
Kakeya sets K C Fy, when ¢ is even. Our main result is

q+\2/qq_2 (%) if ¢ is an even power of 2,

K| < (3)

5q+28\q/a_3 <5q+2§/§+5> if ¢ is an odd power of 2.

When ¢ is an even power of 2, say ¢ = 2™, we prove (3) by determining explicitly the
values |1(t)| for f(z) = 22"** and ¢ € F,. In the case ¢ is an odd power of 2, the result
follows with f(z) = x* + 23. Presently, it is not clear to us, whether the bounds in (3)
can be improved.

The following result by Bluher [1] is used later in the paper:

Theorem 2. [1, Theorem 5.6] Let ¢ = 2™ and 0 < i < m with d = ged(i,m). Let Ny
denote the number of b € ¥ such that ¥+ bx + b has no root in F,.

: : 29(q — 1)

b Ny = ——=.

(i) If m/d is even, then Ny 22151
3 . 24(q+1)
(i1) If m/d is odd, then Ny = 521 1)

2 On Kakeya sets constructed using Gold power func-
tions

In this section, we use the Gold power functions f(z) = 22+ o derive upper bounds on

the minimum size of Kakeya sets K C Fy with g even. Theorem 2 allows us to determine

explicitly the size of the image set I;(t) := {f(z) + tz : x € F,} with f(z) = 2™ and

tel,.

Proposition 3. Let ¢ = 27, f(z) = 22! € F,[z] with 0 < i < m, and d = ged(i,m).
Set I¢(t) :={f(z)+tx:xeF,} fort € F,. We have:

_q+1 q

qg—1 -1
d |I;(1)] =
and |1 (2)| > 20t )

(1) if m/d is even, then |I;(0)| = 1+ ——

YRR for all
tely;
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q—l+ qg+1
2 220+ 1)

(1) if m/d is odd, then |I(0)| = q, and |I¢(t)| = for allt € ;.

Proof. For t = 0, we have

2m —1
ged(2m — 1,204+ 1)

[1;(0)] =1+

From the well-known fact (e.g. [8, Lemma 11.1]) that

1 if m/d is odd,

ged(2™ = 1,2°+ 1) = { 24+ 1 if m/d is even,

the assertion on |/;(0)| follows.
For t € F;, by definition, we have

;)] = Hf(x) +te:xeF}
= |Fy| = {c €F; : f(x) +tx + c has no root in [F,}|
= ¢—Nj.

To make use of Theorem 2, we transform f(x) + tx + ¢ following the steps in [1]. Since
t#0and c#0, 1etx:§z, then

f(x)+tx+c
= 22 i+

C2 +1 91 t2 +1 t? +1
= — M+ ——2+——].

t2i+1 02’ 621

t2i+1
o ccelF, »r=F,

we have ) = Ny, where N denotes the number of b € [ such that 221 + bz + b has
no root in F,. The conclusion then follows from Theorem 2. O

Since

Proposition 3 shows that the smallest Kakeya sets constructed using Gold power func-
tions are achieved with ¢ = m/2 for an even m, and i = 0 for an odd m. The discussion
below shows that the choice i = m/2 implies a better upper bound on Kakeya sets com-
pared with the one given in Theorem 1. The idea to use f(x) = 22" g0 improve the
bound in Theorem 1 appears in [6], and was independently suggested by David Speyer
in [7]. Observe that f(z) = 2* chosen in [5] to prove the bound for m even is the Gold
power function with ¢ =1 and d = 1.

When m/d is odd, |I;(0)| = ¢, and therefore the bound obtained by the Gold power

functions cannot be good for large n. However, for small values of n, it is better than the
one of Theorem 1 [6].
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Next consider the function f(z) = 22"*+1 In particular, we show that this function

yields a better upper bound on the minimum size of Kakeya sets in ' when ¢ is an even

power of 2. First we present a direct proof for the size of the sets {x2m/2+1 +tr :x €
F,}.t e,

Theorem 4. Let m be an even integer. Then
m/2 m
[1(0)] := [{2*"+ @ € Fo}| = 2"2,

and P
m 2m 4 2™
T = o™ b s 2 e By = 220
Jor allt € .
Proof. The identity on I(0) is clear, since the image set of the function = — 22"™*+! is
Fym/2. Let t € F}. Note that [I(t)| = |[I(1)]. Indeed, there is s € Fy, such that t = s2"/?
and then

22" 4y = gL ((x/s)zm/%rl + (:r:/s)) .

Hence it is enough to compute I(1). Let Tr(z) = 22™* + z be the trace map from F,
onto its subfield Fy../2. Recall that Tr is a [Fym/2-linear surjective map.
Set g(x) = 22"t + z. If y, 2 € F,, are such that

m/2 m/2
g(z) =" 2=y Ly = g(y),

then z = y + u for some u € Fyn/2, since the image set of the function z +— 22" g

Fom/2. Further, for any u € Fom2

m/ om/2

g(y+u):(y+u)2m/2+1+y+u:y2 Hhy w4 y) +u +

Hence, g(y) = g(y + u) if and only if
u(yw/2 +y)+uPFu=uTr(y)+u+1)=0.

Consequently, two distinct elements y and z share the same image under the function g
if and only Tr(y) # 1 and z = y + Tr(y) + 1. This shows that ¢ is injective on the set O

of elements from F, having trace 1, and 2-to-1 on F, \ O, completing the proof. n
Theorem 5. Let ¢ = 2™ with m even and n > 1. There is a Kakeya set K C IFZ such
that ) N
+
K| < q (q V4 > _
q+q—2 2
Proof. The statement follows from (2) and Theorem 4. O
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3 On Kakeya sets constructed using the function x —
CB4 _|_ m3

In this section we obtain an upper bound on the minimum size of Kakeya sets constructed
using the function 2 +— z* 4+ 23 on F,. For every t € F,, let g, : F, — F, be defined by

gi(z) == a* + 2* + to.

Next we study the image sets of functions g;(z). Given y € F,, let g; *(y) be the set of
preimages of y, that is

;' (y) = {z € Fy| ge(x) = y}.
Further, for any integer £ > 0 put w;(k) to denote the number of elements in F, having
exactly k preimages under g;(x), that is

wi(k) = {y € Fy « g, ()| = K}

Note that wi(k) = 0 for all k& > 5, since the degree of g:(z) is 4. The next lemma
establishes the value of wy(1):

Lemma 6. Let g =2" and t € F}. Then
e if m is odd

w(l) =

oL if Tr(t) =0
o G Tr(t) =1

e if m is even

- 0
“2 Gf Tr(t) = 1.

(D) :{ = 4f Tr(t)

Proof. Let y € F, and y # t*. Then 2" is not a solution of the following equation
hiy(x) = gi(x) +y =a* +2° + te +y = 0.

Observe that the number of the solutions for the above equation is equal to the one of
2 4 4 42m=t 2 4 1 am=—1
"y +t° fax+l=a" hy |-+t = 0.
x

Hence either w;(1) or wy(1) — 1 is equal to the number of elements y € F, such that the

affine polynomial
m—1
E+y)at+7" 2+ +1 (4)

has exactly one zero in F,, depending on the number of preimages of g;(x) for t*. Equation
(4) has exactly 1 solution if and only if the linearized polynomial

B +y)at+67" 22+
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has no non-trivial zeros, or equivalently
w(z) = +y)® + 2"z +1 (5)

has no zeroes.
Since t? + y # 0, the number of zeroes of u(z) is equal to the one of

1 1 1 - $2m 1 N $2m 4
U 2l =i | 2 z .
#2 +y $2mt $2mi+1 2 +y t2 + y

$2m )
ryeF,y#t°,=F,.

Note that

2 +y

Hence by Theorem 2 with ¢ = 1, the number of elements y € F,,y # ¢, such that (5) has
Nno zeros is

2

1 if m is odd

1

{ = if m is even.

&~}
| w

To complete the proof, it remains to consider y = 2. In this case
g@)+y=a'+2° +ta+* = (2® +t)(2* + z + 1),

and therefore g;(x) + t* has exactly one solution if Tr(f) = 1 and exactly 3 solutions if
Tr(t) = 0.
[

Lemma 7. Let ¢ =2" and t € F,. Then

wi(3) = { (1] %fTT(t) _
if Tr(t) =

0
1.

Proof. The proof of Lemma 6 shows that for any y # ¢2, the number of solutions for
hiy(x) = 0 is a power of 2. Hence only ¢* may have 3 preimages under ¢;(z), which is the
case if and only if T'r(t) = 0. O

The next lemma describes the behavior of the function z* + x3:

Lemma 8. Let ¢ = 2™ and k > 1 an integer. Then

2 ifk=2
CL)O(k,):{q/ f

0 otherwise,

e if m is odd

in particular, the cardinality of 1(0) := {z* + 23 : x € F,} is q/2.
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e if m is even

(1 ifk=2
20-1)  rg
L= dfk=1
wo(k) = @D g =4
1
0 otherwise.
\

Proof. Note that 2% 4 2® = 0 has 2 solutions. Let y € IF - Then the steps of the proof for
Lemma 6 show that the number of solutions of

ot 2y =0
is equal to the one of the affine polynomial
a,(z) == yz* + 2+ 1.

If the set of zeros of a,(x) is not empty, then the number of zeros of a,(z) is equal to the
one of the linearized polynomial

l,(z) = yz* + z.

If m is odd, then [,(x) has exactly 2 zeroes for every y # 0, implying the statement for
m odd. If m is even, then [,(x) has only the trivial zero if y is a non-cube in F,, and
otherwise it has 4 zeroes. To complete the proof, it remains to recall that the number of
non-cubes in [F, is 2(¢ — 1)/3. O

Lemmas 6-8 yield the following upper bound for the size of the image sets of the
considered functions:

Theorem 9. Let ¢ = 2™ with m odd. Fort € F, set I(t) := {z* + 23 +tx : x € F,}. Let
v be the number of pairs x,z € F, with x* + za = 2° 4+ 2% +t. Then fort #0

2,/G+5
8 )

5 qg+l—-v & 5
) =2¢g+ 2 —— " 12 <2
()] =ga+—F5—+5 < gu+

where 6 =0 or 1 if Tr(t) =0 or 1, respectively.

Proof. Note that
11(t)] = wi(1) + wi(2) + wi(3) + wi(4)

and
g=wi(1)+2-wi(2) +3-wi(3)+4-w(4).

Let v be the number of distinct elements z,y € F, with z? + 2% + tz = y* + ¢* + ty.

Clearly
V' = 2w (2) + 6w (3) + 12wy (4),
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hence - ' 4 31 5

() = 2= Z )
Setting y = x + 2, we see that 2% + 2® + tz = y* + 4® + ty for x # y is equivalent to
2?2 4+ 2o = 22+ 22+t for z # 0. However, for z = 0 this latter equation has a unique
solution, so v = v’ + 1.

Together with Lemmas 6-8 we see that the size of I(¢) is as claimed. The inequality
follows from the Hasse bound for points on elliptic curves, which in our case says that
lv—q| < 2,/g. (Note that the projective completion of the curve X?+ZX = X?+ X?+1
has a unique point at infinity.) ]

The bound obtained in Theorem 9 can be stated also as follows
5 2,/q+5
01 < o+ 252 ©)

since |I(t)] is an integer. Our numerical calculations show that for odd 1 < m < 13 bound
(6) is sharp, that is for these m there are elements t € Fom for which equality holds in (6).

Theorem 10. Let ¢ = 2™ with m odd and n = 1. There is a Kakeya set K C Fy such

that 8 Bq+2,/G+5\"
+2,/q+
K| < q q+2/4q .
5q+2./7— 3 8
Proof. The statement follows from (2) and Theorem 9. O
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