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Abstract

For a finite field Fq, a Kakeya set K is a subset of Fn
q that contains a line in every

direction. This paper derives new upper bounds on the minimum size of Kakeya
sets when q is even.
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1 Introduction

Let Fq be a finite field with q elements. A Kakeya set K ⊂ Fn
q is a set containing a line

in every direction. More formally, K ⊂ Fn
q is a Kakeya set if and only if for every x ∈ Fn

q ,

∗The first and third authors thank Vsevolod Lev for bringing their attention to [7]. The third author
is supported by the Alexander von Humboldt (AvH) Stiftung/Foundation.
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there exists y ∈ Fn
q such that {y + tx : t ∈ Fq} ⊂ K. Wolff in [11] asked whether a lower

bound of the form |K| > Cn · qn holds for all Kakeya sets K, where Cn is a constant
depending only on n. Dvir [2] first gave such a lower bound with |K| > (1/n!)qn. Later
Dvir, Kopparty, Saraf and Sudan improved the lower bound to |K| > (1/2n)qn in [4] (see
also [10]). It was shown in [4] that for any n > 1 there exists a Kakeya set K ⊂ Fn

q with

|K| 6 2−(n−1)qn +O(qn−1). (1)

For more information on Kakeya sets, we refer to a recent survey [3].
When q is bounded and n grows, bound (1) is weak, and some recent papers improved

theO-term in it to give better upper bounds for this case. The best currently known bound
was obtained by Kopparty, Lev, Saraf and Sudan in [5], following the ideas from [10, 4]
(see also [9]):

Theorem 1. [5, Theorem 6] Let n > 1 be an integer and q a prime power. There exists
a Kakeya set K ⊂ Fn

q with

|K| <


2
(

1 + 1
q−1

) (
q+1
2

)n
if q is odd,

3
2

(
1 + 1

q−1

) (
2q+1
3

)n
if q is an even power of 2,

3
2

(
2(q+

√
q+1)

3

)n
if q is an odd power of 2.

Theorem 1 was proved by constructing a Kakeya set K ⊂ Fn
q from a suitable function

f : Fq → Fq as follows: For a given t ∈ Fq, set

If (t) := {f(x) + tx |x ∈ Fq}.

Further, define

K := {(x1, . . . , xj, t, 0, . . . , 0) | 0 6 j 6 n− 1, t ∈ Fq, x1, . . . , xj ∈ If (t)}.

If f is a non-linear function, then K is a Kakeya set [5] of size

|K| =
n−1∑
j=0

∑
t∈Fq

|If (t)|j =
∑
t∈Fq

|If (t)|n − 1

|If (t)| − 1
. (2)

Clearly, to construct a small Kakeya set, we need to find a function f : Fq → Fq for which
the sets If (t) are small. However, for a generic function f : Fq → Fq, it is difficult to have
a good estimation for the values |If (t)|, where t ∈ Fq. Theorem 1 was proved by taking

- f(x) = x2 for q odd, since then |If (t)| 6 (q + 1)/2 holds for all t ∈ Fq;

- f(x) = x3 for q an even power of 2, since then |If (t)| 6 (2q + 1)/3 holds for all
t ∈ Fq;
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- f(x) = xq−2 +x2 for q an odd power of 2, since then |If (t)| 6 2(q+
√
q+ 1)/3 holds

for all t ∈ Fq.

Lemma 21 in [5] shows that for any q and any function f : Fq → Fq, there is an
element t ∈ Fq such that |If (t)| > q/2. Hence for q odd the function f(x) = x2 yields
the best upper bound for the minimum size of Kakeya sets produced by the construction
presented above. For an even q, the authors of [5] ask whether and to which extent the
bounds of Theorem 1 can be improved by choosing a better function f . In this paper,
we investigate this question further and derive indeed better upper bounds on the size of
Kakeya sets K ⊂ Fn

q , when q is even. Our main result is

|K| <


2q

q+
√
q−2

(
q+
√
q

2

)n
if q is an even power of 2,

8q
5q+2

√
q−3

(
5q+2

√
q+5

8

)n
if q is an odd power of 2.

(3)

When q is an even power of 2, say q = 2m, we prove (3) by determining explicitly the

values |If (t)| for f(x) = x2
m/2+1 and t ∈ Fq. In the case q is an odd power of 2, the result

follows with f(x) = x4 + x3. Presently, it is not clear to us, whether the bounds in (3)
can be improved.

The following result by Bluher [1] is used later in the paper:

Theorem 2. [1, Theorem 5.6] Let q = 2m and 0 6 i < m with d = gcd(i,m). Let N0

denote the number of b ∈ F∗q such that x2
i+1 + bx+ b has no root in Fq.

(i) If m/d is even, then N0 =
2d(q − 1)

2(2d + 1)
.

(ii) If m/d is odd, then N0 =
2d(q + 1)

2(2d + 1)
.

2 On Kakeya sets constructed using Gold power func-

tions

In this section, we use the Gold power functions f(x) = x2
i+1 to derive upper bounds on

the minimum size of Kakeya sets K ⊂ Fn
q with q even. Theorem 2 allows us to determine

explicitly the size of the image set If (t) := {f(x) + tx : x ∈ Fq} with f(x) = x2
i+1 and

t ∈ Fq.

Proposition 3. Let q = 2m, f(x) = x2
i+1 ∈ Fq[x] with 0 6 i < m, and d = gcd(i,m).

Set If (t) := {f(x) + tx : x ∈ Fq} for t ∈ Fq. We have:

(i) if m/d is even, then |If (0)| = 1 +
q − 1

2d + 1
, and |If (t)| =

q + 1

2
+

q − 1

2(2d + 1)
for all

t ∈ F∗q;
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(ii) if m/d is odd, then |If (0)| = q, and |If (t)| = q − 1

2
+

q + 1

2(2d + 1)
for all t ∈ F∗q.

Proof. For t = 0, we have

|If (0)| = 1 +
2m − 1

gcd(2m − 1, 2i + 1)
.

From the well-known fact (e.g. [8, Lemma 11.1]) that

gcd(2m − 1, 2i + 1) =

{
1 if m/d is odd,
2d + 1 if m/d is even,

the assertion on |If (0)| follows.
For t ∈ F∗q, by definition, we have

|If (t)| = |{f(x) + tx : x ∈ Fq}|
= |Fq| − |{c ∈ F∗q : f(x) + tx+ c has no root in Fq}|
= q −N ′0.

To make use of Theorem 2, we transform f(x) + tx + c following the steps in [1]. Since

t 6= 0 and c 6= 0, let x =
c

t
z, then

f(x) + tx+ c

= x2
i+1 + tx+ c

=
c2

i+1

t2i+1

(
z2

i+1 +
t2

i+1

c2i
z +

t2
i+1

c2i

)
.

Since {
t2

i+1

c2i
: c ∈ F∗q

}
= F∗q,

we have N ′0 = N0, where N0 denotes the number of b ∈ F∗q such that x2
i+1 + bx + b has

no root in Fq. The conclusion then follows from Theorem 2.

Proposition 3 shows that the smallest Kakeya sets constructed using Gold power func-
tions are achieved with i = m/2 for an even m, and i = 0 for an odd m. The discussion
below shows that the choice i = m/2 implies a better upper bound on Kakeya sets com-

pared with the one given in Theorem 1. The idea to use f(x) = x2
m/2+1 to improve the

bound in Theorem 1 appears in [6], and was independently suggested by David Speyer
in [7]. Observe that f(x) = x3 chosen in [5] to prove the bound for m even is the Gold
power function with i = 1 and d = 1.

When m/d is odd, |If (0)| = q, and therefore the bound obtained by the Gold power
functions cannot be good for large n. However, for small values of n, it is better than the
one of Theorem 1 [6].
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Next consider the function f(x) = x2
m/2+1. In particular, we show that this function

yields a better upper bound on the minimum size of Kakeya sets in Fn
q when q is an even

power of 2. First we present a direct proof for the size of the sets {x2m/2+1 + tx : x ∈
Fq}, t ∈ Fq.

Theorem 4. Let m be an even integer. Then

|I(0)| := |{x2m/2+1 : x ∈ Fq}| = 2m/2,

and

|I(t)| := |{x2m/2+1 + tx : x ∈ Fq}| =
2m + 2m/2

2

for all t ∈ F∗q.

Proof. The identity on I(0) is clear, since the image set of the function x 7→ x2
m/2+1 is

F2m/2 . Let t ∈ F∗q. Note that |I(t)| = |I(1)|. Indeed, there is s ∈ Fq, such that t = s2
m/2

and then
x2

m/2+1 + tx = s2
m/2+1 ·

(
(x/s)2

m/2+1 + (x/s)
)
.

Hence it is enough to compute I(1). Let Tr(x) = x2
m/2

+ x be the trace map from Fq

onto its subfield F2m/2 . Recall that Tr is a F2m/2-linear surjective map.
Set g(x) = x2

m/2+1 + x. If y, z ∈ Fq are such that

g(z) = z2
m/2+1 + z = y2

m/2+1 + y = g(y),

then z = y + u for some u ∈ F2m/2 , since the image set of the function x 7→ x2
m/2+1 is

F2m/2 . Further, for any u ∈ F2m/2

g(y + u) = (y + u)2
m/2+1 + y + u = y2

m/2+1 + y + u(y2
m/2

+ y) + u2 + u.

Hence, g(y) = g(y + u) if and only if

u(y2
m/2

+ y) + u2 + u = u(Tr(y) + u+ 1) = 0.

Consequently, two distinct elements y and z share the same image under the function g
if and only Tr(y) 6= 1 and z = y + Tr(y) + 1. This shows that g is injective on the set O
of elements from Fq having trace 1, and 2-to-1 on Fq \ O, completing the proof.

Theorem 5. Let q = 2m with m even and n > 1. There is a Kakeya set K ⊂ Fn
q such

that

|K| < 2q

q +
√
q − 2

(
q +
√
q

2

)n

.

Proof. The statement follows from (2) and Theorem 4.
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3 On Kakeya sets constructed using the function x 7→
x4 + x3

In this section we obtain an upper bound on the minimum size of Kakeya sets constructed
using the function x 7→ x4 + x3 on Fq. For every t ∈ Fq, let gt : Fq → Fq be defined by

gt(x) := x4 + x3 + tx.

Next we study the image sets of functions gt(x). Given y ∈ Fq, let g−1t (y) be the set of
preimages of y, that is

g−1t (y) := {x ∈ Fq | gt(x) = y}.

Further, for any integer k > 0 put ωt(k) to denote the number of elements in Fq having
exactly k preimages under gt(x), that is

ωt(k) := |{y ∈ Fq : |g−1t (y)| = k}|.

Note that ωt(k) = 0 for all k > 5, since the degree of gt(x) is 4. The next lemma
establishes the value of ωt(1):

Lemma 6. Let q = 2m and t ∈ F∗q. Then

• if m is odd

ωt(1) =

{
q+1
3

if Tr(t) = 0

q+4
3

if Tr(t) = 1

• if m is even

ωt(1) =

{
q−1
3

if Tr(t) = 0

q+2
3

if Tr(t) = 1.

Proof. Let y ∈ Fq and y 6= t2. Then t2
m−1

is not a solution of the following equation

ht,y(x) := gt(x) + y = x4 + x3 + tx+ y = 0.

Observe that the number of the solutions for the above equation is equal to the one of

(t2 + y)x4 + t2
m−1

x2 + x+ 1 = x4 · ht,y
(

1

x
+ t2

m−1

)
= 0.

Hence either ωt(1) or ωt(1) − 1 is equal to the number of elements y ∈ Fq such that the
affine polynomial

(t2 + y)x4 + t2
m−1

x2 + x+ 1 (4)

has exactly one zero in Fq, depending on the number of preimages of gt(x) for t2. Equation
(4) has exactly 1 solution if and only if the linearized polynomial

(t2 + y)x4 + t2
m−1

x2 + x
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has no non-trivial zeros, or equivalently

u(x) := (t2 + y)x3 + t2
m−1

x+ 1 (5)

has no zeroes.
Since t2 + y 6= 0, the number of zeroes of u(x) is equal to the one of

1

t2 + y
· u
(

1

t2m−1 z

)
=

1

t2m−1+1

(
z3 +

t2
m−1+1

t2 + y
z +

t2
m−1+1

t2 + y

)
.

Note that {
t2

m−1+1

t2 + y
: y ∈ Fq, y 6= t2

}
= F∗q.

Hence by Theorem 2 with i = 1, the number of elements y ∈ Fq, y 6= t2, such that (5) has
no zeros is {

q+1
3

if m is odd

q−1
3

if m is even.

To complete the proof, it remains to consider y = t2. In this case

gt(x) + y = x4 + x3 + tx+ t2 = (x2 + t)(x2 + x+ t),

and therefore gt(x) + t2 has exactly one solution if Tr(t) = 1 and exactly 3 solutions if
Tr(t) = 0.

Lemma 7. Let q = 2m and t ∈ F∗q. Then

ωt(3) =

{
1 if Tr(t) = 0

0 if Tr(t) = 1.

Proof. The proof of Lemma 6 shows that for any y 6= t2, the number of solutions for
ht,y(x) = 0 is a power of 2. Hence only t2 may have 3 preimages under gt(x), which is the
case if and only if Tr(t) = 0.

The next lemma describes the behavior of the function x4 + x3:

Lemma 8. Let q = 2m and k > 1 an integer. Then

• if m is odd

ω0(k) =

{
q/2 if k = 2

0 otherwise,

in particular, the cardinality of I(0) := {x4 + x3 : x ∈ Fq} is q/2.
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• if m is even

ω0(k) =



1 if k = 2

2(q−1)
3

if k = 1

(q−4)
12

if k = 4

0 otherwise.

Proof. Note that x4 + x3 = 0 has 2 solutions. Let y ∈ F∗q. Then the steps of the proof for
Lemma 6 show that the number of solutions of

x4 + x3 + y = 0

is equal to the one of the affine polynomial

ay(x) := yx4 + x+ 1.

If the set of zeros of ay(x) is not empty, then the number of zeros of ay(x) is equal to the
one of the linearized polynomial

ly(x) := yx4 + x.

If m is odd, then ly(x) has exactly 2 zeroes for every y 6= 0, implying the statement for
m odd. If m is even, then ly(x) has only the trivial zero if y is a non-cube in Fq, and
otherwise it has 4 zeroes. To complete the proof, it remains to recall that the number of
non-cubes in Fq is 2(q − 1)/3.

Lemmas 6–8 yield the following upper bound for the size of the image sets of the
considered functions:

Theorem 9. Let q = 2m with m odd. For t ∈ Fq set I(t) := {x4 + x3 + tx : x ∈ Fq}. Let
v be the number of pairs x, z ∈ Fq with x2 + zx = z3 + z2 + t. Then for t 6= 0

|I(t)| = 5

8
q +

q + 1− v
8

+
δ

2
<

5

8
q +

2
√
q + 5

8
,

where δ = 0 or 1 if Tr(t) = 0 or 1, respectively.

Proof. Note that
|I(t)| = ωt(1) + ωt(2) + ωt(3) + ωt(4)

and
q = ωt(1) + 2 · ωt(2) + 3 · ωt(3) + 4 · ωt(4).

Let v′ be the number of distinct elements x, y ∈ Fq with x4 + x3 + tx = y4 + y3 + ty.
Clearly

v′ = 2ωt(2) + 6ωt(3) + 12ωt(4),
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hence

|I(t)| = 5q − v′ + 3ωt(1)− ωt(3)

8
.

Setting y = x + z, we see that x4 + x3 + tx = y4 + y3 + ty for x 6= y is equivalent to
x2 + zx = z3 + z2 + t for z 6= 0. However, for z = 0 this latter equation has a unique
solution, so v = v′ + 1.

Together with Lemmas 6–8 we see that the size of I(t) is as claimed. The inequality
follows from the Hasse bound for points on elliptic curves, which in our case says that
|v− q| 6 2

√
q. (Note that the projective completion of the curve X2 +ZX = X3 +X2 + t

has a unique point at infinity.)

The bound obtained in Theorem 9 can be stated also as follows

|I(t)| 6
⌊

5

8
q +

2
√
q + 5

8

⌋
, (6)

since |I(t)| is an integer. Our numerical calculations show that for odd 1 6 m 6 13 bound
(6) is sharp, that is for these m there are elements t ∈ F2m for which equality holds in (6).

Theorem 10. Let q = 2m with m odd and n > 1. There is a Kakeya set K ⊂ Fn
q such

that

|K| < 8q

5q + 2
√
q − 3

(
5q + 2

√
q + 5

8

)n

.

Proof. The statement follows from (2) and Theorem 9.
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