
Coloring 2-intersecting hypergraphs

Lucas Colucci
Instituto de Matemàtica e Estat̀ıstica
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Computer and Automation Research Institute
Hungarian Academy of Sciences

Budapest, P.O. Box 63
Budapest, Hungary, H-1518

gyarfas.andras@renyi.mta.hu

Submitted: Jul 25, 2013; Accepted: Sep 2, 2013; Published: Sep 13, 2013

Abstract

A hypergraph is 2-intersecting if any two edges intersect in at least two vertices.
Blais, Weinstein and Yoshida asked (as a first step to a more general problem)
whether every 2-intersecting hypergraph has a vertex coloring with a constant num-
ber of colors so that each hyperedge has at least min{|e|, 3} colors. We show that
there is such a coloring with at most 5 colors (which is best possible).

A proper coloring of a hypergraph is a coloring of its vertices so that no edge is
monochromatic, i.e. contains at least two vertices with distinct colors. It is well-known
that intersecting hypergraphs without singleton edges have proper colorings with at most
three colors. This statement is from the seminal paper of Erdős and Lovász [3]. Re-
cently Blais, Weinstein and Yoshida suggested a generalization in [1]. They consider
t-intersecting hypergraphs, in which any two edges intersect in at least t vertices and they
call a coloring of the vertices c-strong if every edge e is colored with at least min{|e|, c}
distinct colors. One of the problems they consider is the following.

Problem 1. ([1]) Suppose that H is a t-intersecting hypergraph. Is there a (t + 1)-
strong vertex coloring of H where the number of colors is bounded by a function of t? In
particular, is there a t + 1-strong vertex coloring with at most 2t + 1 colors? If true, it
would be best possible, as the 2t-element sets of a 3t element set demonstrate.

Notice that for t = 1 the answer to Problem 1 is affirmative (for both parts) according
to the starting remark but open for t > 2 [1]. Our aim is to give an affirmative answer
to both parts of the problem in case of t = 2. Notice that intersecting hypergraphs do
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not always have 3-strong colorings with any fixed number of colors: if every edge of a
(k + 1)-chromatic graph is extended by the same new vertex, the resulting intersecting
hypergraph has no 3-strong coloring with k colors. Thus the 2-intersecting condition is
important in the following theorem.

Theorem 2. Every 2-intersecting hypergraph G has a 3-strong coloring with at most five
colors.

We learned from a referee that a weaker form of Theorem 2 (with 21 colors instead
of 5) is proved recently in [2]. We also prove a lemma that will be used in the proof of
Theorem 2 but has independent interest. A hypergraph has property Pt for some integer
t > 2 if any i edges intersect in at least t + 1− i vertices, for all i, 2 6 i 6 t.

Lemma 3. Suppose that H is a hypergraph with property Pt. Then H has a t-strong
coloring with at most t + 1 colors.

Proof. Let H be a hypergraph with property Pt for t > 2. Select an edge e of H which
is minimal for containment. Let F be the hypergraph defined on the vertex set of e with
edge set {h ∩ e : h ∈ E(H)}. Color each vertex not in e with color t + 1. If t = 2, color
the vertices of e arbitrarily using colors 1,2 (or just color 1 if e has just one vertex). If
|e| = t − 1, color vertices of e by 1, 2, . . . , t − 1. Otherwise, since F has property Pt−1,
we can find by induction a (t− 1)-strong coloring C on F with colors 1, 2, . . . , t. We may
suppose that C uses all colors 1, 2, . . . , t on e, otherwise we may change some repeated
colors to the missing colors maintaining the (t− 1)-strong coloring. Thus C colors e with
at least t colors and, since for any other edge h ∈ H, |h ∩ e| > t− 1, C uses at least t− 1
colors on h ∩ e and h also has at least one vertex of color t + 1. Therefore we have a
t-strong coloring of H with t + 1 colors. �

It is worth noting that Lemma 3 does not hold if we require a t-strong coloring with at
most t colors. Indeed, all t-sets of t+ 1 elements have property Pt but a t-strong coloring
must use t + 1 colors. �

Proof of Theorem 2. By the condition, there are no singleton edges. Also, if some
edge e has just two vertices, coloring them with colors 1, 2 and all other vertices by 3,
we obviously have a 3-strong coloring. Thus we may assume that every edge has at least
three vertices, therefore a 3-strong coloring on the minimal edges of G is also a 3-strong
coloring on G. Thus we may assume that G is an antichain.

If any three edges of G have non-empty intersection, we can apply Lemma 3 and get
a 3-strong coloring with at most 4 colors. Thus, we may suppose that G contains three
edges with empty intersection, select them with the smallest possible union, let these
edges be e1, e2, e3 and set X = e1 ∪ e2 ∪ e3. A vertex v ∈ X is called a private part of ei
(i = 1, 2, 3) if v ∈ ei but v is not covered by any of the other two ej-s.

We color the vertices in X as follows. The private parts of e1, e2, e3 (if they exist) are
colored with 1, 2, 3 respectively. Notice that each intersection has at least two vertices,
color e1 ∩ e3 with colors 1, 3 so that color 1 is used only once, color e1 ∩ e2 with colors 2, 4
so that color 2 is used only once. Vertices in e2 ∩ e3 are all colored with color 5.
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The coloring outside X varies according to the number of private parts of ei-s.

Case 1. Each ei has private parts, i = 1, 2, 3.
Here we color vertices not covered by X one by one with 1 or 2 by the following

greedy type algorithm: if an uncolored vertex w /∈ X completes an edge f such that all
vertices of f − {w} are colored with colors 2, 3 only (both present otherwise |f ∩ e1| 6 1
or |f ∩ e2| 6 1) then color w with color 1, otherwise color it with color 2. We claim that
a 3-strong coloring is obtained.

Suppose there is an edge fij with colors i, j only, 1 6 i < j 6 5. Edges f12, f14, f24
would intersect e3 in at most one vertex, edge f25 would intersect e1 in at most one vertex
and f13 would not intersect e2 at all. Edges f35, f45 would form a proper subset of e3, e2,
respectively, contradicting the antichain property.

Edge f34 cannot exist because the triple f34, e2, e3 has no intersection and Y = f34 ∪
e2∪e3 is a proper subset of X because e1 has a private vertex. Thus we get a contradiction
with the definition of e1, e2, e3. The same argument can be applied to exclude f15, f23 ⊂ X
(with Y = f15 ∪ e1 ∪ e2, Y = f23 ∪ e2 ∪ e3 and using that e3, e1 have private vertices).

Thus the only possibility is that there is an edge f15 or f23 with some vertex w /∈ X.
However, no such f15 exists since w /∈ X is colored with 1 only if there exists edge f
of G such that f − {w} is colored with colors 2, 3 only thus |f ∩ f15| = 1 contradiction.
Moreover, no such f23 can exist either, because its vertex in V −X colored last got color
1 according to the rule governing Case 1.

Case 2. Two of e1, e2, e3 have private parts, by suitable relabeling we may suppose that
the private part of e2 is empty.

In this case vertices not covered by X are colored with color 2 and claim that we have
a 3-strong coloring. The nonexistence of f12, f13, f14, f24, f25 follow as in Case 1 and here
f23 can be excluded the same way since |f23 ∩ e2| 6 1. The exclusion of f34, f35, f45 and
f15 ⊂ X is also exactly the same as in Case 1. Thus here we have to exclude only the
existence of an edge f15 containing some vertices w /∈ X. However, this cannot happen
since here every vertex outside X is colored with color 2.

Case 3. Exactly one of e1, e2, e3 has a private part, by suitable relabeling we may suppose
that it is e2.

Here all vertices not covered by X are colored with 1. Edges f12, f13, f14, f15, f24, f25
are all excluded since there is some ei intersecting them in at most one vertex. The edges
f34, f35, f45 are excluded since they are proper subsets of some ei. The only possible edge
is f23 but in this case we can replace the triple e1, e2, e3 by the non-intersecting triple
f23, e2, e3 which has the same union but they have two private parts: the vertices of color
4 in e2 and the vertex of color 1 in e3. This reduces Case 3 to Case 2.

Case 4. None of the edges e1, e2, e3 have private parts.
Vertices uncovered by X are colored with 1. Here f12, f13, f14, f15, f23, f24, f25 are all

excluded since there is some ei intersecting them in at most one vertex. The other three
edges f34, f35, f45 are excluded since they are proper subsets of some ei.

In all cases we found a 3-strong coloring with at most five colors. �
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