Intersecting \boldsymbol{k}-uniform families containing all the \boldsymbol{k}-subsets of a given set

Wei-Tian Li*
Department of Applied Mathematics National Chung Hsing University
Taichung 40227, Taiwan
weitianli@dragon.nchu.edu.tw
Bor-Liang Chen
Department of Business Administration
National Taichung University of Science and Technology
Taichung 40401, Taiwan
blchen@ntit.edu.tw
Kuo-Ching Huang ${ }^{\dagger}$
Department of Financial and Computational Mathematics
Providence University
Taichung 43301, Taiwan
kchuang@gm.pu.edu.tw
Ko-Wei Lih ${ }^{\ddagger}$
Institute of Mathematics
Academia Sinica
Taipei 10617, Taiwan
makwlih@sinica.edu.tw

Submitted: Mar 18, 2013; Accepted: Aug 29, 2013; Published: Sep 13, 2013
Mathematics Subject Classifications: 05D05

Abstract

Let m, n, and k be integers satisfying $0<k \leqslant n<2 k \leqslant m$. A family of sets \mathcal{F} is called an (m, n, k)-intersecting family if $\binom{[n]}{k} \subseteq \mathcal{F} \subseteq\binom{[m]}{k}$ and any pair of members of \mathcal{F} have nonempty intersection. Maximum (m, k, k) - and $(m, k+1, k)$ intersecting families are determined by the theorems of Erdős-Ko-Rado and HiltonMilner, respectively. We determine the maximum families for the cases $n=2 k-1$, $2 k-2,2 k-3$, or m sufficiently large.

Keywords: intersecting family; cross-intersecting family; Erdős-Ko-Rado; MilnerHilton; Kneser graph

[^0]
1 Introduction

For positive integers $a \leqslant b$, define $[a, b]=\{a, a+1, \ldots, b\}$ and let $[a]=[1, a]$. The cardinality of a set X is denoted by $|X|$. A set of cardinality n is called an n-set. A family of subsets of X is said to be intersecting if no two members are disjoint. The family of all k-subsets of X is denoted by $\binom{X}{k}$. Note that $\binom{[m]}{k}$ is intersecting if $0<k \leqslant m<2 k$. If all members of a family $\mathcal{F} \subseteq\binom{[m]}{k}$ contain a fixed element, then \mathcal{F} is obviously an intersecting family and is said to be trivial. A trivial intersecting family can have at most $\binom{m-1}{k-1}$ members. One of the cornerstones of the extremal theory of finite sets is the following pioneering result of Erdős, Ko, and Rado [5].

Theorem 1. Suppose $0<2 k<m$. Let $\mathcal{F} \subseteq\binom{[m]}{k}$ be an intersecting family. Then $|\mathcal{F}| \leqslant\binom{ m-1}{k-1}$. Moreover, the equality holds if and only if \mathcal{F} consists of all k-subsets containing a fixed element.

Let $A \in\binom{[m]}{k}$ and $t \notin A$. Define $\mathcal{M}_{1}(A ; t)=\{A\} \cup\left\{\left.B \in\binom{[m]}{k} \right\rvert\, t \in B\right.$ and $\left.A \cap B \neq \emptyset\right\}$. Clearly $\left|\mathcal{M}_{1}(A ; t)\right|=\binom{m-1}{k-1}-\binom{m-1-k}{k-1}+1$. Let $X \in\binom{[m]}{3}$. Define $\mathcal{M}_{2}(X)=\left\{\left.B \in\binom{[m]}{k} \right\rvert\,\right.$ $|X \cap B| \geqslant 2\}$. Both $\mathcal{M}_{1}(A ; t)$ and $\mathcal{M}_{2}(X)$ are intersecting families. The largest size of a non-trivial intersecting family was determined in the following result of Hilton and Milner [10].

Theorem 2. Suppose $0<2 k<m$. Let $\mathcal{F} \subseteq\binom{[m]}{k}$ be an intersecting family such that $\cap\{A \mid A \in \mathcal{F}\}=\emptyset$. Then $|\mathcal{F}| \leqslant\binom{ m-1}{k-1}-\binom{m-1-k}{k-1}+1$. Moreover, the equality holds if and only if \mathcal{F} is of the form $\mathcal{M}_{1}(A ; t)$ or the form $\mathcal{M}_{2}(X)$, the latter occurs only for $k=3$.

In a more general form, the Erdő-Ko-Rado theorem describes the size and structure of the largest collection of k-subsets of an n-set having the property that the intersection of any two subsets contains at least t elements. This theorem has motivated a great deal of development of finite extremal set theory since its first publication in 1961. The complete establishment of the general form was achieved through cumulative works of Frankl [6], Wilson [12], and Ahlswede and Khachatrian [2]. Ahlswede and Khachatrian [1] even extended the Hilton-Milner theorem in the general case. The reader is referred to Deza and Frankl [4], Frankl [7], and Borg [3] for surveys on relevant results.

Let $0<k \leqslant n<2 k \leqslant m$. We call an intersecting family \mathcal{F} an (m, n, k)-intersecting family if $\binom{[n]}{k} \subseteq \mathcal{F} \subseteq\binom{[m]}{k}$. Define $\alpha(m, n, k)=\max \{|\mathcal{F}| \mid \mathcal{F}$ is an (m, n, k)-intersecting family $\}$. An (m, n, k)-intersecting family with cardinality $\alpha(m, n, k)$ is called a maximum family. The focus for our study is the following.

Problem 3. For $0<k \leqslant n<2 k \leqslant m$, determine $\alpha(m, n, k)$ and the corresponding maximum families.

Suppose that \mathcal{F} is an (m, n, k)-intersecting family. If any $A \in \mathcal{F}$ satisfies $|A \cap[n]| \leqslant$ $n-k$, then $|[n] \backslash A| \geqslant n-(n-k)=k$. Hence, there exists a k-subset $B \subseteq[n] \backslash A$. It is clear that $B \in \mathcal{F}$ and $B \cap A=\emptyset$, violating the intersecting condition on \mathcal{F}. Hence, we have a size constraint on any $A \in \mathcal{F}:|A \cap[n]| \geqslant n-k+1$, or equivalently, $|A \backslash[n]| \leqslant 2 k-n-1$.

For any fixed $t \in[n]$, define $\mathcal{H}_{t}^{m, n, k}$ to be the family consisting of all k-subsets of $[n]$ and those k-subsets which contain t and at least $n-k$ other elements from [n], i.e.

$$
\mathcal{H}_{t}^{m, n, k}=\binom{[n]}{k} \cup \bigcup_{i=1}^{2 k-n-1}\left\{A \cup B \cup\{t\} \left\lvert\, A \in\binom{[n] \backslash\{t\}}{k-i-1}\right., B \in\binom{[n+1, m]}{i}\right\} .
$$

We often write \mathcal{H}_{t} for $\mathcal{H}_{t}^{m, n, k}$ if the context is clear. It is easy to see that \mathcal{H}_{t} is an (m, n, k)-intersecting family and its cardinality is equal to

$$
h(m, n, k)=\binom{n}{k}+\sum_{i=1}^{2 k-n-1}\binom{n-1}{k-i-1}\binom{m-n}{i} .
$$

Hence, $\alpha(m, n, k) \geqslant h(m, n, k)$.
For the case $n=k$, Theorem 1 shows that $\alpha(m, k, k)=\binom{m-1}{k-1}=h(m, n, k)$ and all maximum families are of the form \mathcal{H}_{t} for some $t \in[k]$. For the case $n=k+1$, a maximum family is non-trivial since $\binom{[k+1]}{k}=\{[k+1] \backslash\{i\} \mid 1 \leqslant i \leqslant k+1\}$ and $\cap\left\{A \left\lvert\, A \in\binom{[k+1]}{k}\right.\right\}=\emptyset$. Theorem 2 shows that $\alpha(m, k+1, k)=\binom{m-1}{k-1}-\binom{m-1-k}{k-1}+1=h(m, k+1, k)$ and all maximum families are of the form $\mathcal{M}_{1}(A ; t)=\mathcal{H}_{t}$, where $t \in[k+1]$ and $A=[k+1] \backslash\{t\}$, or the form $\mathcal{M}_{2}(X)$, where $X \in\binom{[4]}{3}$, the latter occurs only for $k=3$.

In view of the above paragraph, the theorems of Erdős-Ko-Rado and Hilton-Milner can be regarded as special solutions to Problem 3. For these two particular cases, the obvious lower bound $h(m, n, k)$ coincides with the maximum value and, except the case for $k=3$ and $n=4$, all maximum families are of the form \mathcal{H}_{t}. This phenomenon leads us to pose the following.

Problem 4. When does $\alpha(m, n, k)=h(m, n, k)$ hold? When it does, are \mathcal{H}_{t} 's the only maximum families?

In this paper, we give an affirmative answer $\alpha(m, n, k)=h(m, n, k)$ for the above questions when $n=2 k-1,2 k-2,2 k-3$, or m sufficiently large.

2 Main Tools

Frequently, extremal problems concerning sub-families of $\binom{[m]}{k}$ can be translated into the context of Kneser graphs so that graph-theoretical tools may be employed to solve them. For $0<2 k \leqslant n$, a Kneser graph $\mathrm{KG}(n, k)$ has vertex set $\binom{[n]}{k}$ such that two vertices A and B are adjacent if and only if they are disjoint as subsets. By stipulation, we use $\mathrm{KG}(n, k)$ to denote the graph consisting of $\binom{n}{k}$ isolated vertices when $0<k \leqslant n<2 k$. An independent set in a graph is a set of vertices no two of which are adjacent. The maximum cardinality of an independent set in a graph G is called the independence number of G and is denoted by $\alpha(G)$. The Erdős-Ko-Rado theorem just gives the independence number of a Kneser graph and characterizes all maximum independent sets.

The direct product $G \times H$ of two graphs G and H is defined on the vertex set $\{(u, v) \mid$ $u \in G$ and $v \in H\}$ such that two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if
u_{1} is adjacent to u_{2} in G and v_{1} is adjacent to v_{2} in H. The cardinality of the vertex set of a graph G is denoted by $|G|$. The following result is due to Zhang [13].

Theorem 5. Let G and H be vertex-transitive graphs. Then $\alpha(G \times H)=\max \{\alpha(G)|H|$, $|G| \alpha(H)\}$. Furthermore, every maximum independent set of $G \times H$ is the pre-image of an independent set of G or H under projection.

Since Kneser graphs are vertex-transitive, we are going to use the above theorem for $G=\mathrm{KG}\left(n_{1}, k_{1}\right)$ and $H=\mathrm{KG}\left(n_{2}, k_{2}\right)$. The version of Theorem 5 for Kneser graphs was established in an earlier paper [8] of Frankl.

We can derive the following by Theorem 1, Theorem 5, and direct computation.
Lemma 6. When $2(k-i) \leqslant n$ and $2 i \leqslant m-n$,

$$
\alpha(\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i))= \begin{cases}\binom{n-1}{k-i-1}\binom{m-n}{i} & \text { if } m \geqslant n k /(k-i), \\ \binom{n}{k-i}\binom{m-n-1}{i-1} & \text { otherwise } .\end{cases}
$$

When $2(k-i)>n$ or $2 i>m-n, \alpha(\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i))=\binom{n}{k-i}\binom{m-n}{i}$.
Two families of sets \mathcal{A} and \mathcal{B} are said to be cross-intersecting if $A \cap B \neq \emptyset$ for any pair $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Frankl and Tokushige [9] proved the following.

Theorem 7. Let $\mathcal{A} \subseteq\binom{X}{a}$ and $\mathcal{B} \subseteq\binom{X}{b}$ be nonempty cross-intersecting families of subsets of X. Suppose that $|X| \geqslant a+b$ and $a \leqslant b$. Then

$$
|\mathcal{A}|+|\mathcal{B}| \leqslant\binom{|X|}{b}-\binom{|X|-a}{b}+1
$$

The above inequality provides a useful tool for handling our problems.

3 The cases for $m=2 k, n=2 k-1$, and $n=2 k-2$

Proposition 8. We have $\alpha(2 k, n, k)=\frac{1}{2}\binom{2 k}{k}=h(2 k, n, k)$ for all $n(k \leqslant n<2 k)$.
This is true because any $(2 k, n, k)$-intersecting family cannot contain a k-subset and its complement in [2k] simultaneously. Any maximum family \mathcal{F} can be obtained in the following manner. Pick a pair of a k-subset A and its complement $A^{\prime}=[2 k] \backslash A$. If A or A^{\prime} is a subset of $[n]$, then we put it in \mathcal{F}. Otherwise, we put any one of them in \mathcal{F}.

A special case of the above construction for a maximum family is to choose the one that contains a prescribed element t when neither A nor A^{\prime} is a subset of $[n]$. If $t \in[n]$, then the family so constructed is precisely \mathcal{H}_{t}.

Convention. From now on, we always assume that $0<k \leqslant n<2 k<m$ for any (m, n, k)-intersecting family.

Proposition 9. For $n=2 k-1$ and all $m>2 k$, we have $\alpha(m, n, k)=\binom{n}{k}=h(m, n, k)$ and $\binom{[n]}{k}$ is the unique maximum (m, n, k)-intersecting family.

Proof. Let \mathcal{F} be a maximum (m, n, k)-intersecting family. For any $A \in \mathcal{F}$, we know $k \geqslant|A \cap[n]| \geqslant n-k+1=k$. Thus, $A \in\binom{[n]}{k}$, and hence $\mathcal{F} \subseteq\binom{[n]}{k}$. Therefore, $\mathcal{F}=\binom{[n]}{k}$ and $\alpha(m, n, k)=|\mathcal{F}|=\binom{n}{k}=h(m, n, k)$. Note that all \mathcal{H}_{t} 's are equal to $\binom{[n]}{k}$.

Suppose that \mathcal{F} is an (m, n, k)-intersecting family. Define its canonical partition as follows.

$$
\mathcal{F}=\binom{[n]}{k} \cup\left(\bigcup_{i=1}^{2 k-n-1} \mathcal{F}_{i}\right)
$$

where $\mathcal{F}_{i}=\{F \in \mathcal{F}| | F \cap[n] \mid=k-i$ and $|F \cap[n+1, m]|=i\}$. For each i, we define an injection f_{i} from \mathcal{F}_{i} to the vertex set of $\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i)$ such that $f_{i}(F)=\left(A, B^{*}\right)$, where $A=F \cap[n]$ and $B^{*}=\{b-n \mid b \in F$ and $b \geqslant n+1\}$. Since \mathcal{F}_{i} is intersecting, it is easy to verify that the image of f_{i} is an independent set of $\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i)$. Thus, $\left|\mathcal{F}_{i}\right| \leqslant \alpha(\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i))$. We immediately obtain the following upper bound.

$$
|\mathcal{F}| \leqslant\binom{ n}{k}+\sum_{i=1}^{2 k-n-1} \alpha(\mathrm{KG}(n, k-i) \times \mathrm{KG}(m-n, i))
$$

Theorem 10. For $n=2 k-2$, we have $\alpha(m, n, k)=h(m, n, k)$. All the maximum families are of the form $\binom{[2 k-2]}{k} \cup\left\{F \cup\{b\} \mid F \in \mathcal{F}^{*}, b \in[2 k-1, m]\right\}$, where \mathcal{F}^{*} is any maximum intersecting family of $(k-1)$-subsets of $[2 k-2]$.

Proof. Let \mathcal{F} be a largest $(m, 2 k-2, k)$-intersecting family with canonical partition $\binom{[2 k-2]}{k} \cup \mathcal{F}_{1}$. Now, all the conditions $2(k-1) \leqslant n, 2 \leqslant m-n$, and $m \geqslant n k /(k-1)$ hold. It follows from Lemma 6 that $\left|\mathcal{F}_{1}\right| \leqslant\binom{ 2 k-3}{k-2}\binom{m-2 k+2}{1}$. Then $|\mathcal{F}|=\binom{2 k-2}{k}+\left|\mathcal{F}_{1}\right| \leqslant$ $h(m, 2 k-2, k)$. As a consequence, $|\mathcal{F}|=h(m, 2 k-2, k)$ and $\left|\mathcal{F}_{1}\right|=\binom{2 k-3}{k-2}\binom{m-2 k+2}{1}$. By Theorem $5, f_{1}\left(\mathcal{F}_{1}\right)$ is a maximum independent set in $\mathrm{KG}(2 k-2, k-1) \times \mathrm{KG}(m-2 k+2,1)$ and the collection \mathcal{F}^{*} of all the first components of $f_{1}\left(\mathcal{F}_{1}\right)$ is an independent set of $\mathrm{KG}(2 k-2, k-1)$. Clearly, \mathcal{F}^{*} is maximum because of its cardinality.

Remark. When $k=3$, an $(m, 2 k-2, k)$-family is also an $(m, k+1, k)$ family. There are other maximum families besides the collection of all \mathcal{H}_{t} 's. This phenomenon is consistent with the Hilton-Milner theorem for the case $k=3$.

4 The case for $n=2 k-3$

Theorem 11. For $n=2 k-3$, we have $\alpha(m, n, k)=h(m, n, k)$. All the maximum families are of the form \mathcal{H}_{t} for some $t \in[n]$.

Proof. Let \mathcal{F} be a largest $(m, 2 k-3, k)$-intersecting family with canonical partition $\binom{[2 k-3]}{k} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$. We further partition \mathcal{F}_{1} and \mathcal{F}_{2} into subfamilies. Let $N=\binom{2 k-3}{k-1}$. Partition $\binom{[2 k-3]}{k-1}$ into A_{1}, \ldots, A_{N} and $\binom{[2 k-3]}{k-2}$ into $A_{1}^{\prime}, \ldots, A_{N}^{\prime}$ such that $A_{j} \cup A_{j}^{\prime}=[2 k-3]$ for all j. Define $\mathcal{F}\left(A_{j}\right)=\left\{F \in \mathcal{F} \mid F \cap[2 k-3]=A_{j}\right\}$ and $\mathcal{F}\left(A_{j}^{\prime}\right)=\left\{F \in \mathcal{F} \mid F \cap[2 k-3]=A_{j}^{\prime}\right\}$. Then

$$
\mathcal{F}=\binom{[2 k-3]}{k} \cup\left(\bigcup_{j=1}^{N}\left(\mathcal{F}\left(A_{j}\right) \cup \mathcal{F}\left(A_{j}^{\prime}\right)\right)\right)
$$

Observation. If $\mathcal{F}\left(A_{j}\right) \neq \emptyset$, then $\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right| \leqslant m-2 k+3$.
If $\mathcal{F}\left(A_{j}^{\prime}\right)=\emptyset$, then $\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right|=\left|\mathcal{F}\left(A_{j}\right)\right| \leqslant\left|\left\{A_{j} \cup\{b\} \mid b \in[2 k-2, m]\right\}\right|=$ $m-2 k+3$. If $\mathcal{F}\left(A_{j}^{\prime}\right) \neq \emptyset$, then $\left\{\{b\} \mid A_{j} \cup\{b\} \in \mathcal{F}\left(A_{j}\right)\right\} \subseteq\binom{[2 k-2, m]}{1}$ and $\left\{\left\{b_{1}, b_{2}\right\} \mid A_{j}^{\prime} \cup\right.$ $\left.\left\{b_{1}, b_{2}\right\} \in \mathcal{F}\left(A_{j}^{\prime}\right)\right\} \subseteq\binom{[2 k-2, m]}{2}$ are cross-intersecting. By Theorem $7,\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right| \leqslant$ $\binom{m-2 k+3}{2}-\binom{m-2 k+2}{2}+1=m-2 k+3$. Hence, the observation holds.

Now suppose that all of $\mathcal{F}\left(A_{1}\right), \ldots, \mathcal{F}\left(A_{s}\right)$ are nonempty, yet $\mathcal{F}\left(A_{s+1}\right)=\cdots=$ $\mathcal{F}\left(A_{N}\right)=\emptyset$. Then we have

$$
\begin{equation*}
|\mathcal{F}| \leqslant\binom{ 2 k-3}{k}+s(m-2 k+3)+(N-s)\binom{m-2 k+3}{2} \tag{1}
\end{equation*}
$$

Case 1. $m \geqslant 2 k+2$.
Since $h(m, 2 k-3, k) \leqslant|\mathcal{F}|$ and $N=\binom{2 k-4}{k-2}+\binom{2 k-4}{k-3}$, it follows $s \leqslant\binom{ 2 k-4}{k-2}$. We may assume $k \geqslant 5$ because $\alpha(m, 3,3)$ and $\alpha(m, 5,4)$ are known by the theorems of Erdős-KoRado and Hilton-Milner. It follows that $m \geqslant(2 k-3) k /(k-2)$. Together with $2(k-2)<$ $2 k-3$ and $4<m-2 k+3$, we have $\alpha(\mathrm{KG}(2 k-3, k-2) \times \mathrm{KG}(m-2 k+3,2))=\binom{2 k-4}{k-3}\binom{m-2 k+3}{2}$ by Lemma 6. Recall that $f_{2}\left(\mathcal{F}_{2}\right)$ is an independent set of $\mathrm{KG}(2 k-3, k-2) \times \mathrm{KG}(m-$ $2 k+3,2)$. Hence, $\left|\mathcal{F}_{2}\right| \leqslant\binom{ 2 k-4}{k-3}\binom{m-2 k+3}{2}$. If $s<\binom{2 k-4}{k-2}$, then $\left|\mathcal{F}_{1}\right|=\sum_{j=1}^{s}\left|\mathcal{F}\left(A_{j}\right)\right|<$ $\binom{2 k-4}{k-2}(m-2 k+3)$. This leads to $|\mathcal{F}|=\binom{2 k-3}{k}+\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|<h(m, 2 k-3, k)$, a contradiction. Thus, $s=\binom{2 k-4}{k-2}$ and $\alpha(m, 2 k-3, k)=h(m, 2 k-3, k)$ for $m \geqslant 2 k+2$.

Case 2. $m=2 k+1$.
Suppose that $\binom{2 k-3}{k}+\binom{2 k-4}{k-2}\binom{4}{1}+\binom{2 k-4}{k-3}\binom{4}{2}=h(2 k+1,2 k-3, k)<|\mathcal{F}|$. Since $N=\binom{2 k-4}{k-2}+\binom{2 k-4}{k-3}$, it follows from inequality (1) that $\left|\left\{j\left|\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right| \geqslant 5\right\} \mid>\right.\right.$ $\binom{2 k-4}{k-3}$. By our Observation, $\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right| \geqslant 5$ implies $\mathcal{F}\left(A_{j}\right)=\emptyset$ for any j. Thus $\left|\left\{A_{j}^{\prime}| | \mathcal{F}\left(A_{j}^{\prime}\right) \mid \geqslant 5\right\}\right|>\binom{2 k-4}{k-3}$. By Theorem 1, there exist disjoint sets $A_{j_{1}}^{\prime}$ and $A_{j_{2}}^{\prime}$ in $\left\{A_{j}^{\prime}| | \mathcal{F}\left(A_{j}^{\prime}\right) \mid \geqslant 5\right\} \subseteq\binom{[2 k-3]}{k-2}$. Then it is easy to find two disjoint sets, one in $\mathcal{F}\left(A_{j_{1}}^{\prime}\right)$ and the other in $\mathcal{F}\left(A_{j_{2}}^{\prime}\right)$. This contradicts the assumption that \mathcal{F} is intersecting. Therefore $|\mathcal{F}|=h(2 k+1,2 k-3, k)$.

Let us examine the maximum families. Note that $\alpha(m, 2 k-3, k)=h(m, 2 k-3, k)$ implies that inequality (1) becomes equality, $s=\binom{2 k-4}{k-2}$, and $N-s=\binom{2 k-4}{k-3}$. It follows
that $\mathcal{F}\left(A_{j}^{\prime}\right)=\left\{A_{j}^{\prime} \cup B \left\lvert\, B \in\binom{[2 k-2, m]}{2}\right.\right\}$ for $s<j \leqslant N$. Since there exists a nonintersecting pair B_{1} and B_{2} in $\binom{[2 k-2, m]}{2},\left\{A_{j}^{\prime} \mid s+1 \leqslant j \leqslant N\right\}$ must be a maximum intersecting family in view of its cardinality. By Theorem 1 , there exists $t \in \cap_{j=s+1}^{N} A_{j}^{\prime}$. For $1 \leqslant j \leqslant s$, if there exists $\mathcal{F}\left(A_{j_{1}}^{\prime}\right) \neq \emptyset$ for some $1 \leqslant j_{1} \leqslant s$, then there exists some $A_{j_{2}}^{\prime}, s+1 \leqslant j_{2} \leqslant N$ such that $A_{j_{1}}^{\prime} \cap A_{j_{2}}^{\prime}=\emptyset$. We can find two disjoint sets, one in $\mathcal{F}\left(A_{j_{1}}^{\prime}\right)$ and the other in $\mathcal{F}\left(A_{j_{2}}^{\prime}\right)$, a contradiction. Therefore we have $\mathcal{F}\left(A_{j}^{\prime}\right)=\emptyset$ and $\mathcal{F}\left(A_{j}\right)=\left\{A_{j} \cup B \left\lvert\, B \in\binom{[2 k-2, m]}{1}\right.\right\}$ for $1 \leqslant j \leqslant s$. Suppose that $t \notin A_{j_{0}}$ for some $1 \leqslant j_{0} \leqslant s$. Then $t \in A_{j_{0}}^{\prime}$. For any $A_{j}^{\prime}, s+1 \leqslant j \leqslant N$, we have $A_{j_{0}}^{\prime} \neq A_{j}^{\prime}$ since $\mathcal{F}\left(A_{j}\right)=\emptyset$, yet $\mathcal{F}\left(A_{j_{0}}\right) \neq \emptyset$. Then $\left\{A_{j_{0}}^{\prime}, A_{s+1}, \ldots, A_{N}\right\}$ is an intersecting family in $\binom{[2 k-3]}{k-2}$ having more than $\binom{2 k-4}{k-3}$ members, a contradiction. Hence \mathcal{F} has the form \mathcal{H}_{t} for $t \in[2 k-3]$.

5 The case for m sufficiently large

We have solved Problem 3 for $n=2 k-1,2 k-2$, and $2 k-3$. In this section, we are going to assume that $k \leqslant n<2 k-3$ and solve the problem when m is sufficiently large.

Let r, l, n be positive integers satisfying $r<l \leqslant n / 2$, and let X_{1} and X_{2} be disjoint n-sets. Wang and Zhang [11] characterized the maximum intersecting families $\mathcal{F} \subseteq\{F \in$ $\binom{X_{1} \cup X_{2}}{r+l}\left|\left|F \cap X_{1}\right|=r\right.$ or $\left.l\right\}$ of maximum cardinality. We consider a similar extremal problem.

Problem 12. Given integers m, n, k, c, d satisfying $n<m, k \leqslant n<2 k-3, d<c<k$, and $c+d=n$, characterize the intersecting families $\mathcal{F} \subseteq\left\{F \in\binom{[m]}{k}||F \cap[n]|=c\right.$ or $d\}$ of maximum cardinality.

We can derive an asymptotic solution of the above problem as follows.
Lemma 13. For given n, k, c, d satisfying conditions in the above problem, if m is sufficiently large, then a maximum intersecting family \mathcal{F} has the form $\{A \cup B \cup\{t\} \mid A \in$ $\left.\binom{[n \backslash \backslash\{t\}}{c-1}, B \in\binom{[n+1, m]}{k-c}\right\} \cup\left\{A \cup B \cup\{t\} \left\lvert\, A \in\binom{[n] \backslash\{t\}}{d-1}\right., B \in\binom{[n+1, m]}{k-d}\right\}$ for some $t \in[n]$, and hence $|\mathcal{F}|=\binom{n-1}{c-1}\binom{m-n}{k-c}+\binom{n-1}{d-1}\binom{m-n}{k-d}$.

Proof. Let \mathcal{F} be a maximum intersecting family satisfying the conditions of Problem 12. Any special form stated in the lemma is an intersecting family, hence its cardinality $\binom{n-1}{c-1}\binom{m-n}{k-c}+\binom{n-1}{d-1}\binom{m-n}{k-d}$ supplies a lower bound for $|\mathcal{F}|$.

Let us consider upper bounds for $|\mathcal{F}|$. First partition \mathcal{F} into two subfamilies \mathcal{F}_{k-c} and \mathcal{F}_{k-d} such that $\mathcal{F}_{k-c}=\{F \in \mathcal{F}| | F \cap[n] \mid=c\}$ and $\mathcal{F}_{k-d}=\{F \in \mathcal{F}| | F \cap[n] \mid=d\}$. For \mathcal{F}_{k-d}, we consider the injection from \mathcal{F}_{k-d} to the vertex set of $\mathrm{KG}(n, d) \times \mathrm{KG}(m-n, k-d)$ defined prior to Lemma 6 . We may choose m sufficiently large so that $2(k-d)<m-n$ and $m>n k / d$ hold. By Lemma 6, we have $\left|\mathcal{F}_{k-d}\right| \leqslant \alpha(\mathrm{KG}(n, d))|\mathrm{KG}(m-n, k-d)|=$ $\binom{n-1}{d-1}\binom{m-n}{k-d}$. Consider a further partition on \mathcal{F}_{k-c} and \mathcal{F}_{k-d}. Denote $N=\binom{n}{c}$. For $A_{j} \in\binom{[n]}{c}$ and $A_{j}^{\prime}=[n] \backslash A_{j}, 1 \leqslant j \leqslant N$, let $\mathcal{F}\left(A_{j}\right)=\left\{F \in \mathcal{F}_{k-c} \mid F \cap[n]=A_{j}\right\}$ and $\mathcal{F}\left(A_{j}^{\prime}\right)=\left\{F \in \mathcal{F}_{k-d} \mid F \cap[n]=A_{j}^{\prime}\right\}$. Since $A_{j} \cap A_{j}^{\prime}=\emptyset$, the two families $\left\{\left.B \in\binom{[n+1, m]}{k-c} \right\rvert\,\right.$ $\left.A_{j} \cup B \in \mathcal{F}\right\}$ and $\left\{\left.B \in\binom{[n+1, m]}{k-d} \right\rvert\, A_{j}^{\prime} \cup B \in \mathcal{F}\right\}$ are cross-intersecting of size $\left|\mathcal{F}\left(A_{j}\right)\right|$ and
$\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right|$, respectively. Let $r \leqslant s$ be integers such that $\mathcal{F}\left(A_{j}\right)=\emptyset$ for $1 \leqslant j \leqslant r, \mathcal{F}\left(A_{j}\right)$ and $\mathcal{F}\left(A_{j}^{\prime}\right)$ are nonempty for $r+1 \leqslant j \leqslant s$ and $\mathcal{F}\left(A_{j}^{\prime}\right)=\emptyset$ for $s+1 \leqslant j \leqslant N$. Then by Theorem 7,

$$
\begin{aligned}
|\mathcal{F}|= & \sum_{j=1}^{r}\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right|+\sum_{j=r+1}^{s}\left(\left|\mathcal{F}\left(A_{j}\right)\right|+\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right|\right)+\sum_{j=s+1}^{N}\left|\mathcal{F}\left(A_{j}\right)\right| \\
\leqslant & r\binom{m-n}{k-d}+(s-r)\left(\binom{m-n}{k-d}-\binom{m-k-d}{k-d}+1\right) \\
& +(N-s)\binom{m-n}{k-c} .
\end{aligned}
$$

We first show that $r=\binom{n-1}{d-1}$. If $r>\binom{n-1}{d-1}$, then

$$
\begin{aligned}
|\mathcal{F}| & =\sum_{j=r+1}^{N}\left|\mathcal{F}\left(A_{j}\right)\right|+\sum_{j=1}^{s}\left|\mathcal{F}\left(A_{j}^{\prime}\right)\right| \\
& \leqslant(N-r)\binom{m-n}{k-c}+\left|\mathcal{F}_{k-d}\right| \\
& <\binom{n-1}{c-1}\binom{m-n}{k-c}+\binom{n-1}{d-1}\binom{m-n}{k-d}
\end{aligned}
$$

which cannot be true.
For m sufficient large, say $m>2 n(n / 2)^{k-d}\binom{n}{\lfloor n / 2\rfloor}$, we have

$$
\begin{aligned}
& (s-r)\left(\binom{m-n}{k-d}-\binom{m-k-d}{k-d}+1\right)+(N-s)\binom{m-n}{k-c} \\
< & (s-r)\left(\frac{m^{k-d}}{(k-d)!}-\frac{(m-2 n)^{k-d}}{(k-d)!}+1\right)+(N-s) m^{k-c} \\
< & (s-r)\left(2 n m^{k-d-1}+1\right)+(N-s) m^{k-c} \\
< & N(2 n) m^{k-d-1} \\
\leqslant & \binom{n}{\lfloor n / 2\rfloor}(2 n)(n / 2)^{k-d} \frac{1}{m} \frac{m^{k-d}}{(n / 2)^{k-d}} \\
< & \binom{m-n}{k-d} .
\end{aligned}
$$

If $r<\binom{n-1}{d-1}$, then $|\mathcal{F}|<(1+r)\binom{m-n}{k-d} \leqslant\binom{ n-1}{d-1}\binom{m-n}{k-d}$, which is impossible. Hence $r=\binom{n-1}{d-1}$. Now we show that $s=\binom{n-1}{d-1}$. Note that $s \geqslant r=\binom{n-1}{d-1}$. Suppose $s>\binom{n-1}{d-1}$. Then by Theorem 5, the image of the injection from \mathcal{F}_{k-d} to $\mathrm{KG}(n, d) \times \mathrm{KG}(m-n, k-d)$ cannot be a maximal independent set and $\left|\mathcal{F}_{k-d}\right|<\binom{n-1}{d-1}\binom{m-n}{k-d}$. This leads to $|\mathcal{F}| \leqslant$ $(N-r)\binom{m-n}{k-c}+\left|\mathcal{F}_{k-d}\right|<\binom{n-1}{c-1}\binom{m-n}{k-c}+\binom{n-1}{d-1}\binom{m-n}{k-d}$, contradicting the lower bound of $|\mathcal{F}|$ again. Since $r=s=\binom{n-1}{d-1}$, we have $|\mathcal{F}| \leqslant\binom{ n-1}{d-1}\binom{m-n}{k-d}+\binom{n-1}{c-1}\binom{m-n}{k-c}$. The equality must hold as the right hand side is the known lower bound of $|\mathcal{F}|$.
 and $\mathcal{F}\left(A_{j}^{\prime}\right)=\left\{A_{j}^{\prime} \cup B \left\lvert\, B \in\binom{[n+1, m]}{k-d}\right.\right\}$ for $j \leqslant\binom{ n-1}{d-1}$. Now $\left\{A_{j}^{\prime} \left\lvert\, 1 \leqslant j \leqslant\binom{ n-1}{d-1}\right.\right\} \subseteq\binom{[n]}{k}$ is a maximum intersecting family. Thus, there is a common element $t \in A_{j}^{\prime}$ for $1 \leqslant j \leqslant\binom{ n-1}{d-1}$. On the other hand, no A_{j}^{\prime} contains t for $j>\binom{n-1}{d-1}$. That implies $t \in A_{j}$. So t belongs to every member of \mathcal{F}.
Theorem 14. If integers n and k satisfy $k \leqslant n<2 k-3$, then $\alpha(m, n, k)=h(m, n, k)$ holds for sufficiently large m. For such a large m, a maximum (m, n, k)-intersecting family is of the form \mathcal{H}_{t} for some $t \in[n]$.
Proof. Let an (m, n, k)-intersecting family \mathcal{F} have canonical partition $\binom{[n]}{k} \cup\left(\bigcup_{i=1}^{2 k-n-1} \mathcal{F}_{i}\right)$ as before. When n is odd, we put \mathcal{F}_{i} and $\mathcal{F}_{2 k-n-i}$ into a pair for $1 \leqslant i \leqslant(2 k-n-1) / 2$. When n is even, we put \mathcal{F}_{i} and $\mathcal{F}_{2 k-n-i}$ into a pair for $1 \leqslant i \leqslant\lfloor(2 k-n-1) / 2\rfloor-1$, and leave $\mathcal{F}_{\lfloor(2 k-n-1) / 2\rfloor}$ unpaired.

Let $c=k-i$ and $d=n-k+i$. The subfamily $\mathcal{F}_{i} \cup \mathcal{F}_{2 k-n-i}$ is an intersecting family and satisfies the conditions in Lemma 13. Therefore $\left|\mathcal{F}_{i}\right|+\left|\mathcal{F}_{2 k-n-i}\right| \leqslant\binom{ n-1}{k-i-1}\binom{m-n}{i}+$ $\binom{n-1}{n-k+i-1}\binom{m-n}{2 k-n-i}$ for sufficiently large m. When n is odd, we immediately have the following.

$$
\begin{aligned}
|\mathcal{F}| & \leqslant\binom{ n}{k}+\sum_{i=1}^{(2 k-n-1) / 2}\binom{n-1}{k-i-1}\binom{m-n}{i}+\binom{n-1}{k-i}\binom{m-n}{2 k-n-i} \\
& =\binom{n}{k}+\sum_{i=1}^{2 k-n-1}\binom{n-1}{k-i-1}\binom{m-n}{i}
\end{aligned}
$$

When n is even, we have $\left|\mathcal{F}_{i}\right| \leqslant\binom{ n-1}{k-i-1}\binom{m-n}{i}$ for $i=\lfloor(2 k-n-1) / 2\rfloor$ by Theorem 5. Together with other upper bounds of $\left|\mathcal{F}_{i} \cup \mathcal{F}_{2 k-n-i}\right|$, we have shown $|\mathcal{F}| \leqslant\binom{ n}{k}+$ $\sum_{i=1}^{2 k-n-1}\binom{n-1}{k-i-1}\binom{m-n}{i}$.

When \mathcal{F} is a maximum (m, n, k)-intersecting family, for each pair \mathcal{F}_{i} and $\mathcal{F}_{2 k-n-i}$, there is an element t_{i} belonging to every member of $\mathcal{F}_{i} \cup \mathcal{F}_{2 k-n-i}$. This also holds for \mathcal{F}_{i}, $i=\lfloor(2 k-n-1) / 2\rfloor$ for even n. Suppose that there exist $\mathcal{F}_{i_{1}} \cup \mathcal{F}_{2 k-n-i_{1}}$ and $\mathcal{F}_{i_{2}} \cup \mathcal{F}_{2 k-n-i_{2}}$ for which $t_{i_{1}} \neq t_{i_{2}}$. (The case that one of them is $\mathcal{F}_{i}, i=\lfloor(2 k-n-1) / 2\rfloor$ for even n, is the same.) Note that

$$
\mathcal{F}_{2 k-n-i_{j}}=\left\{A \cup B \cup\left\{t_{i_{j}}\right\} \left\lvert\, A \in\binom{[n] \backslash\left\{t_{i_{j}}\right\}}{n-k+i_{j}-1}\right., B \in\binom{[n+1, m]}{2 k-n-i_{j}}\right\}
$$

for $j=1,2$. Since $2\left(n-k+i_{j}-1\right) \leqslant n-1$ and $2\left(2 k-n-i_{j}\right)<m-n$, we can find subsets $F_{j} \in \mathcal{F}_{2 k-n-i_{j}}$ for $j=1,2$ such that $F_{1} \cap F_{2}=\emptyset$ if $t_{i_{1}} \neq t_{i_{2}}$. Therefore $t_{i_{1}} \neq t_{i_{2}}$ cannot happen. Consequently, $\mathcal{F}=\mathcal{H}_{t}$ for some $t \in[n]$.

6 Conclusion

We have introduced the notion of an (m, n, k)-intersecting family and studied its maximum cardinality $\alpha(m, n, k)$. The well-known theorems of Erdős-Ko-Rado and Hilton-Milner in
finite extremal set theory are special cases for $n=k$ and $n=k+1$. The common cardinality $h(m, n, k)$ of a particular collection of (m, n, k)-intersecting families $\mathcal{H}_{t}^{m, n, k}$ supplies a natural lower bound for $\alpha(m, n, k)$. A noticeable feature of $\mathcal{H}_{t}^{m, n, k}$ is that members of $\mathcal{H}_{t}^{m, n, k} \backslash\binom{[n]}{k}$ have a nonempty intersection. We have proved that the families $\mathcal{H}_{t}^{m, n, k}$ are precisely all the (m, n, k)-intersecting families of maximum cardinality for the cases $n=2 k-1,2 k-3$, or m sufficiently large. When $n=2 k-2$, there are other maximum families. Whether $\alpha(m, n, k)=h(m, n, k)$ is true in all cases and $\mathcal{H}_{t}^{m, n, k}, n \neq 2 k-2$, always characterizes maximum families are interesting open problems. Analogue problems can be formulated with respect to intersecting families having intersection size greater than some prescribed positive integer.

Acknowledgements

This work was done while the first author was a post-doctoral fellow in the Institute of Mathematics, Academia Sinica. The supports provided by the Institute is greatly appreciated.

References

[1] R. Ahlswede and L. H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Combin. Theory Ser. A, 76:121-138, 1996.
[2] R. Ahlswede and L. H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18:125-136, 1997.
[3] P. Borg. Intersecting families of sets and permutations: a survey, In A. R. Baswell (Ed.), Advances in Mathematics Research, volume 16, pages 283-299, Nova Science Publishers, 2011.
[4] M. Deza and P. Frankl. Erdős-Ko-Rado theorem - 22 years later. SIAM J. Algebraic Discrete Methods, 4:419-431, 1983.
[5] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 2, 12:313-320, 1961.
[6] P. Frankl. The Erdős-Ko-Rado Theorem is true for $n=c k t$. Proc. Fifth Hung. Comb. Coll., pages 365-375, North-Holland, Amsterdam, 1978.
[7] P. Frankl. The shifting technique in extremal set theory. In C. Whitehead (Ed.), Combinatorial Surveys, pages 81-110, Cambridge Univ. Press, 1987.
[8] P. Frankl. An Erdős-Ko-Rado theorem for direct products. European J. Combin., 17:727-730, 1996.
[9] P. Frankl and N. Tokushige. Some best possible inequality concerning crossintersecting families. J. Combin. Theory Ser. A, 61:87-97, 1992.
[10] A. J. W. Hilton and E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 2, 18:369-384, 1967.
[11] J. Wang and H. Zhang. Intersecting families in a subset of Boolean lattice. Electron. J. Combin., 18:\#P237, 2011.
[12] R. M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4:247-257, 1984.
[13] H. Zhang. Independent sets in direct products of vertex-transitive graphs. J. Combin. Theory Ser. B, 102:832-838, 2012.

[^0]: *Research supported by NSC (No. 102-2115-M-005-001)
 ${ }^{\dagger}$ Research supported by NSC (No. 102-2115-M-126-002)
 ${ }^{\ddagger}$ Research supported by NSC (No. 102-2115-M-001-010)

