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Abstract

Let m,n, and k be integers satisfying 0 < k 6 n < 2k 6 m. A family of sets
F is called an (m,n, k)-intersecting family if

([n]
k

)
⊆ F ⊆

([m]
k

)
and any pair of

members of F have nonempty intersection. Maximum (m, k, k)- and (m, k + 1, k)-
intersecting families are determined by the theorems of Erdős-Ko-Rado and Hilton-
Milner, respectively. We determine the maximum families for the cases n = 2k− 1,
2k − 2, 2k − 3, or m sufficiently large.
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1 Introduction

For positive integers a 6 b, define [a, b] = {a, a + 1, . . . , b} and let [a] = [1, a]. The
cardinality of a set X is denoted by |X|. A set of cardinality n is called an n-set. A family
of subsets of X is said to be intersecting if no two members are disjoint. The family of
all k-subsets of X is denoted by

(
X
k

)
. Note that

(
[m]
k

)
is intersecting if 0 < k 6 m < 2k.

If all members of a family F ⊆
(
[m]
k

)
contain a fixed element, then F is obviously an

intersecting family and is said to be trivial. A trivial intersecting family can have at
most

(
m−1
k−1

)
members. One of the cornerstones of the extremal theory of finite sets is the

following pioneering result of Erdős, Ko, and Rado [5].

Theorem 1. Suppose 0 < 2k < m. Let F ⊆
(
[m]
k

)
be an intersecting family. Then

|F| 6
(
m−1
k−1

)
. Moreover, the equality holds if and only if F consists of all k-subsets

containing a fixed element.

Let A ∈
(
[m]
k

)
and t 6∈ A. DefineM1(A; t) = {A}∪{B ∈

(
[m]
k

)
| t ∈ B and A∩B 6= ∅}.

Clearly |M1(A; t)| =
(
m−1
k−1

)
−
(
m−1−k
k−1

)
+ 1. Let X ∈

(
[m]
3

)
. Define M2(X) = {B ∈

(
[m]
k

)
|

|X ∩B| > 2}. Both M1(A; t) and M2(X) are intersecting families. The largest size of a
non-trivial intersecting family was determined in the following result of Hilton and Milner
[10].

Theorem 2. Suppose 0 < 2k < m. Let F ⊆
(
[m]
k

)
be an intersecting family such that

∩{A | A ∈ F} = ∅. Then |F| 6
(
m−1
k−1

)
−
(
m−1−k
k−1

)
+ 1. Moreover, the equality holds if and

only if F is of the form M1(A; t) or the form M2(X), the latter occurs only for k = 3.

In a more general form, the Erdő-Ko-Rado theorem describes the size and structure
of the largest collection of k-subsets of an n-set having the property that the intersection
of any two subsets contains at least t elements. This theorem has motivated a great
deal of development of finite extremal set theory since its first publication in 1961. The
complete establishment of the general form was achieved through cumulative works of
Frankl [6], Wilson [12], and Ahlswede and Khachatrian [2]. Ahlswede and Khachatrian
[1] even extended the Hilton-Milner theorem in the general case. The reader is referred
to Deza and Frankl [4], Frankl [7], and Borg [3] for surveys on relevant results.

Let 0 < k 6 n < 2k 6 m. We call an intersecting family F an (m,n, k)-intersecting
family if

(
[n]
k

)
⊆ F ⊆

(
[m]
k

)
. Define α(m,n, k) = max {|F| | F is an (m,n, k)-intersecting

family}. An (m,n, k)-intersecting family with cardinality α(m,n, k) is called a maximum
family. The focus for our study is the following.

Problem 3. For 0 < k 6 n < 2k 6 m, determine α(m,n, k) and the corresponding
maximum families.

Suppose that F is an (m,n, k)-intersecting family. If any A ∈ F satisfies |A ∩ [n]| 6
n−k, then |[n]\A| > n−(n−k) = k. Hence, there exists a k-subset B ⊆ [n]\A. It is clear
that B ∈ F and B ∩ A = ∅, violating the intersecting condition on F . Hence, we have a
size constraint on any A ∈ F : |A∩ [n]| > n− k+ 1, or equivalently, |A \ [n]| 6 2k−n− 1.

the electronic journal of combinatorics 20(3) (2013), #P38 2



For any fixed t ∈ [n], define Hm,n,k
t to be the family consisting of all k-subsets of [n]

and those k-subsets which contain t and at least n− k other elements from [n], i.e.

Hm,n,k
t =

(
[n]

k

)
∪

2k−n−1⋃
i=1

{
A ∪B ∪ {t}

∣∣∣∣A ∈ ( [n] \ {t}
k − i− 1

)
, B ∈

(
[n+ 1,m]

i

)}
.

We often write Ht for Hm,n,k
t if the context is clear. It is easy to see that Ht is an

(m,n, k)-intersecting family and its cardinality is equal to

h(m,n, k) =

(
n

k

)
+

2k−n−1∑
i=1

(
n− 1

k − i− 1

)(
m− n
i

)
.

Hence, α(m,n, k) > h(m,n, k).
For the case n = k, Theorem 1 shows that α(m, k, k) =

(
m−1
k−1

)
= h(m,n, k) and all

maximum families are of the form Ht for some t ∈ [k]. For the case n = k+1, a maximum
family is non-trivial since

(
[k+1]
k

)
= {[k+1]\{i} | 1 6 i 6 k+1} and ∩{A | A ∈

(
[k+1]
k

)
} = ∅.

Theorem 2 shows that α(m, k + 1, k) =
(
m−1
k−1

)
−
(
m−1−k
k−1

)
+ 1 = h(m, k + 1, k) and all

maximum families are of the formM1(A; t) = Ht, where t ∈ [k+ 1] and A = [k+ 1] \ {t},
or the form M2(X), where X ∈

(
[4]
3

)
, the latter occurs only for k = 3.

In view of the above paragraph, the theorems of Erdős-Ko-Rado and Hilton-Milner
can be regarded as special solutions to Problem 3. For these two particular cases, the
obvious lower bound h(m,n, k) coincides with the maximum value and, except the case
for k = 3 and n = 4, all maximum families are of the form Ht. This phenomenon leads
us to pose the following.

Problem 4. When does α(m,n, k) = h(m,n, k) hold? When it does, are Ht’s the only
maximum families?

In this paper, we give an affirmative answer α(m,n, k) = h(m,n, k) for the above
questions when n = 2k − 1, 2k − 2, 2k − 3, or m sufficiently large.

2 Main Tools

Frequently, extremal problems concerning sub-families of
(
[m]
k

)
can be translated into the

context of Kneser graphs so that graph-theoretical tools may be employed to solve them.
For 0 < 2k 6 n, a Kneser graph KG(n, k) has vertex set

(
[n]
k

)
such that two vertices A

and B are adjacent if and only if they are disjoint as subsets. By stipulation, we use
KG(n, k) to denote the graph consisting of

(
n
k

)
isolated vertices when 0 < k 6 n < 2k. An

independent set in a graph is a set of vertices no two of which are adjacent. The maximum
cardinality of an independent set in a graph G is called the independence number of G and
is denoted by α(G). The Erdős-Ko-Rado theorem just gives the independence number of
a Kneser graph and characterizes all maximum independent sets.

The direct product G×H of two graphs G and H is defined on the vertex set {(u, v) |
u ∈ G and v ∈ H} such that two vertices (u1, v1) and (u2, v2) are adjacent if and only if
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u1 is adjacent to u2 in G and v1 is adjacent to v2 in H. The cardinality of the vertex set
of a graph G is denoted by |G|. The following result is due to Zhang [13].

Theorem 5. Let G and H be vertex-transitive graphs. Then α(G×H) = max{α(G)|H|,
|G|α(H)}. Furthermore, every maximum independent set of G × H is the pre-image of
an independent set of G or H under projection.

Since Kneser graphs are vertex-transitive, we are going to use the above theorem for
G = KG(n1, k1) and H = KG(n2, k2). The version of Theorem 5 for Kneser graphs was
established in an earlier paper [8] of Frankl.

We can derive the following by Theorem 1, Theorem 5, and direct computation.

Lemma 6. When 2(k − i) 6 n and 2i 6 m− n,

α(KG(n, k − i)× KG(m− n, i)) =

{ (
n−1

k−i−1

)(
m−n

i

)
if m > nk/(k − i),(

n
k−i

)(
m−n−1

i−1

)
otherwise.

When 2(k − i) > n or 2i > m− n, α(KG(n, k − i)× KG(m− n, i)) =
(

n
k−i

)(
m−n

i

)
.

Two families of sets A and B are said to be cross-intersecting if A ∩ B 6= ∅ for any
pair A ∈ A and B ∈ B. Frankl and Tokushige [9] proved the following.

Theorem 7. Let A ⊆
(
X
a

)
and B ⊆

(
X
b

)
be nonempty cross-intersecting families of subsets

of X. Suppose that |X| > a+ b and a 6 b. Then

|A|+ |B| 6
(
|X|
b

)
−
(
|X| − a

b

)
+ 1.

The above inequality provides a useful tool for handling our problems.

3 The cases for m = 2k, n = 2k− 1, and n = 2k− 2

Proposition 8. We have α(2k, n, k) = 1
2

(
2k
k

)
= h(2k, n, k) for all n (k 6 n < 2k).

This is true because any (2k, n, k)-intersecting family cannot contain a k-subset and
its complement in [2k] simultaneously. Any maximum family F can be obtained in the
following manner. Pick a pair of a k-subset A and its complement A′ = [2k] \ A. If A or
A′ is a subset of [n], then we put it in F . Otherwise, we put any one of them in F .

A special case of the above construction for a maximum family is to choose the one
that contains a prescribed element t when neither A nor A′ is a subset of [n]. If t ∈ [n],
then the family so constructed is precisely Ht.

Convention. From now on, we always assume that 0 < k 6 n < 2k < m for any
(m,n, k)-intersecting family.
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Proposition 9. For n = 2k − 1 and all m > 2k, we have α(m,n, k) =
(
n
k

)
= h(m,n, k)

and
(
[n]
k

)
is the unique maximum (m,n, k)-intersecting family.

Proof. Let F be a maximum (m,n, k)-intersecting family. For any A ∈ F , we know
k > |A∩ [n]| > n− k+ 1 = k. Thus, A ∈

(
[n]
k

)
, and hence F ⊆

(
[n]
k

)
. Therefore, F =

(
[n]
k

)
and α(m,n, k) = |F| =

(
n
k

)
= h(m,n, k). Note that all Ht’s are equal to

(
[n]
k

)
.

Suppose that F is an (m,n, k)-intersecting family. Define its canonical partition as
follows.

F =

(
[n]

k

)
∪

(
2k−n−1⋃

i=1

Fi

)
,

where Fi = {F ∈ F | |F ∩ [n]| = k − i and |F ∩ [n + 1,m]| = i}. For each i, we
define an injection fi from Fi to the vertex set of KG(n, k − i) × KG(m − n, i) such
that fi(F ) = (A,B∗), where A = F ∩ [n] and B∗ = {b − n | b ∈ F and b > n + 1}.
Since Fi is intersecting, it is easy to verify that the image of fi is an independent set of
KG(n, k− i)×KG(m−n, i). Thus, |Fi| 6 α(KG(n, k− i)×KG(m−n, i)). We immediately
obtain the following upper bound.

|F| 6
(
n

k

)
+

2k−n−1∑
i=1

α(KG(n, k − i)× KG(m− n, i)).

Theorem 10. For n = 2k−2, we have α(m,n, k) = h(m,n, k). All the maximum families
are of the form

(
[2k−2]

k

)
∪ {F ∪ {b} | F ∈ F∗, b ∈ [2k − 1,m]}, where F∗ is any maximum

intersecting family of (k − 1)-subsets of [2k − 2].

Proof. Let F be a largest (m, 2k − 2, k)-intersecting family with canonical partition(
[2k−2]

k

)
∪ F1. Now, all the conditions 2(k − 1) 6 n, 2 6 m − n, and m > nk/(k − 1)

hold. It follows from Lemma 6 that |F1| 6
(
2k−3
k−2

)(
m−2k+2

1

)
. Then |F| =

(
2k−2
k

)
+ |F1| 6

h(m, 2k − 2, k). As a consequence, |F| = h(m, 2k − 2, k) and |F1| =
(
2k−3
k−2

)(
m−2k+2

1

)
. By

Theorem 5, f1(F1) is a maximum independent set in KG(2k−2, k−1)×KG(m−2k+2, 1)
and the collection F∗ of all the first components of f1(F1) is an independent set of
KG(2k − 2, k − 1). Clearly, F∗ is maximum because of its cardinality.

Remark. When k = 3, an (m, 2k− 2, k)-family is also an (m, k+ 1, k) family. There are
other maximum families besides the collection of all Ht’s. This phenomenon is consistent
with the Hilton-Milner theorem for the case k = 3.

4 The case for n = 2k − 3

Theorem 11. For n = 2k−3, we have α(m,n, k) = h(m,n, k). All the maximum families
are of the form Ht for some t ∈ [n].
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Proof. Let F be a largest (m, 2k − 3, k)-intersecting family with canonical partition(
[2k−3]

k

)
∪F1∪F2. We further partition F1 and F2 into subfamilies. Let N =

(
2k−3
k−1

)
. Parti-

tion
(
[2k−3]
k−1

)
into A1, . . . , AN and

(
[2k−3]
k−2

)
into A′1, . . . , A

′
N such that Aj∪A′j = [2k−3] for all

j. Define F(Aj) = {F ∈ F | F ∩ [2k−3] = Aj} and F(A′j) = {F ∈ F | F ∩ [2k−3] = A′j}.
Then

F =

(
[2k − 3]

k

)
∪

(
N⋃
j=1

(
F(Aj) ∪ F(A′j)

))
.

Observation. If F(Aj) 6= ∅, then |F(Aj)|+ |F(A′j)| 6 m− 2k + 3.

If F(A′j) = ∅, then |F(Aj)| + |F(A′j)| = |F(Aj)| 6 |{Aj ∪ {b} | b ∈ [2k − 2,m]}| =

m− 2k+ 3. If F(A′j) 6= ∅, then {{b} | Aj ∪ {b} ∈ F(Aj)} ⊆
(
[2k−2,m]

1

)
and {{b1, b2} | A′j ∪

{b1, b2} ∈ F(A′j)} ⊆
(
[2k−2,m]

2

)
are cross-intersecting. By Theorem 7, |F(Aj)|+ |F(A′j)| 6(

m−2k+3
2

)
−
(
m−2k+2

2

)
+ 1 = m− 2k + 3. Hence, the observation holds.

Now suppose that all of F(A1), . . . ,F(As) are nonempty, yet F(As+1) = · · · =
F(AN) = ∅. Then we have

|F| 6
(

2k − 3

k

)
+ s(m− 2k + 3) + (N − s)

(
m− 2k + 3

2

)
. (1)

Case 1. m > 2k + 2.
Since h(m, 2k − 3, k) 6 |F| and N =

(
2k−4
k−2

)
+
(
2k−4
k−3

)
, it follows s 6

(
2k−4
k−2

)
. We may

assume k > 5 because α(m, 3, 3) and α(m, 5, 4) are known by the theorems of Erdős-Ko-
Rado and Hilton-Milner. It follows that m > (2k−3)k/(k−2). Together with 2(k−2) <
2k−3 and 4 < m−2k+3, we have α(KG(2k−3, k−2)×KG(m−2k+3, 2)) =

(
2k−4
k−3

)(
m−2k+3

2

)
by Lemma 6. Recall that f2(F2) is an independent set of KG(2k − 3, k − 2) × KG(m −
2k + 3, 2). Hence, |F2| 6

(
2k−4
k−3

)(
m−2k+3

2

)
. If s <

(
2k−4
k−2

)
, then |F1| =

∑s
j=1 |F(Aj)| <(

2k−4
k−2

)
(m−2k+3). This leads to |F| =

(
2k−3
k

)
+|F1|+|F2| < h(m, 2k−3, k), a contradiction.

Thus, s =
(
2k−4
k−2

)
and α(m, 2k − 3, k) = h(m, 2k − 3, k) for m > 2k + 2.

Case 2. m = 2k + 1.
Suppose that

(
2k−3
k

)
+
(
2k−4
k−2

)(
4
1

)
+
(
2k−4
k−3

)(
4
2

)
= h(2k + 1, 2k − 3, k) < |F|. Since

N =
(
2k−4
k−2

)
+
(
2k−4
k−3

)
, it follows from inequality (1) that |{j | |F(Aj)| + |F(A′j)| > 5}| >(

2k−4
k−3

)
. By our Observation, |F(Aj)| + |F(A′j)| > 5 implies F(Aj) = ∅ for any j. Thus

|{A′j | |F(A′j)| > 5}| >
(
2k−4
k−3

)
. By Theorem 1, there exist disjoint sets A′j1 and A′j2 in

{A′j | |F(A′j)| > 5} ⊆
(
[2k−3]
k−2

)
. Then it is easy to find two disjoint sets, one in F(A′j1) and

the other in F(A′j2). This contradicts the assumption that F is intersecting. Therefore
|F| = h(2k + 1, 2k − 3, k).

Let us examine the maximum families. Note that α(m, 2k − 3, k) = h(m, 2k − 3, k)
implies that inequality (1) becomes equality, s =

(
2k−4
k−2

)
, and N − s =

(
2k−4
k−3

)
. It follows
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that F(A′j) = {A′j ∪ B | B ∈
(
[2k−2,m]

2

)
} for s < j 6 N . Since there exists a non-

intersecting pair B1 and B2 in
(
[2k−2,m]

2

)
, {A′j | s + 1 6 j 6 N} must be a maximum

intersecting family in view of its cardinality. By Theorem 1, there exists t ∈ ∩Nj=s+1A
′
j.

For 1 6 j 6 s, if there exists F(A′j1) 6= ∅ for some 1 6 j1 6 s, then there exists some
A′j2 , s + 1 6 j2 6 N such that A′j1 ∩ A

′
j2

= ∅. We can find two disjoint sets, one in
F(A′j1) and the other in F(A′j2), a contradiction. Therefore we have F(A′j) = ∅ and

F(Aj) = {Aj ∪ B | B ∈
(
[2k−2,m]

1

)
} for 1 6 j 6 s. Suppose that t 6∈ Aj0 for some

1 6 j0 6 s. Then t ∈ A′j0 . For any A′j, s+ 1 6 j 6 N , we have A′j0 6= A′j since F(Aj) = ∅,
yet F(Aj0) 6= ∅. Then {A′j0 , As+1, . . . , AN} is an intersecting family in

(
[2k−3]
k−2

)
having

more than
(
2k−4
k−3

)
members, a contradiction. Hence F has the form Ht for t ∈ [2k−3].

5 The case for m sufficiently large

We have solved Problem 3 for n = 2k−1, 2k−2, and 2k−3. In this section, we are going
to assume that k 6 n < 2k − 3 and solve the problem when m is sufficiently large.

Let r, l, n be positive integers satisfying r < l 6 n/2, and let X1 and X2 be disjoint
n-sets. Wang and Zhang [11] characterized the maximum intersecting families F ⊆ {F ∈(
X1∪X2

r+l

)
| |F ∩ X1| = r or l} of maximum cardinality. We consider a similar extremal

problem.

Problem 12. Given integers m,n, k, c, d satisfying n < m, k 6 n < 2k − 3, d < c < k,
and c + d = n, characterize the intersecting families F ⊆ {F ∈

(
[m]
k

)
| |F ∩ [n]| = c or d}

of maximum cardinality.

We can derive an asymptotic solution of the above problem as follows.

Lemma 13. For given n, k, c, d satisfying conditions in the above problem, if m is suf-
ficiently large, then a maximum intersecting family F has the form {A ∪ B ∪ {t} | A ∈(
[n]\{t}
c−1

)
, B ∈

(
[n+1,m]
k−c

)
} ∪ {A ∪ B ∪ {t} | A ∈

(
[n]\{t}
d−1

)
, B ∈

(
[n+1,m]
k−d

)
} for some t ∈ [n], and

hence |F| =
(
n−1
c−1

)(
m−n
k−c

)
+
(
n−1
d−1

)(
m−n
k−d

)
.

Proof. Let F be a maximum intersecting family satisfying the conditions of Problem 12.
Any special form stated in the lemma is an intersecting family, hence its cardinality(
n−1
c−1

)(
m−n
k−c

)
+
(
n−1
d−1

)(
m−n
k−d

)
supplies a lower bound for |F|.

Let us consider upper bounds for |F|. First partition F into two subfamilies Fk−c and
Fk−d such that Fk−c = {F ∈ F | |F ∩ [n]| = c} and Fk−d = {F ∈ F | |F ∩ [n]| = d}. For
Fk−d, we consider the injection from Fk−d to the vertex set of KG(n, d)×KG(m−n, k−d)
defined prior to Lemma 6. We may choose m sufficiently large so that 2(k − d) < m− n
and m > nk/d hold. By Lemma 6, we have |Fk−d| 6 α(KG(n, d))|KG(m − n, k − d)| =(
n−1
d−1

)(
m−n
k−d

)
. Consider a further partition on Fk−c and Fk−d. Denote N =

(
n
c

)
. For

Aj ∈
(
[n]
c

)
and A′j = [n] \ Aj, 1 6 j 6 N , let F(Aj) = {F ∈ Fk−c | F ∩ [n] = Aj} and

F(A′j) = {F ∈ Fk−d | F ∩ [n] = A′j}. Since Aj ∩ A′j = ∅, the two families {B ∈
(
[n+1,m]
k−c

)
|

Aj ∪ B ∈ F} and {B ∈
(
[n+1,m]
k−d

)
| A′j ∪ B ∈ F} are cross-intersecting of size |F(Aj)| and
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|F(A′j)|, respectively. Let r 6 s be integers such that F(Aj) = ∅ for 1 6 j 6 r, F(Aj)
and F(A′j) are nonempty for r + 1 6 j 6 s and F(A′j) = ∅ for s + 1 6 j 6 N . Then by
Theorem 7,

|F| =
r∑

j=1

|F(A′j)|+
s∑

j=r+1

(|F(Aj)|+ |F(A′j)|) +
N∑

j=s+1

|F(Aj)|

6 r

(
m− n
k − d

)
+ (s− r)

((
m− n
k − d

)
−
(
m− k − d
k − d

)
+ 1

)
+(N − s)

(
m− n
k − c

)
.

We first show that r =
(
n−1
d−1

)
. If r >

(
n−1
d−1

)
, then

|F| =
N∑

j=r+1

|F(Aj)|+
s∑

j=1

|F(A′j)|

6 (N − r)
(
m− n
k − c

)
+ |Fk−d|

<

(
n− 1

c− 1

)(
m− n
k − c

)
+

(
n− 1

d− 1

)(
m− n
k − d

)
,

which cannot be true.
For m sufficient large, say m > 2n(n/2)k−d

(
n
bn/2c

)
, we have

(s− r)
((

m− n
k − d

)
−
(
m− k − d
k − d

)
+ 1

)
+ (N − s)

(
m− n
k − c

)
< (s− r)

(
mk−d

(k − d)!
− (m− 2n)k−d

(k − d)!
+ 1

)
+ (N − s)mk−c

< (s− r)(2nmk−d−1 + 1) + (N − s)mk−c

< N(2n)mk−d−1

6

(
n

bn/2c

)
(2n)(n/2)k−d

1

m

mk−d

(n/2)k−d

<

(
m− n
k − d

)
.

If r <
(
n−1
d−1

)
, then |F| < (1+r)

(
m−n
k−d

)
6
(
n−1
d−1

)(
m−n
k−d

)
, which is impossible. Hence r =

(
n−1
d−1

)
.

Now we show that s =
(
n−1
d−1

)
. Note that s > r =

(
n−1
d−1

)
. Suppose s >

(
n−1
d−1

)
. Then

by Theorem 5, the image of the injection from Fk−d to KG(n, d) × KG(m − n, k − d)
cannot be a maximal independent set and |Fk−d| <

(
n−1
d−1

)(
m−n
k−d

)
. This leads to |F| 6

(N − r)
(
m−n
k−c

)
+ |Fk−d| <

(
n−1
c−1

)(
m−n
k−c

)
+
(
n−1
d−1

)(
m−n
k−d

)
, contradicting the lower bound of |F|

again. Since r = s =
(
n−1
d−1

)
, we have |F| 6

(
n−1
d−1

)(
m−n
k−d

)
+
(
n−1
c−1

)(
m−n
k−c

)
. The equality must

hold as the right hand side is the known lower bound of |F|.
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When F has maximum cardinality, F(Aj) = {Aj ∪ B | B ∈
(
[n+1,m]
k−c

)
} for j >

(
n−1
d−1

)
and F(A′j) = {A′j∪B | B ∈

(
[n+1,m]
k−d

)
} for j 6

(
n−1
d−1

)
. Now {A′j | 1 6 j 6

(
n−1
d−1

)
} ⊆

(
[n]
k

)
is a

maximum intersecting family. Thus, there is a common element t ∈ A′j for 1 6 j 6
(
n−1
d−1

)
.

On the other hand, no A′j contains t for j >
(
n−1
d−1

)
. That implies t ∈ Aj. So t belongs to

every member of F .

Theorem 14. If integers n and k satisfy k 6 n < 2k − 3, then α(m,n, k) = h(m,n, k)
holds for sufficiently large m. For such a large m, a maximum (m,n, k)-intersecting family
is of the form Ht for some t ∈ [n].

Proof. Let an (m,n, k)-intersecting family F have canonical partition
(
[n]
k

)
∪ (
⋃2k−n−1

i=1 Fi)
as before. When n is odd, we put Fi and F2k−n−i into a pair for 1 6 i 6 (2k − n− 1)/2.
When n is even, we put Fi and F2k−n−i into a pair for 1 6 i 6 b(2k − n− 1)/2c − 1, and
leave Fb(2k−n−1)/2c unpaired.

Let c = k − i and d = n− k + i. The subfamily Fi ∪F2k−n−i is an intersecting family
and satisfies the conditions in Lemma 13. Therefore |Fi| + |F2k−n−i| 6

(
n−1

k−i−1

)(
m−n

i

)
+(

n−1
n−k+i−1

)(
m−n

2k−n−i

)
for sufficiently large m. When n is odd, we immediately have the

following.

|F| 6

(
n

k

)
+

(2k−n−1)/2∑
i=1

(
n− 1

k − i− 1

)(
m− n
i

)
+

(
n− 1

k − i

)(
m− n

2k − n− i

)

=

(
n

k

)
+

2k−n−1∑
i=1

(
n− 1

k − i− 1

)(
m− n
i

)
.

When n is even, we have |Fi| 6
(

n−1
k−i−1

)(
m−n

i

)
for i = b(2k − n − 1)/2c by Theorem

5. Together with other upper bounds of |Fi ∪ F2k−n−i|, we have shown |F| 6
(
n
k

)
+∑2k−n−1

i=1

(
n−1

k−i−1

)(
m−n

i

)
.

When F is a maximum (m,n, k)-intersecting family, for each pair Fi and F2k−n−i,
there is an element ti belonging to every member of Fi ∪F2k−n−i. This also holds for Fi,
i = b(2k−n−1)/2c for even n. Suppose that there exist Fi1∪F2k−n−i1 and Fi2∪F2k−n−i2
for which ti1 6= ti2 . (The case that one of them is Fi, i = b(2k − n− 1)/2c for even n, is
the same.) Note that

F2k−n−ij =

{
A ∪B ∪ {tij} | A ∈

(
[n] \ {tij}

n− k + ij − 1

)
, B ∈

(
[n+ 1,m]

2k − n− ij

)}
for j = 1, 2. Since 2(n − k + ij − 1) 6 n − 1 and 2(2k − n − ij) < m − n, we can find
subsets Fj ∈ F2k−n−ij for j = 1, 2 such that F1 ∩ F2 = ∅ if ti1 6= ti2 . Therefore ti1 6= ti2
cannot happen. Consequently, F = Ht for some t ∈ [n].

6 Conclusion

We have introduced the notion of an (m,n, k)-intersecting family and studied its maximum
cardinality α(m,n, k). The well-known theorems of Erdős-Ko-Rado and Hilton-Milner in
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finite extremal set theory are special cases for n = k and n = k + 1. The common
cardinality h(m,n, k) of a particular collection of (m,n, k)-intersecting families Hm,n,k

t

supplies a natural lower bound for α(m,n, k). A noticeable feature of Hm,n,k
t is that

members of Hm,n,k
t \

(
[n]
k

)
have a nonempty intersection. We have proved that the families

Hm,n,k
t are precisely all the (m,n, k)-intersecting families of maximum cardinality for the

cases n = 2k−1, 2k−3, or m sufficiently large. When n = 2k−2, there are other maximum
families. Whether α(m,n, k) = h(m,n, k) is true in all cases andHm,n,k

t , n 6= 2k−2, always
characterizes maximum families are interesting open problems. Analogue problems can
be formulated with respect to intersecting families having intersection size greater than
some prescribed positive integer.
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[5] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart.
J. Math. Oxford Ser. 2, 12:313–320, 1961.

[6] P. Frankl. The Erdős-Ko-Rado Theorem is true for n = ckt. Proc. Fifth Hung.
Comb. Coll., pages 365–375, North-Holland, Amsterdam, 1978.

[7] P. Frankl. The shifting technique in extremal set theory. In C. Whitehead (Ed.),
Combinatorial Surveys, pages 81–110, Cambridge Univ. Press, 1987.
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