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Abstract

The q, t-Catalan numbers can be defined using rational functions, geometry re-
lated to Hilbert schemes, symmetric functions, representation theory, Dyck paths,
partition statistics, or Dyck words. After decades of intensive study, it was even-
tually proved that all these definitions are equivalent. In this paper, we study the
similar situation for higher q, t-Catalan numbers, where the equivalence of the al-
gebraic and combinatorial definitions is still conjectural. We compute the limits of
several versions of the modified higher q, t-Catalan numbers and show that these
limits equal the generating function for integer partitions. We also identify cer-
tain coefficients of the higher q, t-Catalan numbers as enumerating suitable integer
partitions, and we make some conjectures on the homological significance of the
Bergeron-Garsia nabla operator.
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†This work was partially supported by a grant from the Simons Foundation (#244398 to Nicholas
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1 Introduction

The q, t-Catalan numbers and the higher q, t-Catalan numbers were introduced by Garsia
and Haiman in the study of symmetric functions and Macdonald polynomials [9]. They are
polynomials in N[q, t] that refine the usual Catalan numbers 1

n+1

(
2n
n

)
and higher Catalan

numbers 1
mn+1

(
mn+n
n

)
. For a comprehensive introduction to q, t-Catalan numbers, the

reader is referred to the book of Haglund [12]. Besides the early results of Haiman [17],
Haglund [11], and Garsia and Haglund [8], there are several recent studies focused in two
directions:

• Various generalizations. Egge, Haglund, Killpatrick, and Kremer studied a general-
ization of q, t-Catalan numbers obtained by replacing Dyck paths by Schröder paths [7].
Loehr and Warrington [22] and Can and Loehr [6] considered the case where Dyck paths
are replaced by lattice paths in a square. The generalized q, t-Fuss-Catalan numbers for
finite reflection groups have been investigated by Stump [25]. Quite recently, trivariate
Catalan numbers defined using trivariate diagonal alternants have been studied by F.
Bergeron and Préville-Ratelle [2].

• Structural features of the (higher) q, t-Catalan numbers. N. Bergeron, Descouens,
and Zabrocki introduced a filtration of q, t-Catalan numbers connected to the image of
k-Schur functions under the nabla operator [3]. Relations between q, t-Catalan numbers
and partition numbers, as well as explicit constructions of the corresponding bases, have
been found by N. Bergeron and Chen [4] and Lee and Li [19]. Certain open subvarieties
of Hilbert schemes whose affine decompositions are related to the (higher) q, t-Catalan
numbers have been constructed by Buryak [5]. The significance of q, t-Catalan numbers
in the study of the compactified Jacobian of a rational singular curve was revealed by
Gorsky and Mazin [10].

A main reason that the (higher) q, t-Catalan numbers have so many interesting gen-
eralizations and rich structure is because they have several (conjecturally) equivalent
definitions that connect different fields of mathematics including combinatorics, symmet-
ric functions, representation theory, and geometry. An unsettled conjecture states that
definitions of higher q, t-Catalan numbers in different fields are all equivalent. Our first
main result (Theorem 1.1) shows that all these definitions, after mild modification, have
the same limit as n approaches infinity.

Our second main result (Theorem 1.3) studies the coefficients of the monomial qd1td2

in the higher q, t-Catalan numbers when the total degree d1 + d2 is close to the maximum
possible value m

(
n
2

)
. These coefficients are surprisingly simple: they are equal to certain

partition numbers. We also give a few conjectures in section 6 including conjectural
minimal generators and minimal free resolutions for (powers of) diagonal ideals, which
may provide a guideline for further exploration.

Before we give the precise statement of our main results, let us review the seven ways
of defining the higher q, t-Catalan numbers in (a)–(g) below.

(a) Suppose λ is an integer partition with Ferrers diagram dg(λ). Define area(λ) = |λ| =
| dg(λ)|, the number of cells in the diagram of λ. For a cell x ∈ dg(λ), define the leg l(x),
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Figure 1: Definition of l(x), a(x), l′(x), and a′(x).

the arm a(x), the coleg l′(x), and the coarm a′(x) to be the distances shown in Figure 1.
Let Par(m)

n be the set of partitions λ such that dg(λ) fits in the triangle with vertices
(0, 0), (0, n), and (mn, n) when drawn as shown in the figure. For such partitions, define
areac(λ) = m

(
n
2

)
− area(λ) and

cm(λ) = |{x ∈ dg(λ) : ml(x) 6 a(x) 6 ml(x) +m}|.

For example, when m = 2 and λ = (7, 5, 4), we have |λ| = 16 and c2(λ) = 13.
Define the partition version of the higher q, t-Catalan numbers by

PC(m)
n (q, t) =

∑
λ∈Par

(m)
n

qareac(λ)tcm(λ).

For example, PC
(3)
2 (q, t) = q3 + q2t+ qt2 + t3 and

PC
(2)
3 (q, t) = q6 + q5t+ q4t2 + q4t+ q3t3 + q3t2 + q2t2 + q2t3 + qt4 + q2t4 + qt5 + t6.

(b) An m-Dyck word is a sequence γ = (γ0, γ1, . . . , γn−1) such that γi ∈ N = {0, 1, 2, . . .},
γ0 = 0, and γi+1 6 γi + m for 0 6 i < n − 1. Let Γ

(m)
n be the set of m-Dyck words of

length n. For such a word γ, define area(γ) =
∑n−1

i=0 γi. As in [21], define dinvm(γ) =∑
06i<j<n scm(γi − γj), where

scm(p) =


m+ 1− p, if 1 6 p 6 m;
m+ p, if −m 6 p 6 0;
0, for all other p.

For example, γ = (0, 2, 0, 1, 1) ∈ Γ
(2)
5 has area(γ) = 4 and dinv2(γ) = 13.

Define the word version of the higher q, t-Catalan numbers by

WC(m)
n (q, t) =

∑
γ∈Γ

(m)
n

qarea(γ)tdinvm(γ).

(c) An m-Dyck path of order n is a lattice path π from (0, 0) to (mn, n) using north and
east steps such that the path never goes below the diagonal line segment with endpoints
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Figure 2: An m-Dyck path.

(0, 0) and (mn, n). Let D(m)
n be the set of such m-Dyck paths. For such a path π, let

area(π) be the number of complete unit squares between π and the diagonal. Define the
m-bounce statistic bm(π) as follows. Set vi = 0 for all negative integers i. Starting from
(0, 0), construct a bounce path by induction on i > 0. In the (i + 1)th step, move north
from the current position (u, v) until hitting an east step of the m-Dyck path that starts
on the line x = u, and define the distance traveled to be vi. Then move east from this
position vi+vi−1 + · · ·+vi−m+1 units. Continue bouncing until reaching (mn, n). (In fact,
it suffices to stop once we reach the horizontal line y = n.) Then bm(π) =

∑
k>0 kvk. For

example, the path π ∈ D(2)
5 in Figure 2 has area(π) = 4, (v0, v1, . . . , v5) = (2, 0, 1, 1, 1, 0),

and b2(π) = 9.
Define the Dyck path version of the higher q, t-Catalan numbers by

DC(m)
n (q, t) =

∑
π∈D(m)

n

qbm(π)tarea(π).

(d) The q, t-Catalan numbers may be defined using symmetric functions, as follows. This
discussion assumes the reader is familiar with the elementary symmetric functions en,
the modified Macdonald polynomials H̃µ, and the Hall scalar product 〈·, ·〉 on symmetric
functions; see [12] or [14, §3.5.5] for details. For any integer partition µ, define n(µ) =∑

x∈dg(µ) l(x) and n(µ′) =
∑

x∈dg(µ′) l(x) =
∑

x∈dg(µ) a(x), where µ′ denotes the transpose

of µ. Define Tµ = qn(µ′)tn(µ). Let Λ denote the ring of symmetric functions with coefficients
in the field F = Q(q, t). The Bergeron-Garsia nabla operator [1] is the unique F -linear
map ∇ on Λ that acts on the modified Macdonald basis via ∇(H̃µ) = TµH̃µ for all
partitions µ. For m ∈ N+ = {1, 2, 3, . . .}, ∇m denotes the composition of m copies of
the operator ∇. We now define the symmetric function version of the higher q, t-Catalan
numbers by

SC(m)
n (q, t) = 〈∇m(en), en〉.

(e) The higher q, t-Catalan numbers were originally defined by Garsia and Haiman in [9]
as sums of rational functions in Q(q, t) constructed from integer partitions. Recall that
µ ` n means that µ is an integer partition of n. With Tµ defined as in (d), we further
define

Bµ =
∑

x∈dg(µ)

qa
′(x)tl

′(x), Πµ =
∏

x∈dg(µ)\{(0,0)}

(1− qa′(x)tl
′(x)),

wµ =
∏

x∈dg(µ)

[(qa(x) − tl(x)+1)(tl(x) − qa(x)+1)].
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Then the rational function version of the higher q, t-Catalan numbers is defined by

RC(m)
n (q, t) =

∑
µ`n

(1− q)(1− t)Tm+1
µ BµΠµ/wµ.

(f) For fixed n ∈ N+, consider the polynomial ring C[x,y] = C[x1, y1, · · · , xn, yn]. Sn
acts diagonally on this ring by the rule w · xi = xw(i), w · yi = yw(i) for w ∈ Sn and
1 6 i 6 n. A polynomial f ∈ C[x,y] is called alternating iff w · f = sgn(w)f for all
w ∈ Sn. Let I be the ideal in C[x,y] generated by all alternating polynomials, and let
m be the maximal ideal generated by x1, y1, . . . , xn, yn. We write I = In and m = mn if
it is necessary to indicate the number of variables. Let M (m) = Im/mIm for m ∈ N, and
for simplicity, let M = M (1). Given a monomial f = xa11 y

b1
1 · · ·xann ybnn ∈ C[x,y], we define

the bidegree of f to be the ordered pair (
∑n

i=1 ai,
∑n

i=1 bi). We say that a polynomial in
C[x,y] is bihomogeneous of bidegree (d1, d2) if all its monomials have the same bidegree
(d1, d2). Then Im and M (m) become doubly-graded Sn-modules by taking bidegrees in the

x-variables and the y-variables. Let M
(m)
u,v denote the bihomogeneous component of M (m)

of bidegree (u, v). Define the algebraic version of the higher q, t-Catalan numbers by

AC(m)
n (q, t) =

∑
u>0

∑
v>0

qutv dimM (m)
u,v .

For more information, see [9, Section 3].
(g) Finally we state the geometric definition (see [16, 18] for more details). Let Zn be
the zero fiber of the Hilbert-Chow morphism Hilbn(C2) → Symn(C2), let O(1) be the
restriction of the ample line bundle on Hilbn(C2) induced by the isomorphism Hilbn(C2) ∼=
Proj(T ), where T =

⊕
d>0A

d and A = C[x1, y1, . . . , xn, yn]ε is the space of Sn-alternating
elements. For any m ∈ N+, let O(m) = O(1)⊗m. The set of global sections H0(Zn,O(m))
is a bigraded vector space. Define the geometric version of the higher q, t-Catalan numbers
by

GC(m)
n (q, t) =

∑
u,v

qutv dimH0(Zn,O(m))u,v.

It is conjectured that the seven definitions (a)–(g) of higher q, t-Catalan numbers are
all equivalent. This conjecture is supported by explicit computations for small values of
m and n. It has been proved that for all m,n ∈ N+,

PC(m)
n (q, t) = WC(m)

n (q, t) = DC(m)
n (q, t) and (1)

SC(m)
n (q, t) = RC(m)

n (q, t) = AC(m)
n (q, t) = GC(m)

n (q, t). (2)

We discuss the proofs of these equalities in the appendix (§7). It remains to be proved that
the three combinatorial definitions agree with the four algebraic and geometric definitions.
This conjecture has already been proved for certain specializations of the parameters q
and t. For instance, using [9, Theorem 4.4] and definitions (a) and (c) above, we find that

RC(m)
n (q, 1) = RC(m)

n (1, q) =
∑

π∈D(m)
n

qarea(π) = PC(m)
n (q, 1) = DC(m)

n (1, q).
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Upon setting t = 1/q, we see from [9, Corollary 4.1] and [21, §3.3] that

RC(m)
n (q, 1/q)qm(n2) = WC(m)

n (q, 1/q)qm(n2) = DC(m)
n (q, 1/q)qm(n2) =

1

[mn + 1]q

[
mn + n

n

]
q

.

This paper studies the limiting behavior, as n tends to infinity, of the “modified”
higher q, t-Catalan numbers given by

qm(n
2)PC(m)

n (q−1, t), qm(n
2)DC(m)

n (t, q−1), and qm(n
2)AC(m)

n (q−1, t).

We will show that all of these polynomials have as their limit the famous generating
function

∏∞
i=1(1 − tqi)−1, which enumerates integer partitions by area and number of

parts. (Here we are taking limits in a formal power series ring, which means that for each
fixed monomial qatb, the coefficient of this monomial becomes stable for sufficiently large
n.) The following is our first main theorem, which is the combination of Proposition 2.2,
Proposition 2.3 and Corollary 4.5.

Theorem 1.1. For any positive integer m, we have

lim
n→∞

qm(n
2)PC(m)

n (q−1, t) = lim
n→∞

qm(n
2)DC(m)

n (q−1, t) = lim
n→∞

qm(n
2)AC(m)

n (q−1, t)

=
∞∏
i=1

(1− tqi)−1 =
∑
µ∈Par

qarea(µ)t`(µ),

where Par is the set of all integer partitions, and `(µ) is the number of parts of µ.

Thus we have the following corollary using (1) and (2).

Corollary 1.2. For any positive integer m, we have

lim
n→∞

qm(n
2)PC(m)

n (q−1, t) = lim
n→∞

qm(n
2)WC(m)

n (q−1, t) = lim
n→∞

qm(n
2)GC(m)

n (q−1, t)

= lim
n→∞

qm(n
2)SC(m)

n (q−1, t) = lim
n→∞

qm(n
2)RC(m)

n (q−1, t) = lim
n→∞

qm(n
2)AC(m)

n (q−1, t)

= lim
n→∞

qm(n
2)DC(m)

n (t, q−1) =
∞∏
i=1

(1− tqi)−1 =
∑
µ∈Par

qarea(µ)t`(µ).

The result for AC
(1)
n can also be obtained from a result of N. Bergeron and Chen [4,

Corollary 8.3].

Our second main theorem identifies the dimensions of M
(m)
d1,d2

, which are the coefficients

of certain terms qd1td2 in AC
(m)
n (q, t), as partition numbers. The partition number p(δ, k)

is the number of partitions of k into at most δ parts. By convention, p(0, k) = 0 for k > 0,
and p(δ, 0) = 1 for δ > 0.

Theorem 1.3. Let n > 6 and m be positive integers, and let k, d1, d2 be nonnegative
integers such that k = m

(
n
2

)
− d1 − d2 6 n− 6. Let δ = min(d1, d2). Then

dimM
(m)
d1,d2

= p(δ, k).
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The paper is organized as follows. In §2 we prove the combinatorial part of our main
theorem. In §3 we introduce further notation, background, and preliminary results. In §4
we prove the algebraic part of the main theorem. In §5, we extend the method used in
§4 to prove Theorem 1.3. In §6 we give some related conjectures. In §7 we indicate the
proofs of the equalities stated in (1) and (2).

Acknowledgements. We are grateful to Drew Armstrong, Nantel Bergeron, François Berg-
eron, Alex Woo, and Alex Yong for helpful suggestions and correspondence. The authors
are also grateful to the anonymous referee for many useful comments.

2 Limits of the Modified Combinatorial Higher q, t-

Catalan Numbers

In this section, we study the limiting behavior of the modified PC
(m)
n and DC

(m)
n . Even

though logically it suffices to study one of them because they are equal (see (1)), we feel
that both proofs have their own interest to be presented here. We first recall the following
theorem [23, Thm. 3].

Theorem 2.1. For λ ∈ Par and m ∈ R+, define h+
m(λ) to be the number of cells x ∈ dg(λ)

such that a(x)
l(x)+1

6 m < a(x)+1
l(x)

. Then

∑
λ∈Par

qarea(λ)th
+
m(λ) =

∞∏
i=1

1

1− tqi
=
∑
µ∈Par

qarea(µ)t`(µ).

Proposition 2.2. (i) For all m,n ∈ N+,

qm(n
2)PC(m)

n (q−1, t) =
∑

λ∈Par
(m)
n

qarea(λ)tcm(λ).

(ii) For all m ∈ N+,

lim
n→∞

qm(n
2)PC(m)

n (q−1, t) =
∑
λ∈Par

qarea(λ)tcm(λ) =
∞∏
i=1

1

1− tqi
.

Proof. (i) is straightforward. For (ii), if we increase n by 1, a partition λ in the mn × n
triangle will also fit into the m(n + 1) × (n + 1) triangle, and the two statistics area(λ)
and cm(λ) do not change with n. Since all integer partitions of a fixed area will fit in the
triangle for sufficiently large n, the first equality follows from (i). The second equality
follows from Theorem 2.1 and the observation that h+

m(λ) = cm(λ).

Proposition 2.3. (i) For all m,n ∈ N+,

qm(n
2)DC(m)

n (t, q−1) =
∑

π∈D(m)
n

qareac(π)tbm(π),
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where areac(π) is the number of lattice squares in the mn× n triangle above π.
(ii) For all m ∈ N+,

lim
n→∞

qm(n
2)DC(m)

n (t, q−1) =
∑
λ∈Par

qarea(λ)t`(λ) =
∞∏
i=1

1

1− tqi
.

Proof. (i) is straightforward. For (ii), note that each m-Dyck path π ∈ D(m)
n determines

an integer partition λ = λ(π) whose diagram consists of the squares above π in the mn×n
triangle. For each n, there is an injection D(m)

n → D(m)
n+1 that adds one north step to the

beginning of π and adds m east steps to the end of π. This injection preserves both
λ(π) and areac(π) = area(λ(π)), but the value of the bounce statistic bm(π) may change.
However, as n continues to increase, the bounce statistic will eventually stabilize. More
specifically, once n > 2areac(π), it is routine to check that the bounce path will satisfy
v0 = n − `(λ(π)), v1 = `(λ(π)), and vi = 0 for all i > 2; the key observation is that the
first horizontal move (of length v0) moves to the right of all the squares in dg(λ(π)). It
follows that bm(π) = `(λ(π)) for such n. By fixing the area of the partition outside π
and taking n larger than twice this area, we see as in the previous proposition that the
indicated limit holds.

3 Notation and background for AC
(m)
n

3.1 Notation

• For k, b ∈ N+, denote the set of integer partitions of k by Par(k), and denote the
set of integer partitions of k into at most b parts by Par(b, k). More explicitly,
Par(k) = {ν = (ν1, ν2, . . . , ν`)| νi ∈ N+, ν1 6 ν2 6 · · · 6 ν`, ν1 + ν2 + · · · + ν` = k}
and Par(b, k) = {ν = (ν1, ν2, . . . , ν`) ∈ Par(k)| ` 6 b}. By convention, Par(0) = {0},
Par(0, k) = ∅ for k > 0, and Par(h, 0) = {0} for all h > 0 (where {0} is a set
with one element). Let p(k) and p(b, k) be the cardinalities of Par(k) and Par(b, k),
respectively. In other words, p(k) is the number of partitions of k and p(h, k) is the
number of partitions of k into at most h parts. By the above conventions, p(0) = 1,
p(0, k) = 0 for k > 0, and p(h, 0) = 1 for all h > 0.

• Let C[ρ] = C[ρ1, ρ2, . . . ] be the polynomial ring with countably many variables ρi, for
i ∈ N+. As a convention, we set ρ0 = 1. For a partition ν = (ν1, ν2, . . . , ν`) ∈ Par(k),
define ρν = ρν1ρν2 · · · ρν` ∈ C[ρ]. Define the weight of a monomial cρi1 · · · ρi` (where
c ∈ C \ {0}) to be i1 + · · · + i`. For w ∈ N, define C[ρ]w to be the subspace of
C[ρ] spanned by monomials of weight w. For f ∈ C[ρ], there is a unique expression
f =

∑∞
w=0{f}w with {f}w ∈ C[ρ]w, and we call {f}w the weight-w part of f .

• For P = (a, b) ∈ N× N, we write |P | = a+ b, |P |x = a, and |P |y = b.

• For n ∈ N+, define
Dn = {D ⊂ N× N : |D| = n}.

the electronic journal of combinatorics 20(3) (2013), #P4 8



For D ∈ Dn, we write D = {P1, P2, . . . , Pn} where each Pi = (ai, bi) ∈ N×N. Unless
otherwise specified, we always choose notation so that P1, . . . , Pn are in increasing
graded lexicographic order. This means that P1 < P2 < · · · < Pn, where

(a, b) < (a′, b′) if a+ b < a′ + b′, or if a+ b = a′ + b′ and a < a′.

To visualize a set D ∈ Dn, we can draw a square grid on which we plot the n ordered
pairs in D. For example, in the following picture, the horizontal and vertical bold
lines represent the x-axis and y-axis, and D =

{
(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)

}
.

u uu u u
• Given D = {P1, . . . , Pn} ∈ Dn, define the total degree, x-degree, y-degree, and bide-

gree of D to be
∑n

i=1 (|Pi|x + |Pi|y),
∑n

i=1 |Pi|x,
∑n

i=1 |Pi|y, and the pair of integers
(
∑n

i=1 |Pi|x,
∑n

i=1 |Pi|y), respectively. Then the x-degree (resp. y-degree) of D will
be denoted by d1(D) (resp. d2(D)). Let k(D) =

(
n
2

)
− d1(D)− d2(D).

• The diagonal ideal I of C[x,y] and the bigraded C-vector space M =
⊕

d1,d2∈NMd1,d2

were defined in §1(f). The ideal generated by all homogeneous elements in I of total
degree less than d is denoted by I<d.

• For D = {(a1, b1), ..., (an, bn)} ∈ Dn, the alternating polynomial ∆(D) ∈ C[x,y] is
defined by

∆(D) = det[x
aj
i y

bj
i ]16i,j6n = det

∣∣∣∣∣∣∣
xa11 y

b1
1 xa21 y

b2
1 ... xan1 y

bn
1

...
...

. . .
...

xa1n y
b1
n xa2n y

b2
n ... xann y

bn
n

∣∣∣∣∣∣∣ .
Note that ∆(D) is bihomogeneous of bidegree equal to the bidegree of D.

• Given two polynomials f, g ∈ Im of the same bidegree (d1, d2), let f̄ , ḡ be the

corresponding elements in M
(m)
d1,d2

. For m = 1, we say that

f ≡ g (modulo lower degrees)

if f̄ = ḡ in Md1,d2 , or, equivalently, if f − g is in I<d1+d2 .

• Given d1 +d2 =
(
n
2

)
, take arbitrary D = {P1, . . . , Pn} ∈ Dn of bidegree (d1, d2) such

that |Pi| = i − 1. Define fd1,d2 to be the equivalence class of ∆(D) in Md1,d2 . By
[19, Lemma 16], this equivalence class is independent of the choice of D.
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3.2 Properties of the module Md1,d2

This subsection is organized as follows. First, to be self-contained, we review the defi-
nitions of staircase forms, block diagonal forms, and partition types introduced in [19].
The reader is suggested to look at Example 3.4 while reading these definitions. Then we
recall the map ϕ̄ defined in [19] and use its injectivity to prove Lemma 3.6 that we shall
use later.

Definition-Proposition 3.1 ([19, Definition-Proposition 6]). Let D = {P1, . . . , Pn} ∈
Dn, and write Pi = (ai, bi). Then there is an n× n matrix S whose (i, j)-entry is{

0, if i 6 |Pj|;
zi1zi2 · · · zi,|Pj | where zi` is either xi − x` or yi − y`, otherwise,

for all 1 6 i, j 6 n, such that det(S) ≡ ∆(D) (modulo lower degrees). We call S a
staircase form of D.

Definition 3.2. Let D and S be defined as in Definition-Proposition 3.1. Consider the
set {j : |Pj| = j − 1} = {r1 < r2 < · · · < r`} and define r`+1 = n + 1. For 1 6 t 6 `,
define the t-th block Bt of S to be the square submatrix of S of size (rt+1 − rt) whose
upper-left corner is the (rt, rt)-entry. Define the block diagonal form B(S) of S to be the
block diagonal matrix diag(B1, . . . , B`).

Definition 3.3. Let S be a staircase form, B(S) be its block diagonal form with blocks
B1, . . . , B`. For 1 6 t 6 `, let µt be the number of nonzero entries in block Bt that are
strictly above the diagonal, i.e., the number of nonzero i, j-entries in Bt where j > i.
Eliminating zeros in (µ1, . . . , µ`) and then rearranging the sequence in ascending order,
we obtain a partition of k, denoted by µ(S). We say that S is of partition type µ(S). We
call a block Bt minimal if every (i, j)-entry (j > i + 1) that lies in Bt is zero. We call
S a minimal staircase form if all the blocks in B(S) are minimal. We say D ∈ Dn is of
partition type µ(S) if S is a staircase form of D. (Note that the partition type does not
depend on the choice of S.)

Example 3.4. (i) Let D = {(0, 0), (0, 1), (0, 2), (1, 1)} ∈ D4. We list here ∆(D) and a
possible staircase form S together with the corresponding block diagonal forms B(S). In
this example, D is of partition type (1), S is a minimal staircase form, and B(S) has two
blocks of size 1 and one block of size 2.

∆(D) =

∣∣∣∣∣∣∣∣
1 y1 y2

1 x1y1

1 y2 y2
2 x2y2

1 y3 y2
3 x3y3

1 y4 y2
4 x4y4

∣∣∣∣∣∣∣∣ , S =


1 0 0 0
1 y21 0 0
1 y31 y31y32 x31y32

1 y41 y41y42 x41y42

 , B(S) =


1 0 0 0
0 y21 0 0
0 0 y31y32 x31y32

0 0 y41y42 x41y42


where xij = xi − xj and yij = yi − yj.
(ii) Let D = {(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (3, 0)} ∈ D6. A staircase form S and the
corresponding block diagonal form B(S) are given below. Then D is of partition type
(1, 3), B(S) has three blocks of sizes 1, 2, 3 respectively, and S is not a minimal staircase
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form (because the (4, 6)-entry of B(S) is x41x42x43 6= 0, therefore the block B3 is not
minimal).

S =


1 0 0 0 0 0
1 y21 x21 0 0 0
1 y31 x31 0 0 0
1 y41 x41 y41y42x43 y41x42x43 x41x42x43
1 y51 x51 y51y52x53 y51x52x53 x51x52x53
1 y61 x61 y61y62x63 y61x62x63 x61x62x63

 , B(S) =


1 0 0 0 0 0
0 y21 x21 0 0 0
0 y31 x31 0 0 0
0 0 0 y41y42x43 y41x42x43 x41x42x43
0 0 0 y51y52x53 y51x52x53 x51x52x53
0 0 0 y61y62x63 y61x62x63 x61x62x63

 .

Theorem 3.5 ([19, Theorem 5]). Let n be a positive integer, and let d1, d2, k be non-
negative integers such that k =

(
n
2

)
− d1 − d2. Define δ = min(d1, d2). Then dimMd1,d2 6

p(δ, k), and equality holds here if and only if either k 6 n− 3, or k = n− 2 and δ = 1, or
δ = 0.

Recall some definitions in [19]. For b ∈ N and w ∈ Z, define

h(b,w) =
{

(1 + ρ1 + ρ2 + · · · )b
}

w
.

For D = {P1, . . . , Pn} ∈ Dn, define ϕ(D) to be

(−1)k(D) det

∣∣∣∣∣∣∣∣∣
h(b1,−|P1|) h(b1, 1− |P1|) h(b1, 2− |P1|) · · · h(b1, n− 1− |P1|)
h(b2,−|P2|) h(b2, 1− |P2|) h(b2, 2− |P2|) · · · h(b2, n− 1− |P2|)

...
...

...
. . .

...
h(bn,−|Pn|) h(bn, 1− |Pn|) h(bn, 2− |Pn|) · · · h(bn, n− 1− |Pn|)

∣∣∣∣∣∣∣∣∣ .
It is proved in [19, Lemma 47] that ϕ induces a well-defined linear map ϕ̄ : Md1,d2 →
C[ρ](n

2)−d1−d2
. We have conjectured that ϕ̄ is injective and proved the injectivity under

the condition
(
n
2

)
−d1−d2 6 n−3 and d2 6 d1 [19, Conjecture 48, Theorem 43, Theorem

44]. With a slight modification, we can prove the injectivity under the sole condition(
n
2

)
−d1−d2 6 n−3 without the constraint d2 6 d1. (We briefly explain the modification

using the terminology in [19]: assume now d2 > d1. It suffices to prove that, for each
ν ∈ Πd1,k, there exists an alternating polynomial gν such that the leading monomial
LM(ϕ(gν)) = ρν . In fact, such a gν can be obtained, up to a sign, by switching x- and y-
coordinates of the fν constructed for Md2,d1 in [19, Theorem 44].)

Lemma 3.6. Suppose 0 6
(
n−1

2

)
−d′1−d′2 6 n−4, d′1 6 d1, d′2 6 d2, and d′1+d′2+(n−1) =

d1 +d2. Let M ′
d′1,d

′
2

and Md1,d2 be the indicated bigraded components of In−1/mn−1In−1 and

In/mnIn, respectively. Let

f0 =

d1−d′1∏
i=1

(xn − xi) ·
n−1∏

i=d1−d′1+1

(yn − yi).

Then the linear map h : M ′
d′1,d

′
2
→Md1,d2 that maps f̄ to f0f is injective.
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Proof. First observe that
(
n−1

2

)
− d′1− d′2 =

(
n
2

)
− d1− d2, which we denote by k. It is also

easy to check that h is well-defined.
We now explain that the following triangle is commutative:

M ′
d′1,d

′
2

h //

ϕ̄′ $$

Md1,d2

ϕ̄

��
C[ρ]k

i.e., ϕ̄′(f̄) is identical with ϕ̄(f0f). Indeed, for D′ ∈ Dn−1 of bidegree (d1, d2), let f =
∆(D′), then f0f = ∆(D) for D = D′ ∪ {(d1 − d′1, n − 1 − d1 + d′1)} ∈ Dn. Then
k(D′) = k(D) = k. Let A′ (resp. A) be the (n − 1) × (n − 1) matrix (resp. n × n
matrix) in the definition of ϕ̄′(f) (resp. ϕ̄(f0f)). Since A′ is the first (n − 1) × (n − 1)
minor of A and the last row of A is (0, . . . , 0, 1), det(A′) = det(A). Therefore ϕ̄′(f̄) =
(−1)k det(A′) = (−1)k det(A) = ϕ̄(f0f).

Now since ϕ̄′ : M ′
d′1,d

′
2
→ C[ρ]k is injective for k 6 (n− 1)− 3, h is also injective.

4 Limits of the Modified Algebraic Higher

q, t-Catalan Numbers

This section is organized as follows. First we prove Theorem 4.3, which gives a spanning
set of the vector space M

(m)
d1,d2

for certain d1 and d2. The essential tool is the Transfactor
Lemma (Lemma 4.2) that allows us to modify staircase forms within the equivalence class
modulo lower degrees. Then we prove Corollary 4.5 and find the limits of the modified
algebraic higher q, t-Catalan numbers.

Lemma 4.1. Let D ∈ Dn, let S be a staircase form of D, and let B(S) be the block
diagonal form of S. Then the number of 1× 1 blocks in B(S) is at least n− 2k(D).

Proof. Suppose the number of size-1 blocks in B(S) is t, and the other blocks have sizes
s1, . . . , sr. On one hand, t+

∑r
i=1 si = n. On the other hand, a block of size si contributes

at least si − 1 to k(D), hence
∑r

i=1(si − 1) 6 k(D). Since si > 2, we have si 6 2(si − 1)
and t = n−

∑r
i=1 si > n−

∑r
i=1 2(si − 1) > n− 2k(D).

Lemma 4.2 (Transfactor Lemma [19, Lemma 15]). Let D = {P1, . . . , Pn} ∈ Dn and
Pi = (ai, bi) be as in §2. Let i, j be two integers satisfying 1 6 i 6= j 6 n, |Pi| = i − 1,
|Pi+1| = i, |Pj| = j − 1, |Pj+1| = j, bi > 0, aj > 0 (we define |Pn+1| = n). Let D′ be
obtained from D by moving Pi to southeast and Pj to northwest, i.e.,

D′ =
{
P1, . . . , Pi−1, Pi + (1,−1), Pi+1, . . . , Pj−1, Pj + (−1, 1), Pj+1, . . . , Pn

}
.

Then ∆(D) ≡ ∆(D′) (modulo lower degrees).
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Theorem 4.3. Assume n,m, k, d1, d2 ∈ N satisfy n > 3, m > 0, k = m
(
n
2

)
− d1 − d2 <

n/2 − 1, and d2 < n/2 − 1. For each µ ∈ Par(d2, k), let Sµ be an arbitrary minimal

staircase form of bidegree (d1 − (m − 1)
(
n
2

)
, d2) and partition type µ. Then M

(m)
d1,d2

is
generated as a vector space by{

(detSµ)
∏

16i<j6n

(xi − xj)m−1

}
µ∈Par(d2,k)

.

Consequently,
dimM

(m)
d1,d2
6 p(d2, k).

Proof. We use induction on m. The base case m = 1 is done in [19]. Let us briefly sketch
a proof for the base case.

For each µ ∈ Par(d2, k), the assumption k < n/2−1 implies that there exists a minimal
staircase form, say Sµ, of bidegree (d1 − (m− 1)

(
n
2

)
, d2) and partition type µ. Let Dµ be

an element in Dn, whose staircase form is Sµ. Since ϕ̄(∆(Dµ)) = ρµ and ϕ̄ is injective in
this case, Md1,d2 is generated by ∆(Dµ)(≡ detSµ).

Now assume that m > 2. Note that M
(m)
d1,d2

is generated by products
∏m

i=1 ∆(Di), where
Di ∈ Dn,

∑m
i=1 d1(Di) = d1 and

∑m
i=1 d2(Di) = d2. So we only need to prove that each

such product is a linear combination of {det(Sµ)
∏

16i<j6n(xi − xj)m−1}µ∈Par(d2,k) modulo
lower degrees. Define k′ = k(D1), d′2 = d2(D1), k′′ = k−k′, d′′2 = d2−d′2. By inductive as-
sumption,

∏m
i=2 ∆(Di) is a linear combination of {det(S ′′λ)

∏
16i<j6n(xi−xj)m−2}λ∈Par(d′′2 ,k

′′)

modulo lower degrees, and ∆(D1) is a linear combination of {det(S ′ν)}ν∈Par(d′2,k
′) modulo

lower degrees. Hence
∏m

i=1 ∆(Di) is a linear combination of

{det(S ′ν) det(S ′′λ)
∏

16i<j6n

(xi − xj)m−2}ν∈Par(d′2,k
′), λ∈Par(d′′2 ,k

′′)

modulo lower degrees. So to prove the theorem, it suffices to show the following statement:
(∗) det(S ′ν) det(S ′′λ) is a linear combination of {det(Sµ)

∏
16i<j6n(xi−xj)}µ∈Par(d2,k) mod-

ulo lower degrees.
Since S ′ν and S ′′λ can be arbitrary minimal staircase forms of fixed bidegree and fixed

partition type, we may assume that all the 1 × 1 blocks but the first one in the block
diagonal form B(S ′ν) are below bigger blocks, and that all the 1 × 1 blocks in the block
diagonal form B(S ′′λ) are above bigger blocks. Let T ′ (resp. T ′′) be the product of
determinants of the blocks of size greater than 1 in the block diagonal form B(S ′ν) (resp.
B(S ′′λ)). We have

det(S ′ν) = T ′
n∏
j=a

j−1∏
i=1

z
(1)
ij , det(S ′′λ) =

(
b∏

j=2

j−1∏
i=1

z
(2)
ij

)
T ′′,

where z
(t)
ij = xi − xj or yi − yj for t = 1, 2. The numbers of size-1 blocks in B(S ′ν) and

B(S ′′λ) are n − a + 2 and b, respectively. We assume without loss of generality that S ′ν

the electronic journal of combinatorics 20(3) (2013), #P4 13



has no more size-1 blocks than S ′′λ, in other words, that n − a + 2 6 b. By Lemma 4.1,
n− a+ 2 > n− 2k′ and b > n− 2k′′. Then

2b > (n− a+ 2) + b > 2n− 2k′ − 2k′′,

therefore b − a > n − 2 − 2k > n − 2 − (n − 2) = 0 and b > n − k > n/2 + 1. Since
d2 < n/2− 1 6 b− 1, we can use Lemma 4.2 to adjust the first b columns in S ′′λ without

changing det(S ′′λ) (modulo lower degrees), so that z
(2)
ij = xi − xj for 1 6 i < j 6 b − 1.

Note that z
(2)
ib can be either xi − xj or yi − yj for 1 6 i < b. Similarly, we can adjust the

last n− b+ 2 columns in S ′ν such that z
(1)
ij = xi − xj for b 6 j 6 n and 1 6 i < j. Then

det(S ′ν) = T ′
b−1∏
j=a

j−1∏
i=1

z
(1)
ij

n∏
j=b

j−1∏
i=1

(xi − xj), det(S ′′λ) =

(
b−1∏
j=2

j−1∏
i=1

(xi − xj)

)(
b−1∏
i=1

z
(2)
ib

)
T ′′,

and

det(S ′ν) det(S ′′λ) = A
∏

16i<j6n

(xi − xj), where A = T ′

(
b−1∏
j=a

j−1∏
i=1

z
(1)
ij

)(
b−1∏
i=1

z
(2)
ib

)
T ′′.

One verifies that A is a polynomial of bidegree (d1 − (m − 1)
(
n
2

)
, d2) in I. Applying the

base case m = 1, we conclude that det(S ′ν) det(S ′′λ) is a linear combination of{
det(Sµ)

∏
16i<j6n

(xi − xj)

}
µ∈Par(d2,k)

modulo lower degrees. This proves (∗).

The following lemma about partition numbers is needed in the proof of Corollary 4.5.

Lemma 4.4. Let a be a positive integer. Then
∑a

i=0 p(i, a− i) = p(a).

Proof. Given a partition ν = (ν1, . . . , ν`) of a satisfying ν1 6 · · · 6 ν`, we let i = ν`, and
send ν to the transpose of the partition (ν1, . . . , ν`−1), which is a partition of a − i into
at most i parts. This gives a one-to-one correspondence from Par(a) to

⋃a
i=0 Par(i, a− i).

Counting the cardinalities of the two sets gives the stated equality.

Now we are ready to prove the following consequence of Theorem 4.3, and thus com-
plete the proof of Theorem 1.1.

Corollary 4.5. Let n,m, k, d2 ∈ N satisfy n > 3, m > 0, and k + d2 < n/2 − 1. Define

d1 = m
(
n
2

)
− k − d2. Then the coefficient of qd1td2 in AC

(m)
n (q, t) is

dimM
(m)
d1,d2

= p(d2, k).

As a consequence,

lim
n→∞

qm(n
2)AC(m)

n (q−1, t) =
∞∏
i=1

(1− tqi)−1 =
∑
µ∈Par

qarea(µ)t`(µ).
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Proof. We recalled in the introduction that AC
(m)
n (q, 1) = RC

(m)
n (q, 1) =

∑
π∈D(m)

n
qarea(π).

Then for each d1,
∑∞

d2=0 dimM
(m)
d1,d2

is the number of m-Dyck paths π ∈ D(m)
n with

area(π) = d1. Each such m-Dyck path uniquely determines a Ferrers diagram of size
m
(
n
2

)
− d1 consisting of the set of boxes above the m-Dyck path in the mn× n triangle.

On the other hand, since any Ferrers diagram of size less than n determines an m-Dyck
path and m

(
n
2

)
− d1 = k + d2 < n, each Ferrers diagram of size m

(
n
2

)
− d1 determines

an m-Dyck path in D(m)
n . Therefore the number of such m-Dyck paths is equal to the

partition number p
(
m
(
n
2

)
− d1

)
, and

m(n
2)−d1∑
d2=0

dimM
(m)
d1,d2

= p

(
m

(
n

2

)
− d1

)
=

m(n
2)−d1∑
d2=0

p

(
d2,m

(
n

2

)
− d1 − d2

)
,

where the second equality is because of Lemma 4.4. On the other hand, Theorem 4.3
asserts that

dimM
(m)
d1,d2
6 p

(
d2,m

(
n

2

)
− d1 − d2

)
.

Therefore each inequality is actually an equality. This implies dimM
(m)
d1,d2

= p(d2, k).
To prove the consequence, note that for any fixed nonnegative integers k, h, whenever

n > 2(k+h+1), the coefficient of qm(n
2)−k−hth in AC

(m)
n (q, t) is equal to p(h, k). Therefore

lim
n→∞

qm(n
2)AC(m)

n (q−1, t) =
∑
k,h>0

p(h, k)qm(n
2)−(m(n

2)−k−h)th

=
∑
k,h>0

p(h, k)qk+hth =
∞∏
i=1

(1− tqi)−1.

The second equality of the consequence is because of Theorem 2.1.

5 Comparison of Coefficients of AC
(m)
n (q, t) to Parti-

tion Numbers

This section proves Theorem 1.3 by showing the two inequalities dimM
(m)
d1,d2

6 p(d2, k)

and dimM
(m)
d1,d2
> p(d2, k) separately. We first use Grafting Lemma (Lemma 5.1) to prove

the Higher Transfactor Lemma (Lemma 5.4), then use both lemmas to prove Lemma 5.5,
which plays a key role in the proof of the former inequality. Finally, we complete the
proof of Theorem 1.3 by showing the latter inequality using results from section 3 and 4.

Lemma 5.1 (Grafting Lemma). Let D1 = {P1, . . . , Pn} and D2 = {Q1, . . . , Qn} be in Dn,
where the Pi and Qi are listed in increasing graded lexicographic order. Suppose |Pr| =
|Qr| = r − 1. Let D′1 = {P1, . . . , Pr−1, Qr, . . . , Qn} and D′2 = {Q1, . . . , Qr−1, Pr, . . . , Pn}.
Then

∆(D1) ·∆(D2) ≡ ∆(D′1) ·∆(D′2)

in M (2).
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This can be obtained by switching blocks in block diagonal forms of D1 and D2, so we
omit the detailed proof of the lemma. The following example illustrates the idea of the
proof.

Example 5.2. Consider D1, D2, D′1, and D′2 pictured below.

D1 = u uu u u
p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p
pppppp
pp

p p p p p p p p D2 = uu
u u u@
@
@

@
@
@
@@

 D′1 = u u
u u u@
@
@

@
@
@
@@

D′2 = uu u u u
p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p
pppppp
pp

p p p p p p p p
Then

∆(D1)·∆(D2) = det

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 x21 0 0 0
0 0 x31y32 x31x32 0
0 0 x41y42 x41x42 x41x42x43

0 0 x51y52 x51x52 x51x52x53

∣∣∣∣∣∣∣∣∣∣
·det

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 y21 0 0 0
0 0 y31y32 x31y32 x31x32

0 0 y41y42 x41y42 x41x42

0 0 y51y52 x51y52 x51x52

∣∣∣∣∣∣∣∣∣∣
,

and

∆(D′1)·∆(D′2) = det

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 x21 0 0 0
0 0 y31y32 x31y32 x31x32

0 0 y41y42 x41y42 x41x42

0 0 y51y52 x51y52 x51x52

∣∣∣∣∣∣∣∣∣∣
·det

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 y21 0 0 0
0 0 x31y32 x31x32 0
0 0 x41y42 x41x42 x41x42x43

0 0 x51y52 x51x52 x51x52x53

∣∣∣∣∣∣∣∣∣∣
.

One readily verifies that the two products are equal.

Definition 5.3. For k 6 n− 4 and d1 + d2 + k = 2
(
n
2

)
, define a subspace Nd1,d2 of M

(2)
d1,d2

by

Nd1,d2 =


Md1−(n

2),d2
· f(n

2),0
if d2 6 k;

Md1,d2−(n
2)
· f0,(n

2)
if d1 6 k;

Md1+d2−(n
2)−k,k

· f(n
2)−d2+k,d2−k otherwise.

Lemma 5.4 (Higher Transfactor Lemma). Suppose k 6 n − 4, d′1 6 d1, d′2 6 d2, d1 +
d2 + k = 2

(
n
2

)
, and d′1 + d′2 +

(
n
2

)
= d1 + d2.

(i) If d′2 < d2 and d′1 > k + 1, then

Md′1,d
′
2
· fd1−d′1,d2−d′2 ⊆Md′1−1,d′2+1 · fd1−d′1+1,d2−d′2−1

as subspaces of M
(2)
d1,d2

.
(ii) If d′1 < d1 and d′2 > k + 1, then

Md′1,d
′
2
· fd1−d′1,d2−d′2 ⊆Md′1+1,d′2−1 · fd1−d′1−1,d2−d′2+1

as subspaces of M
(2)
d1,d2

.
(iii) Md′1,d

′
2
· fd1−d′1,d2−d′2 is a subspace of Nd1,d2. Moreover, if d′1, d

′
2 > k, then Md′1,d

′
2
·

fd1−d′1,d2−d′2 is equal to Nd1,d2.
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Proof. (i) Let

Pn =


(n− 1, 0), if d′2 < k;
(n− 1− d′2 + k, d′2 − k), if k 6 d′2 6 n− 2 + k;
(1, n− 2), if d′2 > n− 2 + k.

Then there exists a basis {∆(Di)} of Md1,d2 such that the last point of each Di is Pn.
Indeed, consider the first case d′2 < k. Let M ′

d′1−(n−1),d′2
be the indicated graded piece

of In−1/mn−1In−1. Let {∆(D′i)} be a basis of M ′
d′1−(n−1),d′2

, and let Di be obtained from

D′i by adding the point Pn. Since M ′
d′′1 ,d

′
2

and Md1,d2 have the same dimension p(d2, k),

Lemma 3.6 implies that {∆(Di)} forms a basis of Md1,d2 . The other two cases can be
proved similarly.

Now for each Di = {P1, . . . , Pn}, define D′i = {P1, . . . , Pn−1, Pn + (−1, 1)}. By the

Grafting Lemma 5.1, we have ∆(Di) · fd1−d′1,d2−d′2 ≡ ∆(D′i) · fd1−d′1+1,d2−d′2−1 in M
(2)
d1,d2

.
Then the inclusion stated in (i) follows immediately.

(ii) This is symmetric to (i).
(iii) This follows from (i) and (ii).

Lemma 5.5. Assume n, d′1, d
′
2, k
′, d′′1, d

′′
2, k
′′ ∈ N satisfy n > 6, k′ =

(
n
2

)
− d′1 − d′2, k′′ =(

n
2

)
− d′′1 − d′′2, k′ + k′′ 6 n− 6, and (d′1, d

′
2) + (d′′1, d

′′
2) = (d1, d2). Then

Md′1,d
′
2
·Md′′1 ,d

′′
2
⊆ Nd1,d2

as subspaces of M
(2)
d1,d2

.

Proof. Define n′ = k′ + 3. First, we claim that Md′1,d
′
2

has a basis consisting of elements
of the form

∆(D′) = ∆({P ′1, . . . , P ′n}), where |P ′i | = i− 1 for n′ + 1 6 i 6 n,

and Md′′1 ,d
′′
2

has a basis consisting of elements of the form

∆(D′′) = ∆({P ′′1 , . . . , P ′′n}), where |P ′i | = i− 1 for 0 6 i 6 n′.

Indeed, one may find a pair of integers (e′1, e
′
2) such that

min(d′1, k
′) 6 e′1 6 d′1 6 e′1 +

(
n

2

)
−
(
n′

2

)
,

min(d′2, k
′) 6 e′2 6 d′2 6 e′2 +

(
n

2

)
−
(
n′

2

)
,

and e′1 + e′2 =

(
n′

2

)
− k′.
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Then we choose P ′n′+1, . . . , P
′
n such that |P ′i | = i − 1 for n′ + 1 6 i 6 n, and the sum of

their bidegrees is (d′1−e′1, d′2−e′2). Choose a basis {∆(D̃′)} of (In′/mn′In′)e′1,e′2 and replace

each D̃′ = {Q1, . . . , Qn′} by

D′ = {Q1, . . . , Qn′ , P
′
n′+1, . . . , P

′
n}.

In this way, we obtain a basis for Md′1,d
′
2
. On the other hand, one can verify that there

exist a pair of integers (e′′1, e
′′
2) and a nonnegative integer c 6 n′ such that

min(d′′1, k
′′) 6 e′′1 6 d′′1 − (n− n′)c 6 e′′1 +

(
n′

2

)
,

min(d′′2, k
′′) 6 e′′2 6 d′′2 − (n− n′)(n′ − c) 6 e′′2 +

(
n′

2

)
,

and e′′1 + e′′2 =

(
n− n′

2

)
− k′′.

Then we choose P ′′1 , . . . , P
′′
n′ such that |P ′i | = i − 1 for 1 6 i 6 n′, and the sum of their

bidegrees is (d′′1 − (n − n′)c − e′′1, d
′′
2 − (n − n′)(n′ − c) − e′′2). Take a basis {∆(D̃′′)} of

(In−n′/mn−n′In−n′)e′′1 ,e′′2 , and replace each D̃′′ = {Q1, . . . , Qn−n′} by

D′′ =
{
P ′′1 , . . . , P

′′
n′ , Q1 + (c, n′ − c), Q2 + (c, n′ − c), . . . , Qn−n′ + (c, n′ − c)

}
.

In this way, we obtain a basis for Md′′1 ,d
′′
2
.

Next, using the Grafting Lemma 5.1,

∆(D′)∆(D′′) ≡ ∆({P ′1, . . . , P ′n′ , P ′′n′+1, . . . , P
′′
n})∆({P ′′1 , . . . , P ′′n′ , P ′n′+1, . . . , P

′
n}),

hence is in Nd1,d2 by Lemma 5.4(iii).

Proof of Theorem 1.3. Without loss of generality, we assume d1 > d2. After applying
Lemma 5.5 successively, we can conclude that

M
(m)
d1,d2

= Md1−a,d2−b · ga,b

for some nonnegative integers a, b, where a + b = (m − 1)
(
n
2

)
, and ga,b =

∏m−1
i=1 fai,bi has

bidegree (a, b). Moreover, by inspecting the proof of Lemma 5.5 carefully, we can assume
b = max(0, d2 − k). Therefore

dimM
(m)
d1,d2

= dim(Md1−a,d2−b · ga,b) 6 dimMd1−a,d2−b 6 p(d2, k),

where the last inequality is because of Theorem 3.5.
Now we prove dimM

(m)
d1,d2
> p(d2, k). Take a sufficiently large integer ñ > n such that

k, d2 < ñ/2− 1. Let M̃ be Iñ/mñIñ. Let

f̃0 =
ñ∏

j=n+1

j−1∏
i=1

(xj − xi).
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Define d̃1 = d1+(n+ñ−1)(ñ−n)/2. By applying Lemma 3.6 successively, we conclude that
the linear map h : Md1−a,d2−b → M̃d̃1−a,d2−b that sends f to f · f̃0 is injective. Moreover,
since k 6 n− 6, the domain and the codomain of h have the same dimension pd2,k. So h
is also surjective. Consider the following commutative diagram:

Md1−a,d2−b
h //

ψ1

��

M̃d̃1−a,d2−b

ψ̃1

��

Md1−a,d2−b · ga,b //

ψ2

��

M̃d̃1−a,d2−b · g̃a,b

ψ̃2

��

M
(m)
d1,d2

// M̃
(m)

d̃1,d2

where g̃a,b = ga,b · (f̃0)m−1, ψ1(f) = f · ga,b, ψ̃1(f) = f · g̃a,b, and both the middle and
bottom horizontal maps are given by f 7→ f · (f̃0)m. Since h and ψ̃1 are surjective and ψ̃2

is an isomorphism, the bottom horizontal map is surjective. By Corollary 4.5,

dimM
(m)
d1,d2
> dim M̃

(m)

d̃1,d2
= p(d2, k).

Thus the theorem is proved.

In fact, we expect a stronger statement to hold:

Conjecture 5.6. Let n > 2,m > 2, d1, d2, k be positive integers such that k = m
(
n
2

)
−

d1 − d2. Define δ = min(d1, d2). Then dimM
(m)
d1,d2

6 p(δ, k). Moreover, equality holds if
and only if k 6 n− 2.

6 Conjectures

Conjecture 6.1. For π ∈ D(m)
n and 1 6 i 6 mn, let ai(π) be the number of full squares

in the i’th column below π and above the line my = x, and let bi(π) be the number of full
squares w in the i’th column which are above π and satisfy

m · l(w) 6 a(w) 6 m(l(w) + 1).

For π ∈ D(m)
n and 1 6 j 6 m, let

Dj(π) = {(aj(π), bj(π)), (aj+m(π), bj+m(π)), . . . , (aj+m(n−1)(π), bj+m(n−1)(π))} ⊂ N× N.

Then {
∏m

j=1 det(Dj(π)) : π ∈ D(m)
n } generates the m-th power Imn of the ideal In generated

by alternating polynomials in C[x1, y1, . . . , xn, yn].
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Note that this conjecture implies (1) = (2). As a matter of fact, not only the generators

of I
(m)
n but also their syzygies have conjecturally nice combinatorial interpretations. For

instance, if m = 1 then we have the following conjecture. A more generalized version for
m > 1 will appear elsewhere, as its statement requires a number of definitions including
trapezoidal lattice paths in [20].

Conjecture 6.2. Let In be the ideal generated by alternating polynomials in R = C[x,y] =
C[x1, y1, . . . , xn, yn]. Then for each 1 6 i 6 n, the bigraded Hilbert series of

Tori(R/In,C) = Tori(R/In, R/m)

is equal to

(−1)i−1
∑
λ ` n

spin(λ′) = i− 1

〈(s1)n, sλ〉〈∇(sλ), s(1n)〉.

(Recall that 〈(s1)n, sλ〉 = fλ, the number of standard Young tableaux of shape λ. For
definition of spin, see p.6 in [24].)

This conjecture is verified for n 6 6. As a special case, we have:

Conjecture 6.3. The bigraded Hilbert series of In is

1

(1− q)n(1− t)n
〈∇(sn1 ), s(1n)〉.

Conjecture 6.3 follows from Conjecture 6.2, because sn1 =
∑

λ`n〈(s1)n, sλ〉sλ.

7 Appendix: Comparison of Definitions of Higher

q, t-Catalan Numbers

In the Introduction, we gave seven definitions (a)–(g) of the higher q, t-Catalan numbers.
Here we explain the known relations among these definitions.

(a)⇔(b): There is an obvious bijection between partitions λ ∈ Par(m)
n and m-Dyck

words γ ∈ Γ
(m)
n , defined as follows. Given the partition λ, embed the diagram of λ in an

mn × n triangle as shown in Figures 1 and 2. For 0 6 i < n, let γi be the number of
complete squares to the right of λ and to the left of the diagonal in the (i+1)’th row from
the bottom. For example, when m = 2, n = 5, and λ = (7, 5, 4), we see from Figure 2 that
the associated 2-Dyck word is γ = (0, 2, 0, 1, 1). It is routine to verify that this process

defines a bijection from Par(m)
n onto Γ

(m)
n such that areac(λ) = area(γ). It is less routine

to prove that cm(λ) = dinvm(γ); see [13, Lemma 6.3.3] for the proof. (Note that what we
call cm(λ) is called bm(λ) in [13].)

(b)⇔(c): See [21, §2.5] for a bijection from Γ
(m)
n to D(m)

n such that if γ maps to π under

the bijection, then area(γ) = bm(π) and dinvm(γ) = area(π). This proves WC
(m)
n (q, t) =
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DC
(m)
n (q, t). On the other hand, it is an open problem to define a bijection γ 7→ π

from Γ
(m)
n to D(m)

n satisfying area(γ) = area(π) and dinvm(γ) = bm(π). This problem is
equivalent to proving bijectively that the combinatorial definitions (a), (b), and (c) are
symmetric in q and t.

(d)⇔(e): One can use well-known facts about Macdonald polynomials to prove the

identity SC
(m)
n (q, t) = RC

(m)
n (q, t) (cf. [9] and [6]). Indeed, since en =

∑
µ`n((1 − q)(1 −

t)BµΠµ/wµ)H̃µ and ∇(H̃µ) = TµH̃µ, linearity of ∇ gives ∇m(en) =
∑

µ`n((1 − q)(1 −
t)Tmµ BµΠµ/wµ)H̃µ. Since 〈H̃µ, en〉 = Tµ, we can conclude that 〈∇m(en), en〉 =

∑
µ`n(1−

q)(1− t)Tm+1
µ BµΠµ/wµ, as desired.

(d)⇔(f): Let J be the ideal in C[x,y] generated by polarized power sums
∑n

i=1 x
h
i y

k
i

(h+k > 1). One can also describe J as the ideal generated by all Sn-invariant polynomials
without constant term, where Sn acts diagonally [15]. Let ε be the sign representation of
Sn. It is proved in [13, Proposition 6.1.1] that

∇m(en(z1, z2, . . .)) = Fεm−1⊗Im−1/JIm−1(z1, z2, . . . ; q, t),

where the right side denotes the Frobenius series of εm−1 ⊗ Im−1/JIm−1. (Note that the
meanings of I and J are switched in [13].) On the other hand, one may check that the
Sn-alternating part

(
εm−1 ⊗ Im−1/JIm−1

)ε
is isomorphic to εm−1 ⊗ Im/mIm. We can

extract the Sn-alternating part from the Frobenius series by taking the scalar product
with en = s(1n). Therefore,

SC(m)
n (q, t) = 〈∇m(en), en〉 =

∑
u,v>0

qutv dim(εm−1 ⊗ Im/mIm)u,v

=
∑
u,v>0

qutv dim(Im/mIm)u,v =
∑
u,v>0

qutv dimM (m)
u,v = AC(m)

n (q, t).

(e)⇔(g): Haiman showed the identity

RC(m)
n (q, t) =

n−1∑
i=0

(−1)itrHi(Zn,O(m))(q, t)

in [17, §3, Theorem 2]. Then he showed that for i > 0 and l > 0, H i(Zn, P ⊗ B⊗l) = 0,
where P and B are the vector bundles defined in [18, §2]. In particular, this implies

H i(Zn,O(k)) = 0 for i > 0 [18, Introduction and Theorem 2.2]. Therefore RC
(m)
n (q, t) =

trH0(Zn,O(m))(q, t), which is exactly GC
(m)
n (q, t).
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