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Abstract

Pipe dreams represent permutations pictorially as a series of crossing pipes. Re-
cent applications of pipe dreams include the calculation of Schubert polynomials,
fillings of moon polyominoes, and in the combinatorics of antidiagonal simplicial
complexes. These applications associate pipe dreams to words of elementary sym-
metric transpositions via a canonical mapping. However, this canonical mapping
is by no means the only way of mapping pipe dreams to permutation words. We
define sensical mappings from pipe dreams to words and prove sensical mappings
are in bijection with standard shifted tableaux of triangular shape. We characterize
the set of pipe dreams associated to a given word (under any sensical map) using
step ladder moves. These moves induce a partial order on the set of pipe dreams
mapping to a given word, yielding a distributive lattice.

1 Introduction

RC-graphs were introduced by Fomin and Kirillov in [4] to aid in the calculation of
Schubert polynomials. This work was further developed by Bergeron and Billey in [2].
Recently, Serrano and Stump in [11] and Rubey in [10] observed a correspondence between
RC-graphs and certain 0-1-fillings of moon polyominoes. This relationship yielded a
positivity result for Schubert polynomials. Miller and Sturmfels redubbed RC-graphs as
pipe dreams and employed them to study the combinatorics of antidiagonal simplicial
complexes in their book [8].

Most applications study pipe dreams as they relate to a particular permutation. This
paper instead studies how pipe dreams relate to reduced words in the symmetric group.
This study is motivated by two facts: (i) some formulations for computing Schubert
polynomials with pipe dreams involve summing over reduced words, and (ii) that pipe
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dreams look suspiciously similar to wiring diagrams, a pictorial representation of words
in the symmetric group. We observe that there are multiple ways to map pipe dreams
to words which preserve certain nice properties. We call these sensical mappings and
show that sensical mappings are in bijection with standard shifted tableaux of triangular
shape. We provide algorithms for finding which reduced words have pipe dreams mapping
to them under a particular sensical map and show that all of the pipe dreams mapping to
a given word are related by step ladder moves. Step ladder moves induce a partial order
on the pipe dreams mapping to a given word, yielding a distributive lattice.

Throughout this paper o; is the i-th elementary symmetric transposition. That is, o;
is the permutation in S,, that swaps ¢ and 7 + 1. Composition of transpositions is read
in the typical right to left fashion (i.e. o90y = (3,1,2) in one line notation). A word is a
string of elementary transpositions. A transposition in the string is called a letter. A word
is reduced if it is a minimal length expression for the permutation obtained by composing
its letters. All words considered in this paper are reduced unless otherwise noted.

2 Pipe Dreams

To build an n xn pipe dream draw an n+1 xn+1 grid and enumerate it from 1 to n down
the left side and along the top (coordinates are given in the form (row, column)). Fill in

the internal squares with crossing pieces or elbow tiles . Pipe dreams correspond
to permutations by sending a number along the top to the number its pipe leads to on the
left. Pipes are named after the number they originate at; the pipe starting at 3 is called
pipe number 3. A pipe dream is called reduced if any pair of pipes cross at most once.
All pipe dreams considered in this paper are reduced unless otherwise noted. Following
convention, simplify drawings by only filling squares in the grid’s upper left triangle (any
crossing pieces outside of this triangle will either not affect the permutation or send a
pipe from the top into the hinterlands below the grid).

Example 1. A pipe dream corresponding to the permutation (2,3, 1).

2 3
+7,
Jf

\\\\_|_ -

3 Pipe Dreams to Words — Sensical Mappings

A pipe dream with exactly one crossing tile at (7, j) performs the elementary symmetric
transposition 0;4;_1. This observation motivates the definition of a sensical mapping.
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Definition 2. A mapping from pipe dreams to permutation words is sensical if a crossing
of pipes a and b in square (4, j) maps to the letter o;;;_; performing the swap (a,b).

A sensical mapping from pipe dreams to words is then an ordering on the squares in
the pipe dream such that, no matter where the pipe dream’s crossing tiles are located,
the letters corresponding to the crossing tiles perform the correct swaps when written in
the chosen order. One way to order the letters falls right out of the original definition of
pipe dreams as RC-graphs and has been observed previously [2].

Definition 3. Given a reduced word w = wyws - - - w,, (where the w;’s are elementary
symmetric transpositions), a w-compatible sequence is a sequence of positive integers w' =
wy, wh, - -+ ,w, such that

o w; <wiy.
o If w; = oj, then w; < j.
o If w; = 0; and w; 41 = op where k > j, then wj ; > w;.

Following convention, compatible sequences are written in array with the word they are

associated to in the form w}, w,2’ o w’,” )
wh, wlh, oo w

To build a pipe dream from a word w and compatible sequence w’, put crossing pieces
in the squares (w},w; — w} + 1). To extract a word and compatible sequence from an
n X n reduced pipe dream, examine squares working leftward across rows starting with
(1,n). When the end of one row is reached, examine squares working leftward across the
next row down eventually ending with the square (n,1). When there is a crossing piece
in square (7,7), add the letter o;1;_1 to the word and the integer j to the compatible
sequence. Note, letters and numbers are added to the right end of both the word and

. . . 2
sequence. So, the pipe dream in Example 1 maps to the compatible sequence ( i)’ 1 >

This bijection meets the requirements of a sensical map. Call this map from pipe dreams
to words the canonical map. The canonical map is not however the only sensical map
from pipe dreams to words.

Theorem 4. Sensical maps from n X n pipe dreams (reduced or otherwise) to words in
Sy are in bijection with standard shifted tableaux of triangular shape with largest part size
n—1.

A shifted Young diagram is a Young diagram whose the i-th row has been shifted to the
right by ¢ units. A standard shifted tableau with k boxes is a shifted Young diagram with
k boxes filled with the integers 1 through k& such that the numbers in any row (column)
increase when read left to right (top to bottom).
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Proof. The goal is to order the (g) filled squares in the pipe dream such that a crossing of
pipes a and b in square (i, j) corresponds to the letter 0,4, 1 performing the swap (a,b)
for any possible arrangement of crossing pieces. To find orders that work in general, find
orders that work on the n x n pipe dream that is totally saturated with crossing tiles.
Since any other n X n pipe dream’s crossing tiles are a subset of the crossing tiles in the
saturated pipe dream, a good ordering on the saturated one will be good for all others.

In general, the only crossing tiles that are guaranteed to switch adjacent pipes are
the top rightmost and right topmost crossing tiles (that is, the crossing tile which has
no crossing tiles weakly below it and no crossing tiles in its row that are to its left and
the crossing tile which has no crossing tiles weakly to its right and no crossing tiles in its
column that are above it). These crossing tiles may be the same or different. Pick one of
these two tiles and remove it. Swap the numbers of the pipes that crossed at the removed
tile the top row. The reader can check that following numbers on the top to numbers on
the left in the new figure, the final permutation will be preserved.

1 2 3 4 1 2

|
1 IJr 1

4
Jf r
Jf

3 Jf 3__Jr

4Jr 4Jr

The saturated pipe dream Remove a crossing and switch the labels

Continue picking either the top rightmost or right topmost crossing tile, removing it, and
swapping the labels of the crossed pipes until the crossing free pipe dream is reached. The
order the tiles were removed gives a sensical map from n xn pipe dreams to words. Because
any sensical map must work for the saturated pipe dream in particular, all sensical maps
can be constructed in this way.

Numbering squares in the order they were removed, digits must increase downward
and to the left. In fact, if tiles are removed in an order given by a numbering of the
squares that increases downward and to the left, the tile removed at any step will be
either the right topmost or top rightmost tile and the ordering will give a sensical map.
Ordering the boxes in a fashion that is not always increasing downward and to the left
will at some point force a crossing tile that is not the right topmost or top rightmost to be
removed. Then, the removed tile would not be guaranteed to switch two adjacent pipes
and the map given by the ordering would not fulfill our criteria for a sensical mapping.

So, sensical maps are in bijection with leftward, downward increasing numberings
of the boxes in the upper triangle. Reflecting the triangle and numbers gives a standard
shifted tableau. Thus, sensical maps from n xn pipe dreams to words in S,, are in bijection
with standard shifted tableaux of triangular shape with largest part size n — 1. O]
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Example 5. A Sensical Map.

4 2 1
S 3
6

Note that the maps given in by this result are indeed different from the canonical map.
For example, no pipe dream maps to the word 3050307 under the canonical map even
though the following pipe dream maps to it under the map given in Example 5.

1 2 3 4
4
) S,

s I,
4 Jf

To see where this pipe dream maps to under the map of Example 5, simply examine
the squares in the order dictated by the map. Whenever a crossing pieces occurs, write
down the letter corresponding to that crossing’s location adding new letters on the right.
Indeed, the above pipe dream maps to o302030,. Under the canonical map, the above
pipe dream would map to g3090103.

4 Pipe Dreams Mapping to a Given Word

Given a word in S, w = wy - - - w,,, when is there a pipe dream that maps to it under
the canonical map? Under any sensical map? An easy test comes from the notion of
compatible sequences. Break w up into maximal length strictly decreasing (with regard
to the letters’ indices, oy < 03) subsequences. Build a sequence by associating a string of
1’s to the first decreasing subsequence, a string of 2’s to the second and so on.

Lemma 6. Using the sequence constructed above, if any w; = o; has an associated value
that is strictly greater than j, then the word does not have a compatible sequence and no
pipe dream is associated with it. Otherwise, the resulting sequence is a compatible sequence
which gives an associated pipe dream.

Proof. Assume that w; = o0; and has an associated value that is strictly greater than j
in the sequence constructed above. Because of the requirement that adjacent letters with
increasing indices in w correspond to increasing values in a compatible sequence, all values
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in a compatible sequence for w must be at least as large as the corresponding entry in
the sequence constructed above. Then, the requirement that w, < j cannot be satisfied.
The second result follows directly from the definition of a compatible sequence. n

Note that the constructed sequence is the lexicographic minimum of all compatible
sequences for w. By a mild abuse of language, call the pipe dream given by this sequence
w’s minimal pipe dream under the canonical map.

This test generalizes to sensical mappings. Take an ordering of tiles yielding a sensical
map. Starting at wy, for each w; = o0}, put a crossing piece in the smallest numbered box
that corresponds to o;. Fill any smaller numbered boxes with elbow pieces and proceed
to the next letter. Once wy has been reached, fill all remaining tiles with elbow pieces.

Lemma 7. If the above procedure fails to produce a pipe dream (if at any point there is no
available square corresponding to o; in which to put a crossing piece), then there are no
pipe dreams corresponding to w under the chosen map. Otherwise, the constructed pipe
dream maps to the chosen word under the chosen map and is considered the minimal pipe
dream to do so.

Proof. The proof is similar to Lemma 6. ]

Sensical mappings are not injective; three different pipe dreams map to o3 under any
sensical map. How are the different pipe dreams mapping to a word under a given sensical
map related? Previous literature shows that all pipe dreams of a given permutation are
related by a series of chute and ladder moves [2], [8]; Rubey generalizes the notion of
chute moves to obtain results on 0,1-fillings of moon polynominoes [10]; and Knutson,
Miller and Sturmfels show pipe dreams of a given permutation can generate pipe dreams
of smaller permutations via a process called mitosis [5], [7], [8]. So, the goal of finding
mutation like relations between pipe dreams is very much in the spirit of previous work
in the field.

Indeed there exists a series of moves relating pipe dreams associated to a given word
under a given sensical map. In Section 5, we show that these moves give a decomposition
of the chute poset of pipe dreams of a given permutation into disjoint distributive lattices.
For the sake of having a concrete example, results are shown for the canonical map, then
generalized to arbitrary sensical maps.

Definition 8. A step ladder mowve is a swap of the form

J—=1 7 J=1 7

.S _I_ S
e - " Trer
Z+1Jrjr i+1—|—Jr
where there are no crossing pieces in row ¢ to the left of column j and no crossing pieces

in row ¢ + 1 to the right of column 5 — 1.
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Theorem 9. Two pipe dreams map to the same word under the canonical map if and
only if they are related by a series of step ladder moves.

Proof. Suppose that two pipe dreams are related by a step ladder move. Because any
crossing piece slides only along the NE diagonal, the letters mapped to will be the same
(in the figure in Definition 8, the image on the left has a crossing piece at (i,j) which
maps to 0;+;_1 and the image on the right has a crossing piece at (¢ + 1, j — 1) which also
maps to 0;4j_1). Since there are no crossing tiles to the left of column j in row ¢ and no
crossing tiles to the right of column 57 — 1 in row ¢ + 1, the letters mapped to will be in
the same order (this follows directly from the construction of the canonical map). So, two
pipe dreams related by a step ladder move map to the same word under the canonical

map.

Consider the pipe dream given by the word w = wjws---w,, and the compatible

sequence w' = ( Zj/l 7 va?’ wfn . We show that w’s minimal pipe dream under
1> 2 m

the canonical map is related to the given pipe dream by a series of downward moving
step ladder moves. Then, any two pipe dreams mapping to w are related to each other
by a series of step ladder moves via w’s minimal pipe dream. To this end, construct w’s
lexicographically minimal compatible sequence w” = w/,wj, - w/ using the method
described in Lemma 6. Transform w” into w’ by repeatedly increasing w!, by adding one
until w!” = w , then repeatedly increasing w! , by adding one until v/ _, = w/ _,, and
so on until w} = w). In pictorial terms, each time a digit is increased, a downward moving
step ladder move is performed (increasing a digit slides a crossing piece down and to the

left). Let w; = 0 and w;41 = 0y. Due to the requirement that
(k> j) = (w, > w,),

and because we are working our way from w,, to wy, we conclude that

(Wi, =w;) = (k <7j).
In simpler pictorial language: if the row the moving tile originated has another crossing
tile in it, that other tile must lie to the right of the moving tile. So, there are no tiles to
the left of the moving tile in its starting row. Further, no tile can lie to the right of the
moving tile in its destination row. If this were the case, there would exist some ¢ such
that w; > w;, ;, which cannot happen because w’ is a compatible sequence.

So, any pipe dream mapping to w is related to the pipe dream given by w’s lexico-
graphically minimal compatible sequence via a series of step ladder moves. Then, any
two pipe dreams mapping to w are related by a series of step ladder moves via the lexi-
cographically minimal pipe dream. Thus, two pipe dreams map to the same word under
the canonical map if and only if they are related by a series of step ladder moves. O]

The notion of a step ladder move can be easily generalized, giving similar results on
when two pipe dreams corresponding to the same word under any sensical map are related.
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Definition 10. Choose a sensical map from pipe dreams to words and write it as in
Example 5. A generalized step ladder move is a similar move to Definition 8 where there
are no crossing tiles aside from the moving one in boxes numbered weakly larger than the
box at (i,7) and weakly less than the box at (i + 1,7 — 1). Note the squares filled with
elbow joints in the picture are indeed necessarily elbow joint pieces as these squares must
be numbered greater than the square at (i, j) and less than the square at (i + 1,5 — 1).

Example 11. The following would be a step ladder move under the map from Example
5 even though it is not a step ladder move under the canonical map.

1 2 3 4 1 2 4 3
1++++ 1++++
2 Y = 2 47
3++ 3++
4Jr 4Jr

Theorem 12. Two pipe dreams map to the same word under a given map if and only if
they are related by a series of generalized step ladder moves.

Proof. The proof is similar to Theorem 9. O]

5 The Step Ladder Poset

Bergeron and Billey noted that chute moves, beyond generating all pipe dreams associated
to a given permutation, induce a partial ordering on pipe dreams of a given permutation.
However, little study has gone into this poset. The chute poset for (1,4,3,2) can be seen
in Figure 1 (Bergeron and Billey give this poset as an example in their introduction to
the topic, [2]).

The chute poset of pipe dreams associated to a given permutation is always graded.
However, casual examination of Figure 1 shows that the chute poset is not in general a
lattice, and not in general ranked. Defining a step ladder poset of pipe dreams associated
to a given word yields a poset with these properties. Because step ladder moves are just
special chute moves, one might be able to dig up some interesting properties of the chute
poset of a given permutation by decomposing it into step ladder subposets given by the
different reduced words for the permutation. However, that route is not one we pursue at
this time.

To build the step ladder poset, consider the set of all pipe dreams mapping to a given
word under a given sensical map. For pipe dreams x and y, say = > y if y can be reached
by performing a series of downward step ladder moves to x. For the following theorem,
only the canonical mapping is considered. These results easily generalize to any sensical

mapping.
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Step ladder poset for o30403.

***************************

1 2 3 4
1 ijfjfjfi
L4+
4
4 Jf
1 2 3 4
! Jf Jf"‘Jf
2 +ijf
s+
4 Jf
| _Step ladder poset for 050305.
1 2 3 4 1 2 3 4
! Jf++Jf ! Jf"‘JfJf
2 e > +—+7F
s+ s Zrr
4 Jf 4 Jf
L rt++
2 e+ 7p
3 Jer
4 Jf

Figure 1: The chute poset for (1,4,3,2) with decomposition into step ladder posets.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(3) (2013), #P40



Recall that a lattice is a poset in which any two elements have a supremum and
infimum. Formally, in the case of the supremum, for any two elements x and y there is
an element z V y called the join of z and y such that (zVy) > x and y and for any z such
that z > x and y, we have (z V y) < z. Similarly, in the case of the infimum, there is an
element x A y called the meet of z and y such that (z A y) < z and y and for any z such
that z < x and y, we have (z Ay) > z.

A distributive lattice is a lattice in which meets and joins distribute. That is, for any
elements z,y, and z we have xV (yAz) = (zVy)A(zVz)and zA(yVz) = (xAy)V(zAz).

Theorem 13. The step ladder poset is a distributive lattice.

For a word w = wy,ws, ..., w,, let x and y be a pipe dreams associated to w with
. w1 wao e w. w1 Wao s w.
compatible sequences ¥’ = P 7o) and ¢ = P e
Xy, Lo, - Ly Y1, Yo, -+ Ym

respectively. A lemma describing meets and joins in the step ladder poset helps prove the
theorem.

Lemma 14. The join and meet of x and y, * V y and x Ay respectively, are given
respectively by the compatible sequences

( Wy, Wa, o Wi )
maX(‘T,h yi)? max(a:é, yé) T maX(‘T;n? y;n)
and
( Wy, Wa, o W, )
mln(‘r/hyll)? mln(xé,yé) Tty mln(‘r;}wyv’n)

Proof. We give the proof for joins; the proof for meets is similar. Call the sequence
]I\Uj{” ?\Z ]\w/fz ), where M| = max(z},y}). Begin
by checking that M’ is a compatible sequence for w. Suppose for some i that 2} > v,
w; = 0j, and w1 = 0. Then, M] < M/ because x] < zj,,. M < j because z},y; < j.
If £ > j, then x; < ;,, and thus M < M/, ;. So, all the necessary conditions are met
and M’ is a compatible sequence for w.

This pipe dream is indeed greater than both x and y: From 2, %, ..., x) | increase
x, by repeatedly adding 1 until «/, = M/ . Then, increase z/, ; by repeatedly adding 1
until z,,,—1 = M/ _, and so on until ' = M’. By the same reasoning used in the proof of
Theorem 9, each increase corresponds to a downward moving step ladder move. So, the
proposed join is indeed greater than x. Likewise, the proposed join is greater than y.

It remains to be shown that any other pipe dream z > x,y, given by compatible

for the proposed join M’ =

Wy Wo e w
sequence 2’ = ( Z,’ z” /"), must be greater than or equal to the proposed
% 2 m

join. Any digit z; must be greater than M. Were this not the case, one of z} or ¥/
would need to be decreased in order to reach z;. Such a decrease would correspond either
an upward moving step ladder move or a move that isn’t a step ladder move at all. If
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zi > M, then digit increasing motions can be performed between M’ and 2’. Then, z
is strictly greater than the proposed join. So, x V y is indeed given by the compatible
sequence M’. A similar argument shows that = A y is given by the compatible sequence

wy, Wa, Wm
min(xhyl)a min($27y2)a e mln(‘rm?ym) ’

]

Proof of Theorem 13. From Lemma 14, the step ladder poset has well defined meets and
joins and is thus a lattice. It remains to be shown that meets and joins distribute. Let z

given by the compatible sequence ( Z},l’ u;, o w/m ) be any pipe dream. Then, the
Lo e 2

compatible sequence for the pipe dream x A (y V z) is

wy, w2, W,
max(zy, min(yy, 1)), max(zq, min(y, 21)), -+ Max(Ty, MiN(Ypm, 2m)) )
But, for any i, the identity
max(z;, min(y;, z;)) = min(max(z;, y;), max(z;, z;))

holds. So, x A (yV z) = (x Ay) V (z A z) and the meet distributes. The join distributes
similarly. Thus, the step ladder poset is a distributive lattice. O

Since the step ladder poset is a distributive lattice, it is also modular, ranked, and
graded.

5.1 Posets Whose Order Ideals are Step Ladder Posets

By the fundamental theorem of finite distributive lattices, a unique poset P exists such
that the step ladder poset is isomorphic to J(P) (the poset of order ideals of P with
partial ordering given by inclusion, notation from Stanley, [12]). We end our investigation
by showing how to find P from any word. For the sake of brevity, only the canonical
mapping is considered in this section. The construction easily generalizes to any sensical
mapping.

All that is necessary to find P is to find the nonzero join irreducible elements in the
step ladder poset (P is isomorphic to the induced subposet given by these elements). The
join irreducible elements are those that cover exactly one other element. If an element
covers two others, it is clearly not join irreducible. If there is an element z covering exactly
one other element take a z and a y such that z > z,y. The the element covered by z is
also greater than or equal to both z and y. So, x Vy # 2z and z is join irreducible.

One pipe dream covers another if the first pipe dream can be transformed into the
second by a single upward moving step ladder move. An upward moving step ladder move
corresponds to decreasing exactly one digit of the pipe dream’s associated compatible
sequence by one such that the new sequence is also compatible. We give an algorithm for
finding a pipe dream’s join irreducible elements given the word and compatible sequence
determining the pipe dream.
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Algorithm 15. If w = wy,ws, ..., w,, is a reduced word and

!/ Wy, Wz, -+ Wn
w = / !/ /
Wy, Wy, - Wy

a compatible sequence, then the pipe dream determined by w’ is join irreducible if and
only if there exists some i such that:

o Ifi# 1, then w] = 1.
e For h # i, if wy, = 0; and wy_1 = o}, where j < k, then w), = wj,_,.
e For h # i, if wy, = 0; and wy_; = o} where j > k, then w), = w)_; + 1.

If w’" meets these conditions, only the digit w; may be decreased. So, the pipe dream
covers exactly one other pipe dream and is thus join irreducible. Picking what digit of
the compatible sequence is to be decreased and what that digit is determines the rest of
the sequence uniquely under the above conditions. If the uniquely determined sequence is
a compatible sequence, the result is join irreducible. If something breaks in determining
the sequence, there is no pipe dream which covers a single other pipe dream by decreasing
the chosen digit of the compatible sequence by one. Then, checking each digit w; from 2
up to j where w; = o, in this fashion will yield all join irreducible pipe dreams.

These results are just the tip of the iceberg of what might be done with the step ladder
poset. I freely admit to not being an expert in the field of posets and encourage those
who are to explore other properties of the step ladder poset and also the chute poset’s
decomposition into step ladder subposets.
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