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Abstract

The product dimension of a graph G is defined as the minimum natural number
l such that G is an induced subgraph of a direct product of l complete graphs. In
this paper we study the product dimension of forests, bounded treewidth graphs
and k-degenerate graphs. We show that every forest on n vertices has product
dimension at most 1.441 log n + 3. This improves the best known upper bound of
3 logn for the same due to Poljak and Pultr. The technique used in arriving at the
above bound is extended and combined with a well-known result on the existence
of orthogonal Latin squares to show that every graph on n vertices with treewidth
at most t has product dimension at most (t+2)(log n+1). We also show that every
k-degenerate graph on n vertices has product dimension at most ⌈5.545k log n⌉+1.
This improves the upper bound of 32k logn for the same by Eaton and Rödl.
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1 Introduction

For a graph G(V,E) and an l ∈ N, a function φG : V → N
l is called an l-encoding of G if

1. φG is an injection, and

2. ∀u, v ∈ V, {u, v} ∈ E iff φG(u) and φG(v) differ in all l coordinates.

The minimum l such that an l-encoding of G exists is called the product dimension of G
and is denoted by pdim(G). Some authors refer to it as the Prague dimension [10].

The product dimension of a graph G was first defined in [15] by Nešetřil and Rödl as
the minimum l such that G is an induced subgraph of a direct product (see Section 1.2)
of l complete graphs. It is easy to see that the two definitions of product dimension are
equivalent. Another equivalent definition of the product dimension of a graph is as the
minimum number of proper colorings of G such that any pair of non-adjacent vertices get
the same color in at least one of the colorings and not in all of them.

The concept of product dimension of a graph was first used to prove the Galvin-
Ramsey property of the class of all finite graphs [15]. Thereafter, this area was separately
explored by various people. In 1980, Lovász, Nešetřil and Pultr showed that the product
dimension of a path on n + 1 vertices (length n) is ⌈log n⌉ [13]. They also gave a lower
bound for the product dimension of a graph (Theorem 5.3 [13]) which in particular tells
that the product dimension of a tree on n vertices with l leaves is at least log(n− l + 1).
The authors also suggested that the idea used to encode paths could be extended to
study the product dimension of trees. Immediately after this paper, Poljak and Pultr in
[16] came up with bounds on product dimension of trees using the encoding for paths
employed in [13]. The results in this paper are pdim(T ) 6 3⌈log |T |⌉ and log |m(T )|−1 6

pdim(T ) 6 3⌈log |m(T )|⌉+1 where, T is a forest and m(T ) is the graph obtained from T
by recursively deleting a leaf vertex with one or more siblings. In this paper we improve
the above upper bound to 1.441 log |T | + 3. More recently, in 2010, Ida Kantor in her
doctoral thesis [11] determines another upper bound on the product dimension of trees
viz. 2 + ⌈log δr⌉ +

∑

i∈S,26i<r⌈log δi⌉ +
∑

i 6∈S,36i<r⌈log(δi − 1)⌉, where r is the radius of
the tree, x is a central vertex, δi is the maximum degree among all vertices which are at
a distance r − i from x and S = {2i : i ∈ N}. The technique used is a generalization of
the technique used by Lovász, Nešetřil and Pultr in [13] for paths.

The product dimension of graphs obtained by amalgamation of smaller graphs was
studied in [1]. The idea of using orthogonal Latin squares to encode a disjoint union of
complete graphs is given by Evans, Isaak and Narayan in [9]. This idea is the motivation
for our Amalgamation Lemma for General Graphs (Lemma 7) which is a key ingredient
for showing that the product dimension of a graph on n vertices with treewidth at most t
is at most (t+ 2)(log n+ 1). Orthogonal Latin squares have been known for a long time.
In the 1780s Euler demonstrated methods for constructing orthogonal Latin squares of
order t where t is odd or a multiple of 4 and later conjectured that orthogonal Latin
squares of order t ≡ 2 mod 4 do not exist. In 1960, Parker, Bose, and Shrikhande in [3]
disproved Euler’s conjecture for all t > 10. Thus, orthogonal Latin squares exist for all
orders t > 3 except t = 6. We use this result to prove Lemma 7.
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A parameter closely related to product dimension of a graph G is the equivalence
number of the complement of the graph G, Ḡ. An equivalence is a vertex disjoint union of
cliques and the equivalence number of a graph H is the minimum number of equivalences
required to cover the edges of H. In [2], Alon came up with bounds on the equivalence
number of a graph showing log n − log d 6 eq(Ḡ) 6 2e2(d + 1)2 lnn, where G is a graph
on n vertices with maximum degree d. It is easy to see that pdim(G) 6 eq(Ḡ) + 1 ([5]).
Eaton and Rödl in [6] proved that pdim(G) 6 32k log n for a k-degenerate graph G on
n vertices. Since degeneracy of a graph is at most its maximum degree, this result is
a significant improvement over Alon’s result. We use a probabilistic method to further
improve this upper bound to ⌈5.545k log n⌉+ 1.

The product dimension of a graph is closely related to the representation number of
a graph - a concept introduced by Erdös in [7]. A graph G is representable modulo r
if there exists an injection f : V (G) → {0, . . . , r − 1} such that for all u, v ∈ V (G),
gcd(f(u), f(v)) = 1 if and only if {u, v} ∈ E(G). The minimum r modulo which G is
representable is called the representation number of G. The relationship between the two
concepts viz. the product dimension of a graph and representation number of a graph is
described in [8].

1.1 Summary of Results

1. For any forest T on n vertices, pdim(T ) 6 1.441 log n+ 3 (Theorem 4).

This is an improvement over the upper bound for product dimension of trees and
forests given by Poljak and Pultr in [16] viz. 3⌈log n⌉. We use a technique of
divide and conquer to prove the theorem. The divide operation corresponds to
the operation described in our Splitting Lemma for Forests (Lemma 1) while the
conquer operation corresponds to our Amalgamation Lemma for Bipartite Graphs
(Lemma 3).

2. For any graphG on n vertices and treewidth t, pdim(G) 6 (t+2)(log n+1) (Theorem
8).

The techniques used to prove Theorem 4 for trees inspired us to work for graphs
with bounded treewidth. Another key ingredient in proving this theorem is the
Amalgamation Lemma for General Graphs (Lemma 7) which is based on the exis-
tence of orthogonal Latin squares of different orders. Since treewidth t graphs are
t-degenerate (Section 4.2, [12]), it follows from an upper bound on product dimen-
sion based on degeneracy of a graph [6] that pdim(G) 6 32t log n. Our result is an
improvement over that.

3. For every k-degenerate graph G on n vertices, pdim(G) 6 ⌈5.545k log n⌉+ 1 (The-
orem 9).

We derive this result as an improvement over Eaton’s and Rödl’s upper bound of
32k log n for product dimension of k-degenerate graphs [6]. We use a probabilistic
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argument to prove the theorem and we believe that our proof is shorter.

1.2 Notations and Definitions

In this paper we consider only undirected, simple, finite graphs. For any graph G, V (G)
denotes its vertex set and E(G) denotes its edge set. The cardinality of a set S is denoted
by |S|. For a graph G, |G| denotes the cardinality of V (G). NG(u) denotes the open
neighborhood of vertex u in G, i.e. all the vertices adjacent to u in G. The degree of a
vertex u, denoted by d(u) is |N(u)|.

A subgraph H of G is a graph with vertex set V (H) ⊂ V (G) and edge set E(H) ⊂
E(G) ∩ {{v, v′} : v, v′ ∈ V (H)}. If H is a subgraph of G then G is called the supergraph
of H.

For a graph G, the graph induced by a set X ⊂ V (G), denoted by G[X], is the graph
with V (G[X]) = X and E(G[X]) = E(G) ∩ {{v, v′} : v, v′ ∈ X}.

If G1 and G2 are two graphs, then G1 \ G2 is the graph G1[V (G1) \ V (G2)]. If G is
a graph and S ⊂ V (G), then G \ S is the graph G[V (G) \ S]. The union of two graphs
G1 and G2, denoted by G1 ∪ G2, is the graph with V (G1 ∪ G2) = V (G1) ∪ V (G2) and
E(G1 ∪G2) = E(G1)∪E(G2). Moreover, if V (G1)∩ V (G2) = ∅, then we call it a disjoint
union and denote it as G1 ⊎G2. The intersection of two graphs G1 and G2 is the graph
G1 ∩G2 with V (G1 ∩G2) = V (G1) ∩ V (G2) and E(G1 ∩G2) = E(G1) ∩ E(G2).

The graph G1 ×G2 is the direct product of two graphs G1 and G2 with V (G1 ×G2) =
V (G1) × V (G2) and E(G1 × G2) = {{u, v} : u, v ∈ V (G1) × V (G2) and if u = (x1, x2),
v = (y1, y2), then {x1, y1} ∈ E(G1) and {x2, y2} ∈ E(G2)}.

Let [n] denote the set {1, . . . , n}. The set of all natural numbers is denoted by N.
{a}k denotes the k-tuple (a, . . . , a). Throughout the paper, log n denotes log2 n and lnn
denotes loge n.

2 Product Dimension of Forests

Definition 1 (Split vertex). In a forest F on n vertices, a vertex v is called

1. an (ǫ, 2)-split vertex if F \ {v} = F1 ⊎ F2 such that |F1|, |F2| 6 (1
2
+ ǫ)n, and

2. an (ǫ, 3)-split vertex if F \ {v} = F1 ⊎ F2 ⊎ F3 such that |F1|, |F2|, |F3| 6 (1
2
− ǫ)n,

where F1, F2 and F3 are subgraphs of F .

Lemma 1 (Splitting Lemma for Forests). In every forest F , for every ǫ > 0, there exists
either an (ǫ, 2)-split vertex or an (ǫ, 3)-split vertex.

Proof. Let T be a tree such that V (T ) = V (F ) and T is a supergraph of F . It is easy to see
that if v ∈ V (T ) is an (ǫ, 2)-split vertex of T with T \{v} = T1⊎T2 and |T1|, |T2| 6 (1

2
+ǫ)n

then v is also an (ǫ, 2)-split vertex of F with F \{v} = F1⊎F2, |F1|, |F2| 6 (1
2
+ ǫ)n where

each Fi is a subgraph of Ti. Similarly any (ǫ, 3)-split vertex of T is also an (ǫ, 3)-split
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vertex of F . Hence it suffices to show that either an (ǫ, 2)-split vertex or an (ǫ, 3)-split
vertex exists in the tree T .

Let n = |T |. For any v ∈ V (T ), let C1(v), . . . , Cm(v) denote the (connected) com-
ponents of T \ {v} such that |C1(v)| > · · · > |Cm(v)|. Choose v ∈ V (T ) such that
|C1(v)| = min{|C1(u)| : u ∈ V (T )}. First we claim that |C1(v)| 6 (1

2
+ ǫ)n. For the

sake of contradiction, let us assume that |C1(v)| > (1
2
+ ǫ)n. Let w ∈ C1(v) ∩ NT (v). If

C1(w) ⊂ C1(v), then |C1(w)| < |C1(v)| (because C1(w) ⊂ C1(v) \ {v}) contradicting the
choice of v. Hence, C1(w) ⊂ T \ C1(v) and |C1(w)| 6 n − |C1(v)| < (1

2
− ǫ)n < |C1(v)|.

This again contradicts the choice of v.
If |C1(v)| > (1

2
−ǫ)n, then v is an (ǫ, 2)-split vertex and T1 = C1(v), T2 = T \(T1∪{v}).

Otherwise, let Q1 = C1(v), . . . , Qm = Cm(v). Hence, |Qi| 6 (1
2
− ǫ)n for all i ∈ [m]. If

m 6 3, then v is either an (ǫ, 3)-split vertex or an (ǫ, 2)-split vertex with Ti = Qi. If
m > 4, consider a partition I1 ⊎ . . . ⊎ Ik = [m] with minimum possible k such that
| ∪j∈Il Qj| 6 (1

2
− ǫ)n for all l ∈ [k]. For k 6 3, v is either an (ǫ, 2)-split vertex or an

(ǫ, 3)-split vertex with Tl = ∪j∈IlQj. Suppose k > 4, define Q′
l = ∪j∈IlQj, l ∈ [k] and

let Q′ be the union of smallest two among {Q′
1, . . . , Q

′
k}. Hence, |Q′| 6 n

2
6 (1

2
+ ǫ)n by

the pigeonhole principle. By the minimality in the choice of the partition I1 ⊎ . . . ⊎ Ik,
|Q′| > (1

2
− ǫ)n. Thus, v is an (ǫ, 2)-split vertex with T1 = Q′ and T2 = T \ (Q′∪{v}).

Definition 2. We call an l-encoding φG of a graph G, a well-begun l-encoding if the first
coordinate of φG is from {0, . . . , χ(G)− 1}.

Observation 2. For any q > p, if φG is a p-encoding of G, then ψG, obtained from φG

by adding q− p coordinates to φG such that for all p < i 6 q, the i-th coordinate of ψG(x)
is the p-th coordinate of φG, is a q-encoding of G.

Lemma 3 (Amalgamation Lemma for Bipartite Graphs). Let G0, . . . , Gk−1 be bipartite
graphs such that Gi ∩Gj = {g} for all i, j ∈ {0, . . . , k − 1}, i 6= j. Let G = ∪k−1

i=0Gi. For
every i ∈ {0, . . . , k− 1}, let φGi

be a well-begun li-encoding of Gi. Then we can construct
a well-begun l-encoding φG of G, where l = max06i6k−1{li}+ ⌈log k⌉.

Proof. From Observation 2, without loss of generality we can assume that l0 = · · · =
lk−1 = maxi{li}. Since we can rename the alphabets used in each coordinate of an
encoding independently of the other coordinates, it is safe to assume that the vertex g
gets the encoding {0}l0 in every φGi

. For all 0 6 i 6 k − 1, let b0(i) denote the binary
representation of i using exactly ⌈log k⌉ bits and b1(i) denote the bitwise complement of
b0(i). The l-encoding φG of G is as follows.

For all i, 0 6 i 6 k − 1, for every x ∈ V (Gi \ {g})

φG(x) =

{

φGi
(x)b0(i) if φGi

(x) begins with 0

φGi
(x)b1(i) if φGi

(x) begins with 1

φG(g) = {0}l0{2}⌈log k⌉ (1)

We can verify that φG is a valid l-encoding of G from the following argument.
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G0

G1

Gk−1

bC bC
bC

g

Figure 1: A graph G = ∪k−1
i=0Gi where Gi ∩Gj = {g} for all i, j ∈ {0, . . . , k − 1}, i 6= j.

Let x, y ∈ V (Gi \ {g}). If {x, y} ∈ E(Gi) then the first coordinates of φGi
(x) and

φGi
(y) are different. Thus, the extra coordinates added to φGi

(x) and φGi
(y) to get φG(x)

and φG(y) are complements of each other (by Equation (1)). If {x, y} 6∈ E(Gi), then
φGi

(x) and φGi
(y) agreed in some coordinate, say t. Hence, φG(x) and φG(y) also agree

in the t-th coordinate.
Let x ∈ V (Gi \ {g}) and y ∈ V (Gj \ {g}) for some i, j ∈ {0, . . . , k − 1}, i 6= j.

Note that, since Gi ∩ Gj = {g}, {x, y} 6∈ E(G). If φGi
(x) and φGi

(y) agree in the first
coordinate then φG(x) and φG(y) also agree in the first coordinate. If φGi

(x) begins with
0 and φGi

(y) begins with 1, then φG(x) = φGi
(x)b0(i) and φG(y) = φGj

(y)b1(j). Since
i 6= j, b0(i) and b1(j) agree in some coordinate.

For any i, let x ∈ V (Gi \ {g}). If {g, x} 6∈ E(Gi), then φGi
(g) and φGi

(x) agreed in
some coordinate, say t. Hence, φG(g) and φG(x) also agree in the t-th coordinate. In
the other case, that is, when {g, x} ∈ E(Gi), since φG0

(g) begins with 0, φGi
(x) must

begin with 1. Thus, the extra coordinates added to φGi(x) to get φG(x) are b1(i) while the
extra coordinates added to φG0

(g) to get φG(g) are {2}
⌈log k⌉. Therefore, φG(x) and φG(g)

disagree in all coordinates.
It is easy to see from Equation 1 that φ(G) is well-begun.

Theorem 4. For any forest T on n vertices, pdim(T ) 6 1.441 log n+ 3.

Proof. Let V (T ) = {v0, . . . , vn−1}, f : V (T ) −→ {0, 1, . . . , n− 1} be a bijection, and fi =
f(vi). We use a divide and conquer strategy to prove the theorem. Let C(T ) denote the
minimum l such that there exists a well-begun l-encoding of T . Let C(n) = max{C(T ) : T
is a forest on at most n vertices}.

Base Case. All possible forests with |V (T )| 6 3 with their well-begun 3-encodings are
shown in Figure 2. Thus, C(3) 6 3.

Note that the third coordinate of each of the encodings is always a unique number
associated with the vertex. This ensures injectivity of all the encodings that we get during
the conquer steps.
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vi

(0, 0, fi)

vi vj

(0, 0, fi) (0, 0, fj)

vi vj

(0, 0, fi) (1, 1, fj)

vi vj vk

(0, 0, fi) (0, 0, fj) (0, 0, fk)

vi vj vk

(0, 0, fi) (1, 1, fj) (0, 1, fk)

vi vj vk

(0, 0, fi) (1, 1, fj) (0, 0, fk)

Figure 2: Well-begun 3-encodings of the six forests with at most 3 vertices. Each row
depicts a single forest and dotted lines are non-edges.

Divide and Conquer. In our divide and conquer strategy, the divide operation corre-
sponds to the two splitting operations of Lemma 1 viz. (ǫ, 2)-splitting and (ǫ, 3)-splitting
and the conquer operation corresponds to the amalgamation operation of Lemma 3.

Choose ǫ =
√
5
2

− 1. Let α = 1
2
+ ǫ and β = 1

2
− ǫ. Note that α2 = β. By Lemma

1, there exists either an (ǫ, 2)-split vertex or an (ǫ, 3)-split vertex, say v ∈ V (T ). If v is
an (ǫ, 2)-split vertex, then from Definition 1, T \ {v} = T1 ⊎ T2 such that |T1|, |T2| 6 αn.
Let T ′

i = Ti ∪ {v}, i ∈ [2]. Let φT ′

i
be a well-begun li-encoding of T ′

i , i ∈ [2]. Then by
Lemma 3, there exists a well-begun l-encoding φT of T with l = max{l1, l2}+1. Similarly,
if v is an (ǫ, 3)-split vertex, then from Definition 1, T \ {v} = T1 ⊎ T2 ⊎ T3 such that
|T1|, |T2|, |T3| 6 βn. Let T ′

i = Ti ∪ {v}, i ∈ [3]. Let φT ′

i
be a well-begun li-encoding

of T ′
i , i ∈ [3]. Then by Lemma 3, there exists a well-begun l-encoding φT of T with

l = max{l1, l2, l3}+ 2.
Therefore, the following recurrence relation holds.

C(n) 6 max{C(αn+ 1) + 1, C(βn+ 1) + 2}

C(3) 6 3 (2)

Solving the recurrence. Let X be an arbitrary leaf in the recurrence tree and let P

denote the path from the root to X. Let the number of (ǫ, 2)-split operations and (ǫ, 3)-
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split operations along P be k2 and k3 respectively. Let si be the size of the subgraph of
T to be conquered along P after i steps. Let γ1, . . . , γk, k = k2 + k3, be such that

γi =

{

α if the i-th divide operation along P is an (ǫ, 2)-split operation

β if the i-th divide operation along P is an (ǫ, 3)-split operation
(3)

Therefore, sk 6 (
∏k

j=1 γj)n+
∏k

j=2 γj+
∏k

j=3 γj+ . . .+
∏k

j=k γj+1. Since γi 6 α for all

i, 1 6 i 6 k, sk 6 (
∏k

j=1 γj)n+α
k−1+αk−2+ . . .+α+1 6 αk2βk3n+ 1

1−α
6 αk2βk3n+2.62.

Hence, sk 6 ⌊αk2+2k3n+2.62⌋. Note that k2+2k3 is the total cost of conquering (number
of coordinates introduced by the amalgamation operation) incurred along P . Since X is
arbitrary, C(n) 6 k2 + 2k3 + C(sk).

Let k2 + 2k3 > 1.441 log n. Then sk 6 3. Hence, C(n) 6 1.441 log n + C(3) 6

1.441 log n+ 3. Therefore, pdim(T ) 6 1.441 log n+ 3.

3 Product Dimension of Bounded Treewidth Graphs

Definition 3 (Definition 1, [4]). A tree decomposition of G is a pair ({Xi : i ∈ I}, T ),
where I is an index set, {Xi : i ∈ I} is a collection of subsets of V (G) and T is a tree
whose node set is I, such that the following conditions are satisfied:

1. ∪i∈IXi = V (G).

2. ∀{u, v} ∈ E(G), ∃i ∈ I such that u, v ∈ Xi.

3. ∀i, j, k ∈ I : if j is on a path in T from i to k, then Xi ∩Xk ⊂ Xj.

The width of a tree decomposition ({Xi : i ∈ I}, T ) is max{|Xi| : i ∈ I} − 1. The
treewidth of G, tw(G), is the minimum width over all tree decompositions of G.

Note that by a rooted tree we mean a tree with a vertex designated as the root vertex.

Definition 4 (Definition 2, [4]). A normalized tree decomposition of a graph G is a triple
({Xi : i ∈ I}, r ∈ I, T ) where ({Xi : i ∈ I}, T ) is a tree decomposition of G that
additionally satisfies the following two properties:

4. It is a rooted tree where the subset Xr that corresponds to the root node r contains
exactly one vertex.

5. For any node i, if i′ is the child of i, then |Xi′ △Xi| = 1 where, Xi′ △Xi denoted
the symmetric difference of Xi′ and Xi.

Lemma 5 (Lemma 3, [4]). For any graph G there is a normalized tree decomposition with
width equal to tw(G).
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Lemma 6 (Splitting Lemma for Bounded Treewidth Graphs). Let G be a graph on n
vertices with tw(G) = t and a normalized tree decomposition ({Xi : i ∈ I}, r ∈ I, T ) of
width t. Then there exists l ∈ I such that G\Xl = G1⊎G2⊎G3 and |Gi| 6

1
2
(n−|Xl|+1),

i ∈ [3], where G1, G2 and G3 are subgraphs of G.

Proof. For every i, let D1(i), . . . , Dt(i) be the components of T \ {i} and let Cl(i), j ∈ [t],
be the graphs induced by (∪j∈V (Dl(i))Xj) \ Xi. Without loss of generality assume that
|C1(i)| > · · · > |Ct(i)|.

Let c = min{|C1(j)| : j ∈ I} and I ′ = {j ∈ I : |C1(j)| = c}. Then choose l ∈ I ′ such
that |Xl| = min{|Xj| : j ∈ I ′}. We claim that, |C1(l)| 6

1
2
(n− |Xl| + 1). For the sake of

contradiction, assume that |C1(l)| >
1
2
(n− |Xl|+ 1). Let m ∈ NT (l)∩D1(l). Then, since

T is a normalized tree decomposition |Xm △Xl| = 1, therefore, the following two cases
arise.

Case 1 (Xm = Xl ∪ {v} where v ∈ V (G)).

If D1(m) ⊂ D1(l), then |C1(m)| < |C1(l)| because C1(m) = C1(l) \ {v}. Otherwise,
D1(m) = T \ D1(l) in which case |C1(m)| = |G \ (C1(l) ∪ Xl)| = n − |C1(l)| − |Xl| <
n− 1

2
(n− |Xl| + 1) − |Xl| =

1
2
(n− |Xl| − 1) < |C1(l)|. In either case, |C1(m)| < |C1(l)|,

contradicting the choice of l.

Case 2 (Xm = Xl \ {v} where v ∈ V (G)).

If D1(m) ⊂ D1(l), then |C1(m)| 6 |C1(l)|. If |C1(m)| < |C1(l)|, then |C1(m)| is not the
minimum amongst all |C1(j)|, j ∈ I and if |C1(m)| = |C1(l)| then, since |Xm| < |Xl|, the
choice of l is contradicted. On the other hand, if D1(m) = T \ D1(l), then |C1(m)| =
|G \ (C1(l)∪Xm)| = n− |C1(l)| − |Xm| < n− 1

2
(n− |Xl|+1)− |Xl|+1 = 1

2
(n− |Xl|+1)

again contradicting the choice of l.

Hence C1(l) 6
1
2
(n − |Xl| + 1) i.e., G \ Xl = C1(l) ⊎ · · · ⊎ Ct(l) such that |Cj(l)| 6

1
2
(n− |Xl|+ 1) for all j ∈ [t].
Consider a partition I1⊎· · ·⊎Ir = [t] with minimum possible r such that |∪j∈IiCj(l)| 6

1
2
(n − |Xl| + 1) for all i ∈ [r]. Let ∪j∈IiCj(l) = Hi for all i ∈ [r]. Rename all Hi’s such

that |H1| > · · · > |Hr|. We claim that for such a partition r 6 3 because if r > 4 then
| ∪r

j=⌈ r
2
⌉+1 Hj| 6

1
2
(n − |Xl|) by the pigeonhole principle contradicting the choice of the

partition I1 ⊎ · · · ⊎ Ir. Set Gi = Hi for i ∈ [3] and we are done.

Lemma 7 (Amalgamation Lemma for General Graphs). Let G = G1 ∪ G2 ∪ G3 where
G1, G2 and G3 are graphs such that Gi ∩ Gj = S for all i, j ∈ [3] and i 6= j. Let G′

1, G
′
2

and G′
3 be graphs such that V (G′

i) = V (Gi) and E(G
′
i) = E(Gi) ∪ {{v, v′} : v, v′ ∈ V (S)}

for all i ∈ [3]. Let φG′

i
be an li-encoding of G′

i for all i ∈ [3] and φS be an ls-encoding of
S. Then we can construct an l-encoding of G, where

l =

{

max{l1, l2, l3}+max{χ(G \ S) + 1, ls} if χ(G \ S) = 2 or 6

max{l1, l2, l3}+max{χ(G \ S), ls} otherwise
(4)
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G1

G2

G3S

Figure 3: A graph G = ∪3
i=1Gi where Gi ∩Gj = S for all i, j ∈ [3] and i 6= j

Proof. Without loss of generality we can assume that the alphabets used in φS are disjoint
from the alphabets used in φG′

i
for all i ∈ [3] and greater than χ(G), and also from

Observation 2, let l1 = l2 = l3 = max{l1, l2, l3}. Let V (G) = {v0, . . . , vn−1}, f : V (G) →
{0, . . . , n − 1} be a bijection, and fi = f(vi). Let us rename the alphabets in each
coordinate of φG′

i
such that all vj ∈ V (S) get the encoding as (fj, . . . , fj) for all i ∈ [3].

Let c : V (G \S) → {0, . . . , χ(G \S)− 1} be an optimal proper coloring of the vertices
V (G \ S).

Let

t =

{

χ(G \ S) + 1 if χ(G \ S) = 2 or 6

χ(G \ S) otherwise
(5)

By Theorem 4.3 in [9], if we have two orthogonal Latin squares of order t, we can have
a t-encoding for 3Kt and hence, for 3Kχ(G\S) as well. Let the j-th vertex in the i-th copy
of 3Kχ(G\S) get the encoding φK(i, j) for all i ∈ [3] and j ∈ [χ(G \S)]. Note that φK(i, j)
and φK(i, j

′), j 6= j′ disagree at all coordinates and φK(i, j) and φK(i
′, j′), i 6= i′, agree

in at least one coordinate, for all i, i′ ∈ [3] and j, j′ ∈ [χ(G \ S)]. Let m = max{t, ls}.
From Observation 2, let φS and φK(i, j) be m-encodings of S and 3Kχ(G\S) respectively.
We construct an l-encoding of G, φG, is as follows.

φG(x) =

{

φG′

i
(x)φK(i, c(x)) if x ∈ Gi \ S

φG′

1
(x)φS(x) x ∈ S

(6)

We can verify that φG is a valid encoding of G from the following argument. Let x, y ∈
V (Gi \ S). If {x, y} 6∈ E(G), then {x, y} 6∈ E(G′

i). Therefore, φG′

i
(x) and φG′

i
(y) agree

in some coordinate, say g and thus, φG(x) and φG(y) also agree in the g-th coordinate.
If {x, y} ∈ E(G), then {x, y} ∈ E(G′

i). Hence, φG′

i
(x) and φG′

i
(y) do not agree in any

coordinate and since, c is a proper coloring of G \ S, c(x) 6= c(y). Thus, φK(i, c(x)) and
φK(i, c(y)) do not agree in any coordinate. Therefore, φG(x) and φG(y) do not agree in
any coordinate.
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Let x ∈ V (Gi \ S) and y ∈ V (Gi′ \ S), i 6= i′. Note that {x, y} 6∈ E(G). Since
φK(i, c(x)) and φK(i

′, c(y)), i 6= i′ agree in some coordinate, say g, φG(x) and φG(y) will
agree in the (l1 + g)-th coordinate.

For any i, let x ∈ V (Gi \ S) and y ∈ V (S). Since φS(y) uses new alphabets greater
than χG, φG(x) and φG(y) agree in some coordinate if and only if φG′

i
(x) and φG′

1
(y)

(= φG′

i
(y)) agree in some coordinate.

For x, y ∈ V (S), if {x, y} ∈ E(G), then since φG′

1
(x) = (f(x), . . . , f(x)), φG′

1
(y) =

(f(y), . . . , f(y)) where f is a bijection and φS(x) and φS(y) disagree in all coordinates,
φG(x) and φG(y) disagree in all coordinates. If {x, y} 6∈ E(G), then {x, y} 6∈ E(S), Thus,
φS(x) and φS(y) agree in some coordinate, say g and therefore, φG(x) and φG(y) agree in
the (l1 + g)-th coordinate.

Theorem 8. For any graph G on n vertices and tw(G) = t, pdim(G) 6 (t+2)(log n+1).

Proof. We use a divide and conquer strategy to prove the theorem. Let Gt(n) denote the
set of all n-vertex graphs with treewidth at most t and let Ct(n) = max{pdim(G) : G ∈
Gt(n)}.

Base case. By Theorem 4.3 in [13], Ct(t+ 3) = t+ 2.

Divide and conquer. In our divide and conquer strategy, the divide operation corresponds
to the splitting operation of Lemma 6 and the conquer operation corresponds to the
amalgamation operation of Lemma 7.

By Lemma 6, for a graph G on n vertices with tw(G) = t and a normalized tree
decomposition ({Xi : i ∈ I}, r ∈ I, T ) of width t, there exists l ∈ I such that G \ Xl =
G1⊎G2⊎G3, |Gi| 6

1
2
(n−|Xl|+1), i ∈ [3]. Let G′

i = Gi∪G[Xl] for all i ∈ [3]. Therefore,

|G′
i| 6

1
2
(n− |Xl| + 1) + |Xl| =

1
2
(n + |Xl| + 1) for all i ∈ [3]. Let α = 1

2
and β = |Xl|+1

2
.

Hence, |G′
i| 6 αn+ β for all i ∈ [3].

Let S = G[Xl].Note that G
′
i∩G

′
j = S for all i, j ∈ [3] and i 6= j, and G = G′

1∪G
′
2∪G

′
3.

Let G
′′

1 , G
′′

2 , G
′′

3 be graphs such that V (G
′′

i ) = V (G′
i) and E(G

′′

i ) = E(G′
i)∪{{v, v

′} : v, v′ ∈
V (S)} for all i ∈ [3] (note that |G

′′

i | 6 αn + β, i ∈ [3]). Let φ
G

′′

i
is an li-encoding of G

′′

i

for all i ∈ [3] and φS be an ls-encoding of S. Then, by Lemma 7, we can construct an
l-encoding of G where

l =

{

max{l1, l2, l3}+max{χ(G \ S) + 1, ls} if χ(G \ S) = 2 or 6

max{l1, l2, l3}+max{χ(G \ S), ls} otherwise.
(7)

Since G is a graph with tw(G) = t, χ(G) 6 t+1(Theorem 6, [14]), and hence χ(G \S) 6
t+ 1. Also, since |V (S)| 6 t+ 1, by Theorem 4.3 [13], ls 6 t+ 1. Therefore,

l 6

{

max{l1, l2, l3}+max{t+ 2, t+ 1} if χ(G \ S) = 2 or 6

max{l1, l2, l3}+max{t+ 1, t+ 1} otherwise

Hence,

l 6 max{l1, l2, l3}+ t+ 2 (8)
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Let G′ be the graph such that V (G′) = V (G) and E(G′) = E(G) ∪ {{v, v′} : v, v′ ∈
V (S)}. Note that ({Xi : i ∈ I}, r ∈ I, T ) is a tree decomposition for G′ too since all
the new edges added are between the vertices of the same node. Also since G ⊂ G′,
tw(G) 6 tw(G′). Hence, tw(G′) = t and thus, tw(G

′′

i ) 6 t (since G
′′

i ⊂ G′) for all i ∈ [3].
Therefore, the following recurrence relation holds.

Ct(n) 6 Ct(αn+ β) + t+ 2

Ct(t+ 3) 6 t+ 2 (9)

Solving the recurrence. Let X be an arbitrary leaf in the recurrence tree and let P denote
the path from root to X. Let the number of divide operations along P be d. Let sj be
the size of the subgraph of G to be conquered along P after j steps.

Therefore, sd 6 αdn+ αd−1β + αd−2β + · · ·+ αβ + β 6 αdn+ β

1−α
= αdn+ |Xl|+ 1 6

αdn + t + 2 (since |Xl| 6 t + 1). Hence, sd 6 ⌊αdn + t + 2⌋. Note that the total cost of
conquering incurred along P is (t+ 2)d.

Let d > log n. Then sd 6 t+3. Hence, Ct(n) 6 (t+2) log n+Ct(t+3) 6 (t+2) log n+
t+ 2 = (t+ 2)(log n+ 1). Therefore, pdim(G) 6 (t+ 2)(log n+ 1).

4 Product Dimension of k-degenerate Graphs

A graph G is called k-degenerate if there exists an ordering v1, . . . , vn of V (G) such that
|N(vi) ∩ {vj : j < i}| 6 k, ∀i ∈ [n]. Under an ordering v1, . . . , vn of V (G), the set
NG(vi) ∩ {vj : j < i} is called the set of backward neighbors of vi.

Theorem 9. For every k-degenerate graph G, pdim(G) 6 ⌈5.545k log n⌉+ 1.

Proof. Recall that the product dimension of a graph G is the minimum number of proper
colorings of G such that any pair of non-adjacent vertices get the same color in at least
one of the colorings and not in all of them.

We use probabilistic arguments to prove the theorem. Let us describe a random
coloring procedure using 3k colors for the vertices of G. Let C = [3k] be the set of colors.
Let v1, . . . , vn be an ordering of the vertex set of G such that |N(vi)∩{vj : j < i}| 6 k. We
color the vertices starting from v1 such that any vertex vi is assigned a color independently
and uniformly at random from the set C \ Ci, where Ci is the set of colors used by the
backward neighbors of vi. Note that 0 6 |Ci| 6 k. It is clear that the coloring thus
obtained is proper. Repeat this procedure independently r times to get r random proper
colorings of G.

For {vi, vj} 6∈ E(G), let us calculate the probability that both vi and vj get the same
color in a particular coloring. Let C ′ = C \ (Ci ∪ Cj). Then the probability p that both
vi and vj get the same color in a particular coloring is equal to the probability that vi
chooses a color from the set C ′ and vj chooses the same color as chosen by vi. Hence

p = |C′|
|C\Ci|

1
|C\Cj | >

3k−|Ci|−|Cj |
(3k−|Ci|)(3k−|Cj |) .
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Let f(x, y) = 3k−x−y

(3k−x)(3k−y)
for x, y ∈ [0, k] ⊂ R. Since ∂f(x,y)

∂x
, ∂f(x,y)

∂y
6 0 for all x, y ∈

[0, k], we infer that for any pair x, y ∈ [0, k], f(x, y) > f(x, k) > f(k, k) = 1/4k. Hence
p > 1/4k.

So the probability that vi and vj get different colors in a particular coloring 6 (1− 1
4k
)

and the probability that vi and vj get different colors in all the r colorings 6 (1− 1
4k
)r 6

e
−r
4k . Hence, the probability that some pair of non-adjacent vertices get different colors

in all the r colorings < n2e
−r
4k . If r > 8k lnn = 5.545k log n, n2e

−r
4k 6 1. Thus, if

r = ⌈5.545k log n⌉, then every pair of non-adjacent vertices in the graph gets the same
color in at least one of the r colorings described above. To ensure that no pair of vertices
get the same color in all colorings we also consider an (r+1)-th coloring where all vertices
get a unique color. Thus pdim(G) 6 ⌈5.545k log n⌉+ 1.
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