# Product Dimension of Forests and Bounded Treewidth Graphs

L. Sunil Chandran<sup>1</sup> Rogers Mathew<sup>\*2</sup> Deepak Rajendra<br/>prasad<sup>†1</sup> Roohani Sharma<sup>1</sup>

<sup>1</sup> Department of Computer Science and Automation Indian Institute of Science Bangalore, India, 560012 {sunil, deepakr}@csa.iisc.ernet.in, roohani.sharma900gmail.com

<sup>2</sup> Department of Mathematics and Statistics Dalhousie University, Halifax, Canada – B3H 3J5 rogersm@mathstat.dal.ca

Submitted: Sep 10, 2012; Accepted: Sep 6, 2013; Published: Sep 20, 2013 Mathematics Subject Classifications: 05C05, 05C62

#### Abstract

The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has product dimension at most 1.441 log n + 3. This improves the best known upper bound of  $3 \log n$  for the same due to Poljak and Pultr. The technique used in arriving at the above bound is extended and combined with a well-known result on the existence of orthogonal Latin squares to show that every graph on n vertices with treewidth at most t has product dimension at most  $(t+2)(\log n+1)$ . We also show that every k-degenerate graph on n vertices has product dimension at most  $[5.545k \log n] + 1$ . This improves the upper bound of  $32k \log n$  for the same by Eaton and Rödl.

**Keywords:** product dimension, representation number, forest, bounded treewidth graph, k-degenerate graph, orthogonal Latin squares.

<sup>\*</sup>Supported by an AARMS Postdoctoral Fellowship †Supported by Microsoft Research India PhD Fellowship

## 1 Introduction

For a graph G(V, E) and an  $l \in \mathbb{N}$ , a function  $\phi_G : V \to \mathbb{N}^l$  is called an *l*-encoding of G if

- 1.  $\phi_G$  is an injection, and
- 2.  $\forall u, v \in V, \{u, v\} \in E$  iff  $\phi_G(u)$  and  $\phi_G(v)$  differ in all *l* coordinates.

The minimum l such that an l-encoding of G exists is called the *product dimension* of G and is denoted by pdim(G). Some authors refer to it as the *Prague dimension* [10].

The product dimension of a graph G was first defined in [15] by Nešetřil and Rödl as the minimum l such that G is an induced subgraph of a direct product (see Section 1.2) of l complete graphs. It is easy to see that the two definitions of product dimension are equivalent. Another equivalent definition of the product dimension of a graph is as the minimum number of proper colorings of G such that any pair of non-adjacent vertices get the same color in at least one of the colorings and not in all of them.

The concept of product dimension of a graph was first used to prove the Galvin-Ramsey property of the class of all finite graphs [15]. Thereafter, this area was separately explored by various people. In 1980, Lovász, Nešetřil and Pultr showed that the product dimension of a path on n+1 vertices (length n) is  $\lceil \log n \rceil \rceil$  [13]. They also gave a lower bound for the product dimension of a graph (Theorem 5.3 [13]) which in particular tells that the product dimension of a tree on n vertices with l leaves is at least  $\log(n-l+1)$ . The authors also suggested that the idea used to encode paths could be extended to study the product dimension of trees. Immediately after this paper, Poljak and Pultr in [16] came up with bounds on product dimension of trees using the encoding for paths employed in [13]. The results in this paper are  $pdim(T) \leq 3 \lceil \log |T| \rceil$  and  $\log |m(T)| - 1 \leq 1 \leq n \leq 2$  $pdim(T) \leq 3 \lceil \log |m(T)| \rceil + 1$  where, T is a forest and m(T) is the graph obtained from T by recursively deleting a leaf vertex with one or more siblings. In this paper we improve the above upper bound to  $1.441 \log |T| + 3$ . More recently, in 2010, Ida Kantor in her doctoral thesis [11] determines another upper bound on the product dimension of trees viz.  $2 + \lceil \log \delta_r \rceil + \sum_{i \in S, 2 \leq i < r} \lceil \log \delta_i \rceil + \sum_{i \notin S, 3 \leq i < r} \lceil \log(\delta_i - 1) \rceil$ , where r is the radius of the tree, x is a central vertex,  $\delta_i$  is the maximum degree among all vertices which are at a distance r-i from x and  $S = \{2^i : i \in \mathbb{N}\}$ . The technique used is a generalization of the technique used by Lovász, Nešetřil and Pultr in [13] for paths.

The product dimension of graphs obtained by amalgamation of smaller graphs was studied in [1]. The idea of using orthogonal Latin squares to encode a disjoint union of complete graphs is given by Evans, Isaak and Narayan in [9]. This idea is the motivation for our Amalgamation Lemma for General Graphs (Lemma 7) which is a key ingredient for showing that the product dimension of a graph on n vertices with treewidth at most tis at most  $(t+2)(\log n+1)$ . Orthogonal Latin squares have been known for a long time. In the 1780s Euler demonstrated methods for constructing orthogonal Latin squares of order t where t is odd or a multiple of 4 and later conjectured that orthogonal Latin squares of order  $t \equiv 2 \mod 4$  do not exist. In 1960, Parker, Bose, and Shrikhande in [3] disproved Euler's conjecture for all  $t \ge 10$ . Thus, orthogonal Latin squares exist for all orders  $t \ge 3$  except t = 6. We use this result to prove Lemma 7. A parameter closely related to product dimension of a graph G is the equivalence number of the complement of the graph G,  $\overline{G}$ . An equivalence is a vertex disjoint union of cliques and the equivalence number of a graph H is the minimum number of equivalences required to cover the edges of H. In [2], Alon came up with bounds on the equivalence number of a graph showing  $\log n - \log d \leq eq(\overline{G}) \leq 2e^2(d+1)^2 \ln n$ , where G is a graph on n vertices with maximum degree d. It is easy to see that  $pdim(G) \leq eq(\overline{G}) + 1$  ([5]). Eaton and Rödl in [6] proved that  $pdim(G) \leq 32k \log n$  for a k-degenerate graph G on n vertices. Since degeneracy of a graph is at most its maximum degree, this result is a significant improvement over Alon's result. We use a probabilistic method to further improve this upper bound to  $[5.545k \log n] + 1$ .

The product dimension of a graph is closely related to the representation number of a graph - a concept introduced by Erdös in [7]. A graph G is representable modulo r if there exists an injection  $f : V(G) \to \{0, \ldots, r-1\}$  such that for all  $u, v \in V(G)$ , gcd(f(u), f(v)) = 1 if and only if  $\{u, v\} \in E(G)$ . The minimum r modulo which G is representable is called the representation number of G. The relationship between the two concepts viz. the product dimension of a graph and representation number of a graph is described in [8].

### **1.1 Summary of Results**

1. For any forest T on n vertices,  $pdim(T) \leq 1.441 \log n + 3$  (Theorem 4).

This is an improvement over the upper bound for product dimension of trees and forests given by Poljak and Pultr in [16] viz.  $3\lceil \log n \rceil$ . We use a technique of divide and conquer to prove the theorem. The divide operation corresponds to the operation described in our *Splitting Lemma for Forests* (Lemma 1) while the conquer operation corresponds to our *Amalgamation Lemma for Bipartite Graphs* (Lemma 3).

2. For any graph G on n vertices and treewidth t,  $pdim(G) \leq (t+2)(\log n+1)$  (Theorem 8).

The techniques used to prove Theorem 4 for trees inspired us to work for graphs with bounded treewidth. Another key ingredient in proving this theorem is the *Amalgamation Lemma for General Graphs* (Lemma 7) which is based on the existence of orthogonal Latin squares of different orders. Since treewidth t graphs are t-degenerate (Section 4.2, [12]), it follows from an upper bound on product dimension based on degeneracy of a graph [6] that  $pdim(G) \leq 32t \log n$ . Our result is an improvement over that.

3. For every k-degenerate graph G on n vertices,  $pdim(G) \leq \lceil 5.545k \log n \rceil + 1$  (Theorem 9).

We derive this result as an improvement over Eaton's and Rödl's upper bound of  $32k \log n$  for product dimension of k-degenerate graphs [6]. We use a probabilistic

argument to prove the theorem and we believe that our proof is shorter.

### **1.2** Notations and Definitions

In this paper we consider only undirected, simple, finite graphs. For any graph G, V(G) denotes its vertex set and E(G) denotes its edge set. The *cardinality* of a set S is denoted by |S|. For a graph G, |G| denotes the cardinality of V(G).  $N_G(u)$  denotes the open neighborhood of vertex u in G, i.e. all the vertices adjacent to u in G. The *degree* of a vertex u, denoted by d(u) is |N(u)|.

A subgraph H of G is a graph with vertex set  $V(H) \subset V(G)$  and edge set  $E(H) \subset E(G) \cap \{\{v, v'\} : v, v' \in V(H)\}$ . If H is a subgraph of G then G is called the supergraph of H.

For a graph G, the graph induced by a set  $X \subset V(G)$ , denoted by G[X], is the graph with V(G[X]) = X and  $E(G[X]) = E(G) \cap \{\{v, v'\} : v, v' \in X\}.$ 

If  $G_1$  and  $G_2$  are two graphs, then  $G_1 \setminus G_2$  is the graph  $G_1[V(G_1) \setminus V(G_2)]$ . If G is a graph and  $S \subset V(G)$ , then  $G \setminus S$  is the graph  $G[V(G) \setminus S]$ . The union of two graphs  $G_1$  and  $G_2$ , denoted by  $G_1 \cup G_2$ , is the graph with  $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$  and  $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$ . Moreover, if  $V(G_1) \cap V(G_2) = \emptyset$ , then we call it a *disjoint* union and denote it as  $G_1 \uplus G_2$ . The intersection of two graphs  $G_1$  and  $G_2$  is the graph  $G_1 \cap G_2$  with  $V(G_1 \cap G_2) = V(G_1) \cap V(G_2)$  and  $E(G_1 \cap G_2) = E(G_1) \cap E(G_2)$ .

The graph  $G_1 \times G_2$  is the *direct product* of two graphs  $G_1$  and  $G_2$  with  $V(G_1 \times G_2) = V(G_1) \times V(G_2)$  and  $E(G_1 \times G_2) = \{\{u, v\} : u, v \in V(G_1) \times V(G_2) \text{ and if } u = (x_1, x_2), v = (y_1, y_2), \text{ then } \{x_1, y_1\} \in E(G_1) \text{ and } \{x_2, y_2\} \in E(G_2)\}.$ 

Let [n] denote the set  $\{1, \ldots, n\}$ . The set of all natural numbers is denoted by  $\mathbb{N}$ .  $\{a\}^k$  denotes the k-tuple  $(a, \ldots, a)$ . Throughout the paper,  $\log n$  denotes  $\log_2 n$  and  $\ln n$  denotes  $\log_e n$ .

### 2 Product Dimension of Forests

**Definition 1** (Split vertex). In a forest F on n vertices, a vertex v is called

1. an  $(\epsilon, 2)$ -split vertex if  $F \setminus \{v\} = F_1 \uplus F_2$  such that  $|F_1|, |F_2| \leq (\frac{1}{2} + \epsilon)n$ , and

2. an  $(\epsilon, 3)$ -split vertex if  $F \setminus \{v\} = F_1 \uplus F_2 \uplus F_3$  such that  $|F_1|, |F_2|, |F_3| \leqslant (\frac{1}{2} - \epsilon)n$ ,

where  $F_1, F_2$  and  $F_3$  are subgraphs of F.

**Lemma 1** (Splitting Lemma for Forests). In every forest F, for every  $\epsilon \ge 0$ , there exists either an  $(\epsilon, 2)$ -split vertex or an  $(\epsilon, 3)$ -split vertex.

*Proof.* Let T be a tree such that V(T) = V(F) and T is a supergraph of F. It is easy to see that if  $v \in V(T)$  is an  $(\epsilon, 2)$ -split vertex of T with  $T \setminus \{v\} = T_1 \uplus T_2$  and  $|T_1|, |T_2| \leq (\frac{1}{2} + \epsilon)n$  then v is also an  $(\epsilon, 2)$ -split vertex of F with  $F \setminus \{v\} = F_1 \uplus F_2, |F_1|, |F_2| \leq (\frac{1}{2} + \epsilon)n$  where each  $F_i$  is a subgraph of  $T_i$ . Similarly any  $(\epsilon, 3)$ -split vertex of T is also an  $(\epsilon, 3)$ -split

vertex of F. Hence it suffices to show that either an  $(\epsilon, 2)$ -split vertex or an  $(\epsilon, 3)$ -split vertex exists in the tree T.

Let n = |T|. For any  $v \in V(T)$ , let  $C_1(v), \ldots, C_m(v)$  denote the (connected) components of  $T \setminus \{v\}$  such that  $|C_1(v)| \ge \cdots \ge |C_m(v)|$ . Choose  $v \in V(T)$  such that  $|C_1(v)| = \min\{|C_1(u)| : u \in V(T)\}$ . First we claim that  $|C_1(v)| \le (\frac{1}{2} + \epsilon)n$ . For the sake of contradiction, let us assume that  $|C_1(v)| > (\frac{1}{2} + \epsilon)n$ . Let  $w \in C_1(v) \cap N_T(v)$ . If  $C_1(w) \subset C_1(v)$ , then  $|C_1(w)| < |C_1(v)|$  (because  $C_1(w) \subset C_1(v) \setminus \{v\}$ ) contradicting the choice of v. Hence,  $C_1(w) \subset T \setminus C_1(v)$  and  $|C_1(w)| \le n - |C_1(v)| < (\frac{1}{2} - \epsilon)n < |C_1(v)|$ . This again contradicts the choice of v.

If  $|C_1(v)| > (\frac{1}{2} - \epsilon)n$ , then v is an  $(\epsilon, 2)$ -split vertex and  $T_1 = C_1(v), T_2 = T \setminus (T_1 \cup \{v\})$ . Otherwise, let  $Q_1 = C_1(v), \ldots, Q_m = C_m(v)$ . Hence,  $|Q_i| \leq (\frac{1}{2} - \epsilon)n$  for all  $i \in [m]$ . If  $m \leq 3$ , then v is either an  $(\epsilon, 3)$ -split vertex or an  $(\epsilon, 2)$ -split vertex with  $T_i = Q_i$ . If  $m \geq 4$ , consider a partition  $I_1 \boxplus \ldots \boxplus I_k = [m]$  with minimum possible k such that  $|\bigcup_{j \in I_l} Q_j| \leq (\frac{1}{2} - \epsilon)n$  for all  $l \in [k]$ . For  $k \leq 3$ , v is either an  $(\epsilon, 2)$ -split vertex or an  $(\epsilon, 3)$ -split vertex with  $T_l = \bigcup_{j \in I_l} Q_j$ . Suppose  $k \geq 4$ , define  $Q'_l = \bigcup_{j \in I_l} Q_j$ ,  $l \in [k]$  and let Q' be the union of smallest two among  $\{Q'_1, \ldots, Q'_k\}$ . Hence,  $|Q'| \leq \frac{n}{2} \leq (\frac{1}{2} + \epsilon)n$  by the pigeonhole principle. By the minimality in the choice of the partition  $I_1 \boxplus \ldots \boxplus I_k$ ,  $|Q'| > (\frac{1}{2} - \epsilon)n$ . Thus, v is an  $(\epsilon, 2)$ -split vertex with  $T_1 = Q'$  and  $T_2 = T \setminus (Q' \cup \{v\})$ .  $\Box$ 

**Definition 2.** We call an *l*-encoding  $\phi_G$  of a graph *G*, a well-begun *l*-encoding if the first coordinate of  $\phi_G$  is from  $\{0, \ldots, \chi(G) - 1\}$ .

**Observation 2.** For any q > p, if  $\phi_G$  is a *p*-encoding of *G*, then  $\psi_G$ , obtained from  $\phi_G$  by adding q - p coordinates to  $\phi_G$  such that for all  $p < i \leq q$ , the *i*-th coordinate of  $\psi_G(x)$  is the *p*-th coordinate of  $\phi_G$ , is a *q*-encoding of *G*.

**Lemma 3** (Amalgamation Lemma for Bipartite Graphs). Let  $G_0, \ldots, G_{k-1}$  be bipartite graphs such that  $G_i \cap G_j = \{g\}$  for all  $i, j \in \{0, \ldots, k-1\}, i \neq j$ . Let  $G = \bigcup_{i=0}^{k-1} G_i$ . For every  $i \in \{0, \ldots, k-1\}$ , let  $\phi_{G_i}$  be a well-begun  $l_i$ -encoding of  $G_i$ . Then we can construct a well-begun l-encoding  $\phi_G$  of G, where  $l = \max_{0 \leq i \leq k-1} \{l_i\} + \lceil \log k \rceil$ .

Proof. From Observation 2, without loss of generality we can assume that  $l_0 = \cdots = l_{k-1} = \max_i \{l_i\}$ . Since we can rename the alphabets used in each coordinate of an encoding independently of the other coordinates, it is safe to assume that the vertex g gets the encoding  $\{0\}^{l_0}$  in every  $\phi_{G_i}$ . For all  $0 \leq i \leq k-1$ , let  $b_0(i)$  denote the binary representation of i using exactly  $\lceil \log k \rceil$  bits and  $b_1(i)$  denote the bitwise complement of  $b_0(i)$ . The *l*-encoding  $\phi_G$  of G is as follows.

For all  $i, 0 \leq i \leq k-1$ , for every  $x \in V(G_i \setminus \{g\})$ 

$$\phi_G(x) = \begin{cases} \phi_{G_i}(x)b_0(i) & \text{if } \phi_{G_i}(x) \text{ begins with } 0\\ \phi_{G_i}(x)b_1(i) & \text{if } \phi_{G_i}(x) \text{ begins with } 1 \end{cases}$$

$$\phi_G(g) = \{0\}^{l_0}\{2\}^{\lceil \log k \rceil}$$
(1)

We can verify that  $\phi_G$  is a valid *l*-encoding of G from the following argument.



Figure 1: A graph  $G = \bigcup_{i=0}^{k-1} G_i$  where  $G_i \cap G_j = \{g\}$  for all  $i, j \in \{0, \dots, k-1\}, i \neq j$ .

Let  $x, y \in V(G_i \setminus \{g\})$ . If  $\{x, y\} \in E(G_i)$  then the first coordinates of  $\phi_{G_i}(x)$  and  $\phi_{G_i}(y)$  are different. Thus, the extra coordinates added to  $\phi_{G_i}(x)$  and  $\phi_{G_i}(y)$  to get  $\phi_G(x)$  and  $\phi_G(y)$  are complements of each other (by Equation (1)). If  $\{x, y\} \notin E(G_i)$ , then  $\phi_{G_i}(x)$  and  $\phi_{G_i}(y)$  agreed in some coordinate, say t. Hence,  $\phi_G(x)$  and  $\phi_G(y)$  also agree in the t-th coordinate.

Let  $x \in V(G_i \setminus \{g\})$  and  $y \in V(G_j \setminus \{g\})$  for some  $i, j \in \{0, \ldots, k-1\}, i \neq j$ . Note that, since  $G_i \cap G_j = \{g\}, \{x, y\} \notin E(G)$ . If  $\phi_{G_i}(x)$  and  $\phi_{G_i}(y)$  agree in the first coordinate then  $\phi_G(x)$  and  $\phi_G(y)$  also agree in the first coordinate. If  $\phi_{G_i}(x)$  begins with 0 and  $\phi_{G_i}(y)$  begins with 1, then  $\phi_G(x) = \phi_{G_i}(x)b_0(i)$  and  $\phi_G(y) = \phi_{G_j}(y)b_1(j)$ . Since  $i \neq j, b_0(i)$  and  $b_1(j)$  agree in some coordinate.

For any *i*, let  $x \in V(G_i \setminus \{g\})$ . If  $\{g, x\} \notin E(G_i)$ , then  $\phi_{G_i}(g)$  and  $\phi_{G_i}(x)$  agreed in some coordinate, say *t*. Hence,  $\phi_G(g)$  and  $\phi_G(x)$  also agree in the *t*-th coordinate. In the other case, that is, when  $\{g, x\} \in E(G_i)$ , since  $\phi_{G_0}(g)$  begins with 0,  $\phi_{G_i}(x)$  must begin with 1. Thus, the extra coordinates added to  $\phi_{G_i(x)}$  to get  $\phi_G(x)$  are  $b_1(i)$  while the extra coordinates added to  $\phi_{G_0}(g)$  to get  $\phi_G(g)$  are  $\{2\}^{\lceil \log k \rceil}$ . Therefore,  $\phi_G(x)$  and  $\phi_G(g)$ disagree in all coordinates.

It is easy to see from Equation 1 that  $\phi(G)$  is well-begun.

**Theorem 4.** For any forest T on n vertices,  $pdim(T) \leq 1.441 \log n + 3$ .

*Proof.* Let  $V(T) = \{v_0, \ldots, v_{n-1}\}, f: V(T) \longrightarrow \{0, 1, \ldots, n-1\}$  be a bijection, and  $f_i = f(v_i)$ . We use a divide and conquer strategy to prove the theorem. Let C(T) denote the minimum l such that there exists a *well-begun l*-encoding of T. Let  $C(n) = \max\{C(T): T \text{ is a forest on at most n vertices}\}.$ 

Base Case. All possible forests with  $|V(T)| \leq 3$  with their well-begun 3-encodings are shown in Figure 2. Thus,  $C(3) \leq 3$ .

Note that the third coordinate of each of the encodings is always a unique number associated with the vertex. This ensures injectivity of all the encodings that we get during the conquer steps.



Figure 2: Well-begun 3-encodings of the six forests with at most 3 vertices. Each row depicts a single forest and dotted lines are non-edges.

Divide and Conquer. In our divide and conquer strategy, the divide operation corresponds to the two splitting operations of Lemma 1 viz.  $(\epsilon, 2)$ -splitting and  $(\epsilon, 3)$ -splitting and the conquer operation corresponds to the amalgamation operation of Lemma 3.

Choose  $\epsilon = \frac{\sqrt{5}}{2} - 1$ . Let  $\alpha = \frac{1}{2} + \epsilon$  and  $\beta = \frac{1}{2} - \epsilon$ . Note that  $\alpha^2 = \beta$ . By Lemma 1, there exists either an  $(\epsilon, 2)$ -split vertex or an  $(\epsilon, 3)$ -split vertex, say  $v \in V(T)$ . If v is an  $(\epsilon, 2)$ -split vertex, then from Definition 1,  $T \setminus \{v\} = T_1 \uplus T_2$  such that  $|T_1|, |T_2| \leq \alpha n$ . Let  $T'_i = T_i \cup \{v\}, i \in [2]$ . Let  $\phi_{T'_i}$  be a well-begun  $l_i$ -encoding of  $T'_i, i \in [2]$ . Then by Lemma 3, there exists a well-begun l-encoding  $\phi_T$  of T with  $l = max\{l_1, l_2\} + 1$ . Similarly, if v is an  $(\epsilon, 3)$ -split vertex, then from Definition 1,  $T \setminus \{v\} = T_1 \uplus T_2 \uplus T_3$  such that  $|T_1|, |T_2|, |T_3| \leq \beta n$ . Let  $T'_i = T_i \cup \{v\}, i \in [3]$ . Let  $\phi_{T'_i}$  be a well-begun  $l_i$ -encoding of  $T'_i, i \in [3]$ . Then by Lemma 3, there exists a well-begun 3, there exists a well-begun 4 is a subscripted begun 4

Therefore, the following recurrence relation holds.

$$C(n) \leq \max\{C(\alpha n + 1) + 1, C(\beta n + 1) + 2\}$$
  

$$C(3) \leq 3$$
(2)

Solving the recurrence. Let X be an arbitrary leaf in the recurrence tree and let P denote the path from the root to X. Let the number of  $(\epsilon, 2)$ -split operations and  $(\epsilon, 3)$ -

split operations along P be  $k_2$  and  $k_3$  respectively. Let  $s_i$  be the size of the subgraph of T to be conquered along P after i steps. Let  $\gamma_1, \ldots, \gamma_k, k = k_2 + k_3$ , be such that

$$\gamma_i = \begin{cases} \alpha & \text{if the } i\text{-th divide operation along } P \text{ is an } (\epsilon, 2)\text{-split operation} \\ \beta & \text{if the } i\text{-th divide operation along } P \text{ is an } (\epsilon, 3)\text{-split operation} \end{cases}$$
(3)

Therefore,  $s_k \leq (\prod_{j=1}^k \gamma_j)n + \prod_{j=2}^k \gamma_j + \prod_{j=3}^k \gamma_j + \ldots + \prod_{j=k}^k \gamma_j + 1$ . Since  $\gamma_i \leq \alpha$  for all  $i, 1 \leq i \leq k, s_k \leq (\prod_{j=1}^k \gamma_j)n + \alpha^{k-1} + \alpha^{k-2} + \ldots + \alpha + 1 \leq \alpha^{k_2}\beta^{k_3}n + \frac{1}{1-\alpha} \leq \alpha^{k_2}\beta^{k_3}n + 2.62$ . Hence,  $s_k \leq \lfloor \alpha^{k_2+2k_3}n + 2.62 \rfloor$ . Note that  $k_2 + 2k_3$  is the total cost of conquering (number of coordinates introduced by the amalgamation operation) incurred along P. Since X is arbitrary,  $C(n) \leq k_2 + 2k_3 + C(s_k)$ .

Let  $k_2 + 2k_3 \ge 1.441 \log n$ . Then  $s_k \le 3$ . Hence,  $C(n) \le 1.441 \log n + C(3) \le 1.441 \log n + 3$ . Therefore,  $pdim(T) \le 1.441 \log n + 3$ .

### **3** Product Dimension of Bounded Treewidth Graphs

**Definition 3** (Definition 1, [4]). A tree decomposition of G is a pair  $({X_i : i \in I}, T)$ , where I is an index set,  ${X_i : i \in I}$  is a collection of subsets of V(G) and T is a tree whose node set is I, such that the following conditions are satisfied:

- 1.  $\cup_{i \in I} X_i = V(G).$
- 2.  $\forall \{u, v\} \in E(G), \exists i \in I \text{ such that } u, v \in X_i.$
- 3.  $\forall i, j, k \in I$ : if j is on a path in T from i to k, then  $X_i \cap X_k \subset X_j$ .

The width of a tree decomposition  $({X_i : i \in I}, T)$  is  $\max\{|X_i| : i \in I\} - 1$ . The treewidth of G, tw(G), is the minimum width over all tree decompositions of G.

Note that by a *rooted tree* we mean a tree with a vertex designated as the *root vertex*.

**Definition 4** (Definition 2, [4]). A normalized tree decomposition of a graph G is a triple  $({X_i : i \in I}, r \in I, T)$  where  $({X_i : i \in I}, T)$  is a tree decomposition of G that additionally satisfies the following two properties:

- 4. It is a rooted tree where the subset  $X_r$  that corresponds to the root node r contains exactly one vertex.
- 5. For any node *i*, if *i'* is the child of *i*, then  $|X_{i'} \triangle X_i| = 1$  where,  $X_{i'} \triangle X_i$  denoted the symmetric difference of  $X_{i'}$  and  $X_i$ .

**Lemma 5** (Lemma 3, [4]). For any graph G there is a normalized tree decomposition with width equal to tw(G).

**Lemma 6** (Splitting Lemma for Bounded Treewidth Graphs). Let G be a graph on n vertices with tw(G) = t and a normalized tree decomposition  $(\{X_i : i \in I\}, r \in I, T)$  of width t. Then there exists  $l \in I$  such that  $G \setminus X_l = G_1 \uplus G_2 \uplus G_3$  and  $|G_i| \leq \frac{1}{2}(n-|X_l|+1)$ ,  $i \in [3]$ , where  $G_1, G_2$  and  $G_3$  are subgraphs of G.

*Proof.* For every i, let  $D_1(i), \ldots, D_t(i)$  be the components of  $T \setminus \{i\}$  and let  $C_l(i), j \in [t]$ , be the graphs induced by  $(\bigcup_{j \in V(D_l(i))} X_j) \setminus X_i$ . Without loss of generality assume that  $|C_1(i)| \ge \cdots \ge |C_t(i)|$ .

Let  $c = \min\{|C_1(j)| : j \in I\}$  and  $I' = \{j \in I : |C_1(j)| = c\}$ . Then choose  $l \in I'$  such that  $|X_l| = \min\{|X_j| : j \in I'\}$ . We claim that,  $|C_1(l)| \leq \frac{1}{2}(n - |X_l| + 1)$ . For the sake of contradiction, assume that  $|C_1(l)| > \frac{1}{2}(n - |X_l| + 1)$ . Let  $m \in N_T(l) \cap D_1(l)$ . Then, since T is a normalized tree decomposition  $|X_m \triangle X_l| = 1$ , therefore, the following two cases arise.

Case 1  $(X_m = X_l \cup \{v\} where v \in V(G)).$ 

If  $D_1(m) \subset D_1(l)$ , then  $|C_1(m)| < |C_1(l)|$  because  $C_1(m) = C_1(l) \setminus \{v\}$ . Otherwise,  $D_1(m) = T \setminus D_1(l)$  in which case  $|C_1(m)| = |G \setminus (C_1(l) \cup X_l)| = n - |C_1(l)| - |X_l| < n - \frac{1}{2}(n - |X_l| + 1) - |X_l| = \frac{1}{2}(n - |X_l| - 1) < |C_1(l)|$ . In either case,  $|C_1(m)| < |C_1(l)|$ , contradicting the choice of l.

Case 2  $(X_m = X_l \setminus \{v\} \text{ where } v \in V(G)).$ 

If  $D_1(m) \subset D_1(l)$ , then  $|C_1(m)| \leq |C_1(l)|$ . If  $|C_1(m)| < |C_1(l)|$ , then  $|C_1(m)|$  is not the minimum amongst all  $|C_1(j)|$ ,  $j \in I$  and if  $|C_1(m)| = |C_1(l)|$  then, since  $|X_m| < |X_l|$ , the choice of l is contradicted. On the other hand, if  $D_1(m) = T \setminus D_1(l)$ , then  $|C_1(m)| = |G \setminus (C_1(l) \cup X_m)| = n - |C_1(l)| - |X_m| < n - \frac{1}{2}(n - |X_l| + 1) - |X_l| + 1 = \frac{1}{2}(n - |X_l| + 1)$  again contradicting the choice of l.

Hence  $C_1(l) \leq \frac{1}{2}(n-|X_l|+1)$  i.e.,  $G \setminus X_l = C_1(l) \uplus \cdots \uplus C_t(l)$  such that  $|C_j(l)| \leq \frac{1}{2}(n-|X_l|+1)$  for all  $j \in [t]$ .

Consider a partition  $I_1 \uplus \cdots \uplus I_r = [t]$  with minimum possible r such that  $|\bigcup_{j \in I_i} C_j(l)| \leq \frac{1}{2}(n - |X_l| + 1)$  for all  $i \in [r]$ . Let  $\bigcup_{j \in I_i} C_j(l) = H_i$  for all  $i \in [r]$ . Rename all  $H_i$ 's such that  $|H_1| \geq \cdots \geq |H_r|$ . We claim that for such a partition  $r \leq 3$  because if  $r \geq 4$  then  $|\bigcup_{j \in [\frac{r}{2}]+1}^r H_j| \leq \frac{1}{2}(n - |X_l|)$  by the pigeonhole principle contradicting the choice of the partition  $I_1 \uplus \cdots \uplus I_r$ . Set  $G_i = H_i$  for  $i \in [3]$  and we are done.

**Lemma 7** (Amalgamation Lemma for General Graphs). Let  $G = G_1 \cup G_2 \cup G_3$  where  $G_1, G_2$  and  $G_3$  are graphs such that  $G_i \cap G_j = S$  for all  $i, j \in [3]$  and  $i \neq j$ . Let  $G'_1, G'_2$  and  $G'_3$  be graphs such that  $V(G'_i) = V(G_i)$  and  $E(G'_i) = E(G_i) \cup \{\{v, v'\} : v, v' \in V(S)\}$  for all  $i \in [3]$ . Let  $\phi_{G'_i}$  be an  $l_i$ -encoding of  $G'_i$  for all  $i \in [3]$  and  $\phi_S$  be an  $l_s$ -encoding of S. Then we can construct an l-encoding of G, where

$$l = \begin{cases} \max\{l_1, l_2, l_3\} + \max\{\chi(G \setminus S) + 1, l_s\} & \text{if } \chi(G \setminus S) = 2 \text{ or } 6\\ \max\{l_1, l_2, l_3\} + \max\{\chi(G \setminus S), l_s\} & \text{otherwise} \end{cases}$$
(4)



Figure 3: A graph  $G = \bigcup_{i=1}^{3} G_i$  where  $G_i \cap G_j = S$  for all  $i, j \in [3]$  and  $i \neq j$ 

Proof. Without loss of generality we can assume that the alphabets used in  $\phi_S$  are disjoint from the alphabets used in  $\phi_{G'_i}$  for all  $i \in [3]$  and greater than  $\chi(G)$ , and also from Observation 2, let  $l_1 = l_2 = l_3 = \max\{l_1, l_2, l_3\}$ . Let  $V(G) = \{v_0, \ldots, v_{n-1}\}, f : V(G) \rightarrow$  $\{0, \ldots, n-1\}$  be a bijection, and  $f_i = f(v_i)$ . Let us rename the alphabets in each coordinate of  $\phi_{G'_i}$  such that all  $v_j \in V(S)$  get the encoding as  $(f_j, \ldots, f_j)$  for all  $i \in [3]$ .

Let  $c: V(G \setminus S) \to \{0, \dots, \chi(G \setminus S) - 1\}$  be an optimal proper coloring of the vertices  $V(G \setminus S)$ .

Let

$$t = \begin{cases} \chi(G \setminus S) + 1 & \text{if } \chi(G \setminus S) = 2 \text{ or } 6\\ \chi(G \setminus S) & \text{otherwise} \end{cases}$$
(5)

By Theorem 4.3 in [9], if we have two orthogonal Latin squares of order t, we can have a t-encoding for  $3K_t$  and hence, for  $3K_{\chi(G\setminus S)}$  as well. Let the j-th vertex in the i-th copy of  $3K_{\chi(G\setminus S)}$  get the encoding  $\phi_K(i,j)$  for all  $i \in [3]$  and  $j \in [\chi(G \setminus S)]$ . Note that  $\phi_K(i,j)$ and  $\phi_K(i,j')$ ,  $j \neq j'$  disagree at all coordinates and  $\phi_K(i,j)$  and  $\phi_K(i',j')$ ,  $i \neq i'$ , agree in at least one coordinate, for all  $i, i' \in [3]$  and  $j, j' \in [\chi(G \setminus S)]$ . Let  $m = \max\{t, l_s\}$ . From Observation 2, let  $\phi_S$  and  $\phi_K(i,j)$  be m-encodings of S and  $3K_{\chi(G\setminus S)}$  respectively. We construct an l-encoding of G,  $\phi_G$ , is as follows.

$$\phi_G(x) = \begin{cases} \phi_{G'_i}(x)\phi_K(i,c(x)) & \text{if } x \in G_i \setminus S \\ \phi_{G'_1}(x)\phi_S(x) & x \in S \end{cases}$$
(6)

We can verify that  $\phi_G$  is a valid encoding of G from the following argument. Let  $x, y \in V(G_i \setminus S)$ . If  $\{x, y\} \notin E(G)$ , then  $\{x, y\} \notin E(G'_i)$ . Therefore,  $\phi_{G'_i}(x)$  and  $\phi_{G'_i}(y)$  agree in some coordinate, say g and thus,  $\phi_G(x)$  and  $\phi_G(y)$  also agree in the g-th coordinate. If  $\{x, y\} \in E(G)$ , then  $\{x, y\} \in E(G'_i)$ . Hence,  $\phi_{G'_i}(x)$  and  $\phi_{G'_i}(y)$  do not agree in any coordinate and since, c is a proper coloring of  $G \setminus S$ ,  $c(x) \neq c(y)$ . Thus,  $\phi_K(i, c(x))$  and  $\phi_K(i, c(y))$  do not agree in any coordinate. Therefore,  $\phi_G(x)$  and  $\phi_G(y)$  do not agree in any coordinate. Let  $x \in V(G_i \setminus S)$  and  $y \in V(G_{i'} \setminus S)$ ,  $i \neq i'$ . Note that  $\{x, y\} \notin E(G)$ . Since  $\phi_K(i, c(x))$  and  $\phi_K(i', c(y))$ ,  $i \neq i'$  agree in some coordinate, say g,  $\phi_G(x)$  and  $\phi_G(y)$  will agree in the  $(l_1 + g)$ -th coordinate.

For any *i*, let  $x \in V(G_i \setminus S)$  and  $y \in V(S)$ . Since  $\phi_S(y)$  uses new alphabets greater than  $\chi_G$ ,  $\phi_G(x)$  and  $\phi_G(y)$  agree in some coordinate if and only if  $\phi_{G'_i}(x)$  and  $\phi_{G'_1}(y)$  $(=\phi_{G'_i}(y))$  agree in some coordinate.

For  $x, y \in V(S)$ , if  $\{x, y\} \in E(G)$ , then since  $\phi_{G'_1}(x) = (f(x), \ldots, f(x)), \phi_{G'_1}(y) = (f(y), \ldots, f(y))$  where f is a bijection and  $\phi_S(x)$  and  $\phi_S(y)$  disagree in all coordinates,  $\phi_G(x)$  and  $\phi_G(y)$  disagree in all coordinates. If  $\{x, y\} \notin E(G)$ , then  $\{x, y\} \notin E(S)$ , Thus,  $\phi_S(x)$  and  $\phi_S(y)$  agree in some coordinate, say g and therefore,  $\phi_G(x)$  and  $\phi_G(y)$  agree in the  $(l_1 + g)$ -th coordinate.

**Theorem 8.** For any graph G on n vertices and tw(G) = t,  $pdim(G) \leq (t+2)(\log n+1)$ .

*Proof.* We use a divide and conquer strategy to prove the theorem. Let  $\mathcal{G}_t(n)$  denote the set of all *n*-vertex graphs with treewidth at most *t* and let  $C_t(n) = \max\{pdim(G) : G \in \mathcal{G}_t(n)\}$ .

Base case. By Theorem 4.3 in [13],  $C_t(t+3) = t+2$ .

*Divide and conquer.* In our divide and conquer strategy, the divide operation corresponds to the splitting operation of Lemma 6 and the conquer operation corresponds to the amalgamation operation of Lemma 7.

By Lemma 6, for a graph G on n vertices with tw(G) = t and a normalized tree decomposition  $(\{X_i : i \in I\}, r \in I, T)$  of width t, there exists  $l \in I$  such that  $G \setminus X_l = G_1 \uplus G_2 \uplus G_3, |G_i| \leq \frac{1}{2}(n - |X_l| + 1), i \in [3]$ . Let  $G'_i = G_i \cup G[X_l]$  for all  $i \in [3]$ . Therefore,  $|G'_i| \leq \frac{1}{2}(n - |X_l| + 1) + |X_l| = \frac{1}{2}(n + |X_l| + 1)$  for all  $i \in [3]$ . Let  $\alpha = \frac{1}{2}$  and  $\beta = \frac{|X_l| + 1}{2}$ . Hence,  $|G'_i| \leq \alpha n + \beta$  for all  $i \in [3]$ .

Let  $S = G[X_l]$ . Note that  $G'_i \cap G'_j = S$  for all  $i, j \in [3]$  and  $i \neq j$ , and  $G = G'_1 \cup G'_2 \cup G'_3$ . Let  $G''_1, G''_2, G''_3$  be graphs such that  $V(G''_i) = V(G'_i)$  and  $E(G''_i) = E(G'_i) \cup \{\{v, v'\} : v, v' \in V(S)\}$  for all  $i \in [3]$  (note that  $|G''_i| \leq \alpha n + \beta, i \in [3]$ ). Let  $\phi_{G''_i}$  is an  $l_i$ -encoding of  $G''_i$  for all  $i \in [3]$  and  $\phi_S$  be an  $l_s$ -encoding of S. Then, by Lemma 7, we can construct an l-encoding of G where

$$l = \begin{cases} \max\{l_1, l_2, l_3\} + \max\{\chi(G \setminus S) + 1, l_s\} & \text{if } \chi(G \setminus S) = 2 \text{ or } 6\\ \max\{l_1, l_2, l_3\} + \max\{\chi(G \setminus S), l_s\} & \text{otherwise.} \end{cases}$$
(7)

Since G is a graph with tw(G) = t,  $\chi(G) \leq t + 1$  (Theorem 6, [14]), and hence  $\chi(G \setminus S) \leq t + 1$ . Also, since  $|V(S)| \leq t + 1$ , by Theorem 4.3 [13],  $l_s \leq t + 1$ . Therefore,

$$l \leqslant \begin{cases} \max\{l_1, l_2, l_3\} + \max\{t+2, t+1\} & \text{if } \chi(G \setminus S) = 2 \text{ or } 6\\ \max\{l_1, l_2, l_3\} + \max\{t+1, t+1\} & \text{otherwise} \end{cases}$$

Hence,

$$l \leq \max\{l_1, l_2, l_3\} + t + 2 \tag{8}$$

The electronic journal of combinatorics  $\mathbf{20(3)}$  (2013), #P42

Let G' be the graph such that V(G') = V(G) and  $E(G') = E(G) \cup \{\{v, v'\} : v, v' \in V(S)\}$ . Note that  $(\{X_i : i \in I\}, r \in I, T)$  is a tree decomposition for G' too since all the new edges added are between the vertices of the same node. Also since  $G \subset G'$ ,  $tw(G) \leq tw(G')$ . Hence, tw(G') = t and thus,  $tw(G'_i) \leq t$  (since  $G''_i \subset G'$ ) for all  $i \in [3]$ . Therefore, the following requirements relation holds.

Therefore, the following recurrence relation holds.

$$C_t(n) \leq C_t(\alpha n + \beta) + t + 2$$
  

$$C_t(t+3) \leq t+2$$
(9)

Solving the recurrence. Let X be an arbitrary leaf in the recurrence tree and let P denote the path from root to X. Let the number of divide operations along P be d. Let  $s_j$  be the size of the subgraph of G to be conquered along P after j steps.

Therefore,  $s_d \leq \alpha^d n + \alpha^{d-1}\beta + \alpha^{d-2}\beta + \dots + \alpha\beta + \beta \leq \alpha^d n + \frac{\beta}{1-\alpha} = \alpha^d n + |X_l| + 1 \leq \alpha^d n + t + 2$  (since  $|X_l| \leq t + 1$ ). Hence,  $s_d \leq \lfloor \alpha^d n + t + 2 \rfloor$ . Note that the total cost of conquering incurred along P is (t+2)d.

Let  $d \ge \log n$ . Then  $s_d \le t+3$ . Hence,  $C_t(n) \le (t+2)\log n + C_t(t+3) \le (t+2)\log n + t+2 = (t+2)(\log n+1)$ . Therefore,  $pdim(G) \le (t+2)(\log n+1)$ .

### 4 Product Dimension of k-degenerate Graphs

A graph G is called k-degenerate if there exists an ordering  $v_1, \ldots, v_n$  of V(G) such that  $|N(v_i) \cap \{v_j : j < i\}| \leq k, \forall i \in [n]$ . Under an ordering  $v_1, \ldots, v_n$  of V(G), the set  $N_G(v_i) \cap \{v_j : j < i\}$  is called the set of backward neighbors of  $v_i$ .

**Theorem 9.** For every k-degenerate graph G,  $pdim(G) \leq \lfloor 5.545k \log n \rfloor + 1$ .

*Proof.* Recall that the product dimension of a graph G is the minimum number of proper colorings of G such that any pair of non-adjacent vertices get the same color in at least one of the colorings and not in all of them.

We use probabilistic arguments to prove the theorem. Let us describe a random coloring procedure using 3k colors for the vertices of G. Let C = [3k] be the set of colors. Let  $v_1, \ldots, v_n$  be an ordering of the vertex set of G such that  $|N(v_i) \cap \{v_j : j < i\}| \leq k$ . We color the vertices starting from  $v_1$  such that any vertex  $v_i$  is assigned a color independently and uniformly at random from the set  $C \setminus C_i$ , where  $C_i$  is the set of colors used by the backward neighbors of  $v_i$ . Note that  $0 \leq |C_i| \leq k$ . It is clear that the coloring thus obtained is proper. Repeat this procedure independently r times to get r random proper colorings of G.

For  $\{v_i, v_j\} \notin E(G)$ , let us calculate the probability that both  $v_i$  and  $v_j$  get the same color in a particular coloring. Let  $C' = C \setminus (C_i \cup C_j)$ . Then the probability p that both  $v_i$  and  $v_j$  get the same color in a particular coloring is equal to the probability that  $v_i$  chooses a color from the set C' and  $v_j$  chooses the same color as chosen by  $v_i$ . Hence  $p = \frac{|C'|}{|C \setminus C_i|} \frac{1}{|C \setminus C_i|} \ge \frac{3k - |C_i| - |C_j|}{(3k - |C_i|)(3k - |C_j|)}$ .

Let  $f(x,y) = \frac{3k-x-y}{(3k-x)(3k-y)}$  for  $x, y \in [0,k] \subset \mathbb{R}$ . Since  $\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y} \leq 0$  for all  $x, y \in [0,k]$ , we infer that for any pair  $x, y \in [0,k], f(x,y) \geq f(x,k) \geq f(k,k) = 1/4k$ . Hence  $p \geq 1/4k$ .

So the probability that  $v_i$  and  $v_j$  get different colors in a particular coloring  $\leq (1 - \frac{1}{4k})^r$ and the probability that  $v_i$  and  $v_j$  get different colors in all the r colorings  $\leq (1 - \frac{1}{4k})^r \leq e^{\frac{-r}{4k}}$ . Hence, the probability that some pair of non-adjacent vertices get different colors in all the r colorings  $< n^2 e^{\frac{-r}{4k}}$ . If  $r \geq 8k \ln n = 5.545k \log n$ ,  $n^2 e^{\frac{-r}{4k}} \leq 1$ . Thus, if  $r = \lceil 5.545k \log n \rceil$ , then every pair of non-adjacent vertices in the graph gets the same color in at least one of the r colorings described above. To ensure that no pair of vertices get the same color in all colorings we also consider an (r+1)-th coloring where all vertices get a unique color. Thus  $pdim(G) \leq \lceil 5.545k \log n \rceil + 1$ .

### References

- P. Alles. Dimension of amalgamated graphs and trees. Czechoslovak Mathematical Journal, 36(3):393–416, 1986.
- [2] N. Alon. Covering graphs by the minimum number of equivalence relations. *Combinatorica*, 6(3):201–206, 1986.
- [3] R.C. Bose, S.S. Shrikhande, and E.T. Parker. Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture. *Canad. J. Math*, 12:189–203, 1960.
- [4] L.S. Chandran and N. Sivadasan. Boxicity and treewidth. Journal of Combinatorial Theory, Series B, 97(5):733-744, 2007.
- [5] Jeffery R. Cooper. Product dimension of a random graph. Masters thesis, Miami University, Oxford, Ohio, 2010.
- [6] N. Eaton and V. Rödl. Graphs of small dimensions. Combinatorica, 16(1):59–85, 1996.
- [7] P. Erdös and A.B. Evans. Representations of graphs and orthogonal Latin square graphs. Journal of Graph Theory, 13(5):593–595, 1989.
- [8] A.B. Evans. Representations of disjoint unions of complete graphs. Discrete mathematics, 307(9):1191–1198, 2007.
- [9] A.B. Evans, G. Isaak, and D.A. Narayan. Representations of graphs modulo n. Discrete Mathematics, 223(1):109–123, 2000.
- [10] Z. Füredi. On the Prague dimension of Kneser graphs. Numbers, information, and complexity, page 125, 2000.
- [11] Ida Kantor. Graphs, codes, and colorings. Ph.D thesis, Graduate College of the University of Illinois at Urbana-Champaign, 2010.
- [12] A.M.C.A. Koster, H.L. Bodlaender, and S.P.M. Van Hoesel. Treewidth: computational experiments. Research Memoranda 0001, Maastricht : METEOR, Maastricht Research School of Economics of Technology and Organization, 2001.

- [13] L. Lovász, J. Nešetřil, and A. Pultr. On a product dimension of graphs. Journal of Combinatorial Theory, Series B, 29(1):47–67, 1980.
- [14] C. Lu. A note on lower bounds of treewidth for graphs. In International Mathematical Forum, volume 2, pages 2893–2898, 2007.
- [15] J. Nešetřil and V. Rödl. A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of a graph. *Discrete Mathematics*, 23(1):49–55, 1978.
- [16] S. Poljak and A. Pultr. On the dimension of trees. Discrete Mathematics, 34(2):165– 171, 1981.