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Abstract

We present a connection between two seemingly disparate fields: VC-theory and
graph theory. This connection yields natural correspondences between fundamental
concepts in VC-theory, such as shattering and VC-dimension, and well-studied con-
cepts of graph theory related to connectivity, combinatorial optimization, forbidden
subgraphs, and others.

In one direction, we use this connection to derive results in graph theory. Our
main tool is a generalization of the Sauer-Shelah Lemma (Pajor, 1985; Bollobás and
Radcliffe, 1995; Dress, 1997; Holzman and Aharoni). Using this tool we obtain a
series of inequalities and equalities related to properties of orientations of a graph.
Some of these results appear to be new, for others we give new and simple proofs.

In the other direction, we present new illustrative examples of shattering-ex-
tremal systems - a class of set-systems in VC-theory whose understanding is con-
sidered by some authors to be incomplete (Bollobás and Radcliffe, 1995; Greco,
1998; Rónyai and Mészáros, 2011). These examples are derived from properties of
orientations related to distances and flows in networks.

1 Introduction

Orientations of graphs have been widely researched, going back to the celebrated strong-
orientation theorem of Robbins (1939) [31], and its generalization by Nash-Williams (1960)
[29]. Several results analogous to Robbins’ theorem have been obtained for other prop-
erties of digraphs [18, 16, 20, 11, 12]. In another direction of research concerning orien-
tations, Frank [17] has shown that every k-strong orientation of a graph can be obtained
from any other k-strong orientation of the same graph, through a sequence of reversals of
directed paths and circuits, such that the k-strong connectivity is maintained throughout
the sequence. There are many open problems related to orientations, both of structural
and of algorithmic nature. For a comprehensive account of known results and current
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research questions, especially relating to connectivity, see [7]. A different line of work
concerns counting orientations with forbidden subgraphs. Alon and Yuster [4] studied the
number of orientations that do not contain a copy of a fixed tournament. Problems of
this type have close ties with the theory of random graphs.

In this paper we prove statements concerning properties of orientations and subgraphs
of a given graph by introducing a connection between VC-theory and graph theory. The
following are a few examples of the statements that we prove:

(i) Let G be a graph. Then:

the number of
connected subgraphs

of G
>

the number of
strong orientations

of G
>

the number of 2-edge-
connected subgraphs

of G.

(ii) Let G be a graph, let ~H be a digraph, and let H be the graph that underlies ~H.
Then:

the number of orientations of G
that do not contain a copy of ~H

6
the number of subgraphs of G

that do not contain a copy of H.

(iii) Let G be a graph and let s, t ∈ V (G). Then:

the number of orientations in
which there are at least k edge-

disjoint paths from s to t
=

the number of subgraphs in
which there are at least k edge-

disjoint paths from s to t.

(A similar statement holds for vertex-disjoint paths.)

(iv) Let O′ and O′′ be two orientations of a flow network N such that there exist st-flows
of size f in both O′ and O′′, and let d be the Hamming distance between O′ and O′′.
Then there exists a sequence of d edge flips that transforms O′ to O′′, such that all
the intermediate orientations preserve the property of having a flow of size f .

The technique used for obtaining these results relies on the well-known concept of shat-
tering and on the less known, dual concept of strong-shattering. Shattering is commonly
defined as a relation between P(P(X)) and P(X), where P(X) denotes the power set
of X. Continuing the work of Litman and Moran [26, 28], we present shattering as a
relation between P({0, 1}X) and P(X). This facilitates new definitions of shattering and
strong-shattering that differ from each other only in the order of the quantifiers (see §2).
The transposition of quantifiers demonstrates a certain duality between the two concepts
of shattering. This duality enables an easy derivation of new, “dual” results from known
results.

Our main tool is a generalization of the Sauer-Shelah Lemma which we term the
Sandwich Theorem (Theorem 5) [30, 10, 13, 21, 5]. This theorem states that the size of
a system S is at most the number of sets shattered by S and at least the number of sets
strongly shattered by S. Interpreting this theorem in the context of graph orientations
yields inequalities that link orientations and subgraphs of the same graph.
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Systems for which the Sandwich Theorem collapses into an equality are called shat-
tering-extremal (SE). These systems were discovered independently several times by
different groups of researchers in various contexts [24, 10, 13, 6]. Accordingly, they have
been referred to as lopsided, Sauer-extremal, Pajor-extremal, among other names.

As far as we know, Lawrence [24] was the first to introduce them in his study of convex
sets. Interestingly, the definition he gave does not require the concept of shattering.
Independently, Bollobás and Radcliffe [10] discovered these systems, using the shatters
relation (a.k.a. traces). Furthermore, they also introduced the relation of strongly-shatters
(a.k.a. strongly-traces), and characterized shattering-extremal systems using the shatters
and strongly-shatters relations. Dress et al. [13, 6] discovered, independently of Bollobás
et al. the same characterization, and established the equivalence to the definition given by
Lawrence. Several characterizations of these systems were given [24, 10, 6, 21, 5, 32, 28].

We present two general classes of SE systems that stem from properties of graph
orientations. One class is related to properties of distance in a weighted network, the
other class is related to properties of flow networks. This allows us, in one direction,
to apply known results about SE systems to prove results concerning these two classes
(such as (iv) above). In the other direction, the two classes form non-trivial clusters of
new examples of SE systems, and thus they may be useful for a better understanding of
SE systems. We note that the known characterizations of these systems are considered
unsatisfactory by several authors [10, 21, 32], e.g.: “... a structural description of extremal
systems is still sorely lacking” [10].

Some of the results presented in this paper can be proven in alternative ways. For
example, McDiarmid [27] implies some of our results (including (i) above) using general
theorems from clutter percolation.

2 Preliminaries

In this section we introduce the concepts necessary to formulate and prove our results.
The notation related to systems and shattering closely follows Litman and Moran [26, 28].

2.1 Systems

In this paper, a system is a pair
〈
S, {0, 1}X

〉
, where X is a set and S ⊆ {0, 1}X . Given

a system S =
〈
S, {0, 1}X

〉
, we define the operators S(S) = S, C(S) = {0, 1}X , and

dim(S) = X. For convenience, we use |S| for |S(S)|. A system S is trivial if S(S) ∈
{∅, C(S)}. The complement of S is ¬S = 〈C(S)− S(S), C(S)〉. Note that there are

exactly 22|X|
systems S for which C(S) = {0, 1}X .

2.2 Shattering and strong shattering

Given two arbitrary functions f and g, and A ⊆ dom(f) ∩ dom(g), we say that f agrees
with g on A, if f(x) = g(x) for all x ∈ A. We say that f agrees with g, if they agree on
the entire dom(f) ∩ dom(g).
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We define shattering and strong shattering with the help of the merging operator (?).
Given two disjoint sets X and Y , two functions f ∈ {0, 1}X and g ∈ {0, 1}Y , let f ? g
denote the unique function in {0, 1}X∪Y that agrees with both f and g. Note that ? is a
commutative and associative operator.

Definition 1. Let S be a system, let X = dim(S) and let Y ⊆ X. We say that:
S shatters Y , if: (

∀f ∈ {0, 1}Y
) (
∃g ∈ {0, 1}X−Y

)
: g ? f ∈ S(S).

S strongly shatters Y , if:(
∃g ∈ {0, 1}X−Y

) (
∀f ∈ {0, 1}Y

)
: g ? f ∈ S(S).

Observe that the definitions of shattering and strong shattering differ only in the order
of the quantifiers. A straightforward application of predicate calculus gives the following
result:

Lemma 2. Let S be a system and let {X ′, X ′′} be a partitioning of dim(S). Then, exactly
one of the following statements is true:

(i) S shatters X ′

(ii) ¬S strongly shatters X ′′.

Two important subsets of P(dim(S)) are associated with S:

Definition 3. The shattered and strongly shattered sets of a system S are respectively:

str(S)
def
= {Y ⊆ dim(S) : Y is shattered by S},

sstr(S)
def
= {Y ⊆ dim(S) : Y is strongly shattered by S}.

Clearly, both str(S) and sstr(S) are closed under the subset relation, and sstr(S) ⊆
str(S).

Given a set X and a family F ⊆ P(X), we define the co-complement (∗) operator as
F∗ = {Y ⊆ X : Y c /∈ F}. Observe that ∗ is an involution1 and for any two families A
and B, we have A ⊆ B ⇔ B∗ ⊆ A∗. With this operator, Lemma 2 can be expressed in
the following way:

Lemma 4. Let S be a system. Then

str(¬S) = sstr(S)∗,

sstr(¬S) = str(S)∗.

The following theorem is the result of accumulated work by different authors, and parts
of it were rediscovered independently several times (Pajor [30], Bollobás and Radcliffe [10],
Dress [13], Holzman and Aharoni [5, 21]).

1(F∗)∗ = F
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Theorem 5 (Sandwich Theorem [30, 10, 13, 5, 21]). For a system S:

|sstr(S)| 6 |S| 6 |str(S)|.

In the proof of Theorem 5, given a system S and x ∈ dim(S), we consider the following
two “sub-systems” of S, referred to as the restrictions of S associated with x:〈

{f |dim(S)−{x} : f ∈ S, f(x) = 0}, {0, 1}dim(S)−{x}
〉
,〈

{f |dim(S)−{x} : f ∈ S, f(x) = 1}, {0, 1}dim(S)−{x}
〉
.

Proof of Theorem 5. First, prove |S| 6 |str(S)|.
Proceed by induction on dim(S). The case dim(S) = ∅ is trivial. Otherwise, pick x ∈
dim(S) and let S′,S′′ be the two restrictions of S associated with x. By the induction
hypothesis, we have |S′| 6 |str(S′)| and |S′′| 6 |str(S′′)|. It is easy to verify that:

{Y ∈ str(S) : x /∈ Y } ⊇ {Y : Y ∈ str(S′) ∪ str(S′′)},
{Y ∈ str(S) : x ∈ Y } ⊇ {Y ∪ {x} : Y ∈ str(S′) ∩ str(S′′)}.

Thus,

|str(S)| = |{Y ∈ str(S) : x /∈ Y }|+ |{Y ∈ str(S) : x ∈ Y }|
> |{Y : Y ∈ str(S′) ∪ str(S′′)}|

+ |{Y ∪ {x} : Y ∈ str(S′) ∩ str(S′′)}| (by the above inclusions)

= |str(S′) ∪ str(S′′)|+ |str(S′) ∩ str(S′′)|
= |str(S′)|+ |str(S′′)|
> |S′|+ |S′′| (by the induction hypothesis)

= |S|.

Next, prove |S| > |sstr(S)|.
We use a certain duality between shattering and strong shattering. This duality manifests
itself through a mechanical tranformation on text written in “mathematical English”. It
swaps the pair “str” and “sstr”, the pair “⊆” and “⊇”, and the pair “6” and “>”. Note
that the dual of “|S| 6 |str(S)|” is “|S| > |sstr(S)|”. It is easy to verify that the dual of
the proof for |S| 6 |str(S)| is a valid proof for |S| > |sstr(S)|.

Note that each of the inequalities |S| 6 |str(S)| and |S| > |sstr(S)| can also be proven
as a simple corollary of the other inequality and Lemma 4. However, we preferred to prove
the two inequalities in a symmetric manner to highlight the duality between the two types
of shattering. It is important to note that the duality used in the proof is mysterious and
fragile. For further discussion on dualities between shattering and strong shattering we
refer the reader to Litman and Moran [26, 28].
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Definition 6. The VC-dimension (Vapnik and Chervonenkis [36]) and the dual VC-
dimension [28, 26] of a system S are defined respectively as:

vc(S)
def
= max{|Y | : Y ∈ str(S)}2,

dvc(S)
def
= max{|Y | : Y ∈ sstr(S)}2.

Note that by the definition of the VC-dimension:

str(S) ⊆ {Y ⊆ dim(S) : |Y | 6 vc(S)}.

Hence, an easy consequence of Theorem 5 is the following result:

Theorem 7 (Sauer-Shelah Lemma [33, 35]). For a system S with | dim(S)| = n:

|S| 6
vc(S)∑
i=0

(
n

i

)
.

2.3 Shattering-extremal systems

In this subsection we look at systems of a particular kind, namely those for which Theo-
rem 5 collapses into an equality. We call these systems shattering-extremal.

Definition 8. A system S is shattering-extremal (in abbreviation: SE), if it satisfies

sstr(S) = str(S).

From Lemma 4 the following result is immediate:

Lemma 9. Let S be a system. Then

S is SE ⇐⇒ ¬S is SE.

Similarly to Theorem 5, the following result has also been rediscovered independently
several times (Bollobás and Radcliffe [10], Dress et al. [6]).

Theorem 10 ([10, 6]). Let S be a system. The following statements are equivalent:

(i) S is SE

(ii) |sstr(S)| = |S|
(iii) |S| = |str(S)|.

2As a special case, vc(S) = dvc(S) = −1 when S(S) = ∅.
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3 Systems of orientations

We use standard terminology of graph theory. Given an undirected graph G with vertex
set V (G) (or simply V ) and edge set E(G) (or simply E), let n = |V | and m = |E|. In
this work, a subgraph of G is a graph G′ with V (G′) = V (G) and E(G′) ⊆ E(G). For
X ⊆ E(G) we denote by GX the subgraph of G with E(GX) = X. We consider only
simple graphs, however, the results can easily be extended to non-simple graphs.

An orientation of a graph G is an assignment of a direction to each edge. To encode
such an assignment as a function d : E → {0, 1}, we fix a canonical orientation ~E and

interpret d relative to ~E in the obvious way: d orients an edge e ∈ E in agreement with
~E if d(e) = 0, and opposing ~E if d(e) = 1. For an orientation d, let ~Gd denote the digraph
obtained by orienting the edges of G according to d and to some canonical orientation.
For convenience, we also refer to the digraph ~Gd as an orientation of G. The set of all
orientations of G is O(G) = {0, 1}E. A system of orientations of G is a system S, where
C(S) = O(G).

3.1 Cycles and forests

As a warm-up, and to illustrate our techniques, we consider the system of all cyclic orienta-

tions of a graphG, denoted as Scyc(G) =
〈
{d ∈ O(G) : ~Gd has a directed cycle}, O(G)

〉
and its complement, ¬Scyc, namely the system of all acyclic orientations. We prove the
following inequalities:

Theorem 11. Let G be a graph. Then:

(i)
the number of orientations of G

that contain a directed cycle
>

the number of subgraphs of G that
contain an undirected cycle,

(ii)
the number of acyclic orientations

of G
6

the number of subgraphs of G that
are forests.

The two inequalities are trivially equivalent. However, proving them in parallel illus-
trates a certain duality (symmetry). To derive these inequalities, we characterize sstr(Scyc)
and str(¬Scyc).

Lemma 12. Let G be a graph. Then:

(i) {X ⊆ E : GE−X has a cycle} = sstr(Scyc).

(ii) {X ⊆ E : GX is a forest} = str(¬Scyc).

Note that by Lemma 2, the two statements are equivalent. To establish Lemma 12,
we prove:

Lemma 13. Let G be a graph. Then:

(i) {X ⊆ E : GE−X has a cycle} ⊆ sstr(Scyc).

(ii) {X ⊆ E : GX is a forest} ⊆ str(¬Scyc).
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Proof. (i) If there exists a cycle C ⊆ E −X, then there exists an orientation d of E −X,
such that C becomes a directed cycle. Clearly, every extension of d to an orientation of
E contains this directed cycle. This means that X ∈ sstr(Scyc).

(ii) Assume that GX is a forest. We need to show that every orientation d of X can

be extended to an acyclic orientation of E. Since GX is a forest, ~Gd
X is a DAG whose

edges form a pre-order P on V . Pick (by topological sorting) a linear order L of V that
extends P and orient the edges of E −X according to L (from smaller to larger vertex).
Clearly, the resulting orientation is acyclic.

Applying the co-complement operator to both sides of the equations of Lemma 13
gives:

Lemma 14. Let G be a graph. Then:

(i) {X ⊆ E : GX is a forest} ⊇ str(¬Scyc).

(ii) {X ⊆ E : GE−X has a cycle} ⊇ sstr(Scyc).

Lemma 13 and Lemma 14 together imply Lemma 12. An application of the Sand-
wich Theorem (Theorem 5) yields the inequalities of Theorem 11. Moreover, from the
characterizations of str(¬Scyc) and sstr(Scyc) it follows that:

Proposition 15. Let Scyc denote the system of all cyclic orientations of G. Then:

(i) vc(¬Scyc) = n− k, where k is the number of connected components of G.

(ii) dvc(Scyc) = m− c, where c is the size of the smallest cycle in G.

An application of the Sauer-Shelah Lemma and a standard bound on binomial sums
yield:

Proposition 16. The number of acyclic orientations of G is at most
(

m e
n−k

)n−k
where k

is the number of connected components of G.

In general, the inequalities of Theorem 11 are strict. In fact, as implied by Theorem 40
presented in §4, these inequalities are strict if and only if G contains a cycle. Note that
the second statement of Theorem 11 appears to be known (it is implied by an identity
of Bernardi [8]). Note as well that the number of acyclic orientations and the number of
subgraphs that are forests are two particular values of the Tutte-polynomial [9]. Aharoni
and Holzman [1] have brought to our attention that the result can also be proven by
induction, using the graph operations of deletion and contraction of edges.

A natural question is whether str(Scyc) and sstr(¬Scyc) can be similarly described. The
characterization of these sets, however, seems to be less natural. Nevertheless, we can
observe the following:

Lemma 17. Let G be a graph. Then:

(i) {X ⊆ E : E −X intersects a cycle of G} ⊇ str(Scyc).

(ii) {X ⊆ E : X contains only bridges} ⊆ sstr(¬Scyc).
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Proof. By Lemma 4 and the monotonicity of the co-complement operator, the two state-
ments are equivalent. Thus, it is sufficient to prove (ii): Let d be an acyclic orientation
of E − X. If X contains only bridges, every extension of d to E remains acyclic (by
definition, a bridge is not contained in any cycle). Therefore, X is strongly shattered by
¬Scyc.

Similarly to the proof of Theorem 11, Lemma 17, together with the Sandwich Theorem
yield certain inequalities. One can also derive an upper bound for vc(Scyc) and a lower
bound for dvc(¬Scyc).

3.2 Strong orientations

Let k ∈ N. A graph G is k-edge-connected if it remains connected whenever fewer than
k edges are removed. A digraph ~G is k-arc-strong if for every u, v ∈ V (~G) there exist k
edge-disjoint paths from u to v. Since in this section we only refer to edge-connectivity,
we use the shorter terms k-connected, k-strong, and disjoint.

Theorem 18. For an arbitrary graph G:

the number of
2k-connected

subgraphs of G
6

the number of
k-strong

orientations of G
6

the number of
k-connected

subgraphs of G.

Before proving this theorem, we state two well-known results. The first is a char-
acterization of graphs that admit a k-strong orientation. The second is an immediate
consequence of Menger’s theorem for directed graphs.

Theorem 19 (Nash-Williams [29]). A graph G has a k-strong orientation iff G is 2k-
connected.

Theorem 20 (Menger [9]). A digraph ~G is k-strong iff every non-trivial cut of ~G contains
at least k forward edges.

Proof of Theorem 18. For i ∈ N, let Si denote the system of i-strong orientations of G
and let Fi denote the family of sets X ⊆ E, such that GX is i-connected.
|F2k| 6 |Sk|: By the Sandwich Theorem, |sstr(Sk)| 6 |Sk|. Thus, it is sufficient to show
that

{X ⊆ E : GE−X is 2k-connected} ⊆ sstr(Sk).

Indeed, if GE−X is 2k-connected, then by Theorem 19, there exists an orientation d of
E − X, such that ~Gd is k-strong. Clearly, all extensions of d to an orientation of E
maintain the k-strong property, and thus X ∈ sstr(Sk).
|Sk| 6 |Fk|: By the Sandwich Theorem, |Sk| 6 |str(Sk)|. Thus, it is sufficient to show
that

str(Sk) ⊆ {X ⊆ E : GE−X is k-connected}.
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Let X ∈ str(Sk). It is enough to show that every non-trivial cut of G contains at least k
edges in E −X. Let (V ′, V ′′) be a non-trivial cut of G. Pick an orientation d of X that
directs every edge included in the cut as a backward edge. Since X ∈ str(Sk), there exists
a k-strong orientation f of E which extends d. By Theorem 20, the cut (V ′, V ′′) must

contain at least k forward edges in ~Gf and by the choice of d, all of these edges are from
E −X.

Remark: After discovering the above result, it was brought to our attention that
McDiarmid [27] has proved a similar result using non-trivial tools from clutter percolation.

In general, the inequalities of Theorem 18 are strict. In fact, as implied by Theorem 40
in §4, both of these inequalities are strict if and only if G is 2k-connected.

Let ck(G) denote the size of the minimum k-connected subgraph of G. Computing ck
is a known NP-hard problem [19], even for k = 2. From the proof of Theorem 18 and
from Theorem 7 we obtain:

Proposition 21. If Sk is the system of all k-connected orientations of G, then:

m− c2k 6 dvc(Sk) 6 vc(Sk) 6 m− ck.

Proposition 22. The number of k-connected orientations of G is at most
(

m e
m−ck

)m−ck
.

Observe that a simple corollary of Theorem 18, together with classical results on the
connectivity of random graphs in the G(n, p) model [37] is that almost every tournament
on n vertices is k-strong, for any fixed positive k.

3.3 General inequality

We can abstract away parts of the earlier proofs, to obtain the following result:

Theorem 23 (Meta-inequality). Let P be a monotone increasing property of digraphs,
and let P ′ be a property of graphs, such that if a graph G satisfies P ′, then there exists an
orientation of G that satisfies P . Then, for an arbitrary graph G:

the number of subgraphs of G
that satisfy P ′

6
the number of orientations of

G that satisfy P .

Proof. Let SP be the system of orientations of G that satisfy P . Let X ⊆ E, such that
P ′(GE−X) holds. From the conditions it follows that there exists an orientation d of GE−X ,

such that P (~Gd
E−X) holds. Since P is monotone increasing, P holds for any extension of

d to E. It follows that X ∈ sstr(SP ). Hence, {X ⊆ E : P ′(GE−X)} ⊆ sstr(SP ), and
Theorem 5 yields the result.
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3.4 Further inequalities

The conditions of Theorem 23 are fulfilled by many natural connectivity-properties of
digraphs. These include st-connectivity, rootedness, unilateral connectivity, and others.

As a further application, consider the following problem: Given a graph G and a
digraph ~H, denote by D(G, ~H) the number of orientations of G not containing a copy

of ~H. Erdős [14, p. 45] posed the question of estimating D(G, ~H), and researchers have
studied many variants of this problem [15, 4, 23]. Let H denote the undirected graph

that underlies ~H and let D′(G,H) denote the number of subgraphs of G not containing
a copy of H. Then, similarly to the preceeding results, we obtain:

Theorem 24. D(G, ~H) 6 D′(G,H).

Using the same approach as previously, we obtain that the VC-dimension of the system
of orientations not containing a copy of ~H, is at most ex(G,H), the size of the largest
subgraph of G which does not contain a copy of H. When G = Kn (the complete graph
on n vertices) the quantity has been denoted as ex(n,H). When H is also a complete
graph, this is the well-known Turán number [15].

A result of Erdős, Frankl, and Rödl [15] states that the number of graphs on n vertices
that do not contain a copy of H is 2ex(n,H)(1+o(1)), provided that the chromatic number of
H, χ(H) > 3. This result, together with Theorem 24 yield:

Proposition 25. Let H be a graph with χ(H) > 3 and let ~H be an orientation of H.
Then:

D(Kn, ~H) 6 2ex(n,H)(1+o(1)).

When ~H is a tournament, Proposition 25 is implied by a result of Alon and Yuster [4],
proven using sophisticated techniques.

4 Shattering-extremal systems of orientations

In this section we present SE systems of orientations, or equivalently, systems for which
the Sandwich Theorem collapses into an equality. Two natural and general classes of SE
systems correspond to orientations with a certain st-flow, respectively st-distance in a
graph. Many other results, including Theorem 38, are direct consequences of the results
for the flow or distance examples. The selection of examples is not exhaustive and there
exist natural classes of SE systems of orientations that seem not to be reducible to either
the flow or the distance example.

4.1 Flow

We consider flow in both directed and undirected graphs (in an undirected graph an edge
can be used in both directions). Let G be a graph, let c : E(G) → R>0 be a capacity
function of the edges, s ∈ V (G) be the source and t ∈ V (G) be the sink. For a number
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w ∈ R, let Sflow
w denote the system of all orientations of G for which there exists a flow of

size (at least) w from s to t. We show that:

Theorem 26. Sflow
w is SE.

As a corollary of the proof of Theorem 26 we obtain the following identity:

Theorem 27. For an arbitrary graph G:

the number of orientations
of G in which there exists

a flow of size w
=

the number of subgraphs of
G in which there exists a

flow of size w.

The following well-known equivalence is useful in establishing Theorem 26:

Theorem 28 (Max-flow Min-cut). The following two statements are equivalent:

(i) There exists an st-flow of size w.

(ii) Every st-cut has capacity of at least w.

Lemma 29. {X ⊆ E : There exists a flow of size w in GE−X} ⊆ sstr(Sflow
w ).

Proof. Let X ⊆ E be such that there exists a flow of size w in GE−X and let f be such
a flow. Assume w.l.o.g. that f is acyclic. Pick an orientation d of E −X such that every
edge with positive flow is oriented in the direction of the flow. In ~Gd

E−X , f is a flow
of size w. The flow f remains feasible in every extension of d to E. This means that
X ∈ sstr(Sflow

w ).

Lemma 30. str(Sflow
w ) ⊆ {X ⊆ E : There exists a flow of size w in GE−X}.

Proof. Let X ∈ str(Sflow
w ). It is enough to show that every st-cut has capacity of at least

w in GE−X . Let (S, T ) be an st-cut. Choose an orientation d of X that orients all edges
of X which are contained in the cut as backward edges. Since X ∈ str(Sflow

w ), there exists
an extension of d in which there is a flow of size w. Thus, by Theorem 28, in the resulting
digraph the capacity of (S, T ) is at least w. The claim follows from the fact that all
forward edges of the cut are from E −X.

From Lemmata 29 and 30 it follows that str(Sflow
w ) ⊆ sstr(Sflow

w ). Theorem 26 follows
from the fact that the reverse inclusion always holds. Theorem 27 follows by the Sandwich
Theorem, combined with Lemmata 29 and 30.

Lemmata 29 and 30 give a characterization of vc(Sflow
w ). For w ∈ R, let ew denote the

size3 of the smallest subgraph of G that admits an st-flow of size w. Computing ew is a
natural NP-hard optimization problem (it reduces to minimum Steiner tree).

Proposition 31. dvc(Sflow
w ) = vc(Sflow

w ) = m− ew.

From Lemma 9 it follows that ¬Sflow
w , namely the system of orientations with a maxi-

mum flow less than w, is also SE. An application of Lemma 4 yields a characterization
of str(¬Sflow

w ) ( = sstr(¬Sflow
w ) ) and results analogous to Theorem 27 and Proposition 31

regarding ¬Sflow
w .

3As a special case, ew = −1 when there exists no flow of size w in G.
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4.2 Distance

We consider distance in both directed and undirected graphs (in an undirected graph an
edge can be used in both directions). Let G be a graph, let w : E(G)→ R>0 be a length
function of the edges, s ∈ V (G) be the source and t ∈ V (G) be the destination. For a
number d ∈ R, let Sdist

d denote the system of all orientations of G in which the distance
from s to t is at most d. We show that:

Theorem 32. Sdist
d is SE.

As a corollary of the proof of Theorem 32 we obtain the following identity:

Theorem 33. For an arbitrary graph G:

the number of orientations
of G in which the distance

from s to t is at most d
=

the number of subgraphs of
G in which the distance
from s to t is at most d.

In order to highlight a certain symmetry between flow and distance (or more precisely,
between minimum cut size and minimum path length), we establish the results of this
subsection in a manner analogous to the proofs of §4.1.

We call π : V (G) → R>0 a potential function of the vertices, if for every edge (u, v)
the condition π(v)− π(u) 6 w(u, v) holds. The potential difference of G with respect to
π is π(t)−π(s). The following easily verifiable equivalence helps in establishing Theorem
32:

Theorem 34. The following two statements are equivalent:

(i) There exists a potential function with potential difference d.

(ii) Every st-path has length at least d.

Lemma 35. {X ⊆ E : The distance from s to t in GE−X is at most d} ⊆ sstr(Sdist
d ).

Proof. Let X ⊆ E be such that there exists an st-path of length at most d in GE−X and
let p be such a path. Pick an orientation f of E − X such that in ~Gf

E−X , the path p is
oriented from s to t. In every extension of f to E, the path p remains a valid st-path of
length at most d. This means that X ∈ sstr(Sdist

d ).

Lemma 36. str(Sdist
d ) ⊆ {X ⊆ E : The distance from s to t in GE−X is at most d}.

Proof. Let X ∈ str(Sdist
d ). We show that every potential function for GE−X gives rise

to a potential difference of at least d. Let π be a potential function for GE−X . Choose
an orientation f of X that orients all edges of X from larger towards smaller potential,
according to π. Clearly, π remains a valid potential function for the entire G. Since
X ∈ str(Sdist

d ), there exists an extension of f in which there is an st-path of length at
most d. Thus, by the complement of Theorem 34, in the resulting digraph, the potential
difference is at least d. The claim follows from the fact that all potential-increasing edges
are from E −X.
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From Lemmata 35 and 36 it follows that str(Sdist
d ) ⊆ sstr(Sdist

d ). Theorem 32 follows
from the fact that the reverse inclusion always holds. Theorem 33 follows by the Sandwich
Theorem, combined with Lemmata 35 and 36.

Let d ∈ R, let pd denote the size4 of the smallest subgraph of G that contains an
st-path of length at most d. Observe that pd can be computed in polynomial time.

Proposition 37. dvc(Sdist
d ) = vc(Sdist

d ) = m− pd.

From Lemma 9 it follows that ¬Sdist
d , namely the system of orientations with st-

distance more than d, is also SE. Again, we obtain results analogous to Theorem 33 and
Proposition 37 regarding ¬Sdist

d .

4.3 Further examples

Many “natural” systems of orientations can be viewed as special cases of the above sys-
tems.

As a first example, let G be a graph, let s ∈ V (G) and W ⊆ V (G). Let Ss,W (G) denote
the system of all orientations for which every w ∈ W is reachable from s. Transform G
into a flow network G′ by letting the capacities of all e ∈ E(G) be infinity, designating s
as the source, and adding a destination t which is connected to every w ∈ W with edges of
unit capacity. It is not hard to see that Ss,W (G) is essentially transformed into Sflow

|W | (G
′).

In this case, Theorem 27 and Proposition 31 give the following results:

Theorem 38. For an arbitrary graph G:

the number of orientations
of G in which every

w ∈ W is reachable from s
=

the number of subgraphs
of G in which W ∪ {s} is

connected.

Proposition 39. Let t be the size of a minimum unweighted Steiner tree for W ∪ {s}.
Then:

dvc(Ss,W ) = vc(¬Ss,W ) = m− t.

A result equivalent to Theorem 38 was proven recently by Linusson [25]. Note that
“Ss,W is SE” can be proven directly, without proving the more general flow-result first.
As special cases, when W = {t}, the system Ss,W consists of all orientations with a path
from s to t, and when W = V −{s}, the system Ss,W consists of all orientations in which s
is a root. We obtain equalities between the number of orientations that admit an st-path
and the number of subgraphs in which s and t are connected, respectively between the
number of orientations in which s is a root and the number of connected subgraphs.

We present another example: let G be a graph with edge lengths w : E(G) → R>0,
let A ⊆ V (G) and B ⊆ V (G). Let SA,B,d(G) denote the system of all orientations for
which there exist u ∈ A and v ∈ B, such that the distance from u to v is at most d.
The following transformation can be made: add source s and destination t to G, and

4As a special case, pd = −1 when there is no path of length at most d in G.
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connect every vertex in A to s, respectively every vertex in B to t, using edges of zero
length. Denoting the obtained graph by G′, we can see that SA,B,d(G) is transformed into
Sdist
d (G′). The results are analogous to Theorem 33 and Proposition 37.

4.4 Discussion

Several characterizations of SE systems were given in the past twenty years [10, 6, 21,
28]. In this subsection, we present a characterization which was found independently by
Lawrence [24], and by Bollobás and Radcliffe [10] and seems to be more natural in the
context of graphs. To formalize this characterization, we need to introduce some concepts.

Let X be a set. Given Y ⊆ X, a Y -cube of {0, 1}X is an equivalence class of the

following equivalence relation on {0, 1}X : u ∼ v: “u agrees with v on X − Y ” . A cube

of {0, 1}X is a Y -cube for some Y ⊆ X. Given C, a Y -cube of {0, 1}X , we define
dim(C) = Y . Note that the number of Y -cubes is 2|X−Y |, they are mutually disjoint and
they cover {0, 1}X .

Let S =
〈
S, {0, 1}X

〉
be a system and C ⊆ C(S) be a cube. It is useful to consider

the structure 〈S(S) ∩ C, C〉 as a system. However, formally it is not a system. To deal
with this technicality we give the following definition: The restriction of S to C is the
system

〈
Q, {0, 1}dim(C)

〉
where Q = {f |dim(C) : f ∈ S ∩C}. A system is a restriction of

S if it is a restriction of S to some cube C ⊆ C(S).
The antipodal system of S is ap(S) =

〈
S̄, {0, 1}X

〉
, where S̄ = {f : 1 − f ∈ S}. A

system S is symmetric, if S = ap(S). Recall that a system S is trivial if S(S) ∈ {∅, C(S)}.

Theorem 40 (Lopsidedness [24, 10]). A system S is SE, iff it has no non-trivial, sym-
metric restrictions.

Note that the systems discussed in §3.1 and §3.2 are symmetric and thus they are
SE if and only if they are trivial. For example, consider Scyc, the system of all cyclic
orientations of G, and let Y ⊆ E(G). A Y -cube C of O(G) corresponds to a partial
orientation of G in which only the edges of E(G) − Y are oriented. The restriction of S
to C corresponds to all extensions of the partial orientation to an orientation of G which
contains a cycle. In this case, the system Scyc is symmetric, since flipping all the edges of
a directed cycle yields a directed cycle. Also, Scyc is trivial if and only if G is a forest.

Let us define the flip-distance between two orientations f and g of a graph G as the
number of edges in E(G) on which f and g differ. Let P be a property of orientations, such
that the corresponding system, SP , is SE. From a known property of SE systems [10, 6],
it follows that the orientations in SP form an isometric subgraph of the hypercube {0, 1}E,
with edges connecting pairs of orientations of flip-distance one (partial cube property). As
a consequence, if f and g are orientations of G satisfying P , then there exists a sequence
of edge-flips from f to g, with all intermediate orientations of the sequence satisfying
property P and with the length of the sequence equal to the flip-distance between f and
g.

Let f be any orientation of a graph G, and let fmax be an orientation that admits max-
imum st-flow. A consequence of the previous observation is that there exists a sequence
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of edge-flips from f to fmax, such that none of the flips decreases the amount of achievable
st-flow, furthermore, the length of this sequence equals the flip-distance between f and
fmax.

5 Conclusion and further work

In this paper we studied a variety of natural properties of graph orientations. In particular,
we have shown that for many of these properties, concepts related to VC-theory, such as
VC-dimension and shattering have natural interpretations.

One natural question is whether the graph-theoretical results presented in this paper
can be proven more directly. In particular: do there exist natural injective and surjective
maps that imply the different inequalities?

Another possible application of the connection presented in this paper is to a particular
type of supervised learning problem, that could be called “orientation learning”. In this
type of problem, a graph G and a property P of orientations are given. A single target
orientation d satisfying P is selected to be learned. In machine learning terms, P is the
hypothesis space, and d is the target hypothesis. The problem can be formulated both in
the classical passive learning or in the active learning [34] framework.

Different variants of these problems have been studied, mostly for complete and ran-
dom graphs, where P is the property of acyclic orientations [3, 22, 2]. We believe that
the connections presented in this paper may be useful for understanding the learnability
of other properties P in other classes of graphs as well.
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[14] P. Erdős. Some new applications of probability methods to combinatorial analysis
and graph theory. In Fifth Southeastern Conference on Combinatorics, Graph Theory
and Computing, pages 39–51, 1974.
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