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Abstract

In this note we prove the conjecture of Wilfong, Haxell and Winkler (2001) that
every bipartite multigraph with integer edge delays admits an edge colouring with
d + 1 colours in the special case where d = 3. A connection to the Brualdi-Ryser-
Stein conjecture is discussed.

1 Introduction

Motivated by scheduling issues in optical networks, Wilfong Haxell and Winkler [6] made
the following elegant combinatorial conjecture:

Conjecture 1.1. Let G be a bipartite multigraph with partition classes A,B and maximum
degree d. Suppose that each edge e is associated with an integer ‘delay’ r(e). Then G
admits an edge-colouring f : E(G) → {0, . . . , d} such that f is proper on A and f +
r(mod d+ 1) is proper on B.

See also [2]. When the graph consists of just two vertices joined by d parallel edges,
this is implied by a theorem of Hall [5] as noted in [6]. This fact has been dubbed ‘the
fundamental theorem of juggling’ (think of the two vertices as the two hands of a juggler
juggling d balls).

More generally, one can consider the case where the edges impose an arbitrary distor-
tion of the colours, given by a permutation r of the set of colours, rather than ‘delaying’
the colour by a constant:

Problem 1.2. Let G be a bipartite multigraph with partition classes A,B and maxi-
mum degree d. Suppose that each edge e is associated with a permutation re of the set
{0, 1, . . . , d}. Then G admits a proper distortion-colouring with colours {0, 1, . . . , d} (def-
initions in the next section).
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It turns out that in this generality the problem becomes much harder than its special
case in Conjecture 1.1: as noticed by N. Alon (private communication), the special case of
Problem 1.2 where each class A,B consists of just one vertex is equivalent to the following
conjecture of [1], which is a strengthening of a well-known conjecture of Brualdi and Stein
on transversals in Latin squares.

Conjecture 1.3 ([1, Conjecture 2.41]). Let H be a 3-partite 3-uniform hypergraph, with
partition classes V1, V2, V3 such that |V2| = |V3| = |V1|+ 1. Suppose that for every x ∈ V1,
the set of hyperedges containing x induces a perfect matching of V2 ∪ V3. Then V1 is
matchable.

Here, V1 being matchable means that there is a matching in H containing all vertices
in V1.

Indeed, to see the equivalence, represent each edge in Problem 1.2 by a vertex in V1,
and let V2, V3 be sets of size d + 1 = |V1| + 1, to be thought of as the colour on the left
endvertex and the colour on the right endvertex respectively.

Conjecture 1.3 strengthens the following well-known conjecture, made independently
by Brualdi [3] and Stein [8]

Conjecture 1.4 (Brualdi-Stein). In every n × n Latin square there exists a transversal
of size n− 1.

An n × n matrix with entries in {1, . . . , n} is a Latin square, if no two entries in the
same row or in the same column are equal. A transversal is a set of entries, each in a
different row and in a different column, and each containing a different symbol. (For odd
n, Ryser [7] conjectured that there is even a transversal of size n.)

To see that Conjecture 1.3 implies Conjecture 1.4, construct a 3-partite hypergraph
H with V1 being the set of rows of that Latin square L, V2 the set of columns, and V3 =
{1, . . . , n}, and for each entry of L introduce an edge containing the three corresponding
vertices of H. Then delete an arbitrary vertex in V1 with all edges containing it to obtain
the setup of Conjecture 1.3.

The aim of this note is to prove that Problem 1.2 has a positive answer for d = 3.

2 Definitions

Let G = (V,E) be a bipartite multigraph of maximum degree d with bipartition {A,B}.
Let Col := {0, 1, . . . , d} be the set of colours , and suppose that every edge e ∈ E is
associated with a bijection re on Col, called the distortion of e; intuitively, we are going
to colour e at its A end and the colour will be distorted by re when seen from B (in [6]
re was addition, mod d + 1, with the ‘delay’ of e). If a, b is the endvertex of e in A,B
respectively, then we use the notation ba(·) to denote re(·) and ab(·) to denote r−1e (·).

1The conjecture of [1] is more general than Conjecture 1.3: it allows for larger sets V2, V3 with an
appropriate modification of the perfect matching condition.
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A k-colouring of a set E (of edges) is a function f : E → {0, 1, . . . , k − 1}. A k-
colouring f of the edges of a multigraph G as above is called a proper distortion-colouring
(with respect to the permutations re), if for every a ∈ A we have f(e) 6= f(g) for every
two edges e, g incident with a and for every b ∈ B we have re(f(e)) 6= rg(f(g)) for every
two edges e, g incident with b.

3 Main

Theorem 3.1. For every bipartite multigraph G of maximum degree 3, and any edge
distortions, there is a proper distortion-colouring of E(G) with 4 colours 0,1,2,3.

Proof. We may assume without loss of generality that every vertex of G has degree pre-
cisely 3, for otherwise we can add dummy vertices and edges to make G cubic. It is well
known that the edges of a regular bipartite multigraph can be decomposed into disjoint
perfect matchings [4, Corollary 2.1.3]. So let M,M ′,M ′′ be perfect matchings of G with
M ∪M ′ ∪M ′′ = E(G). Then M ′ ∪M ′′ is a 2-factor, and it can be decomposed into a
collection C of edge disjoint cycles.

Let {A,B} be the bipartition of V (G). We are going to let each element of C choose
the colours of the edges of M incident with its A side. More precisely, given a C ∈ C, let
MC∩A denote the set of edges in M incident with C ∩A, and let MC∩B denote the set of
edges in M\MC∩A incident with B. We are going to prove that

For every C ∈ C, there is a 4-colouring fA of MC∩A such that for every 4-colouring
fB of MC∩B, there is a 4-colouring fC of E(C) such that fA∪ fB ∪ fC is a proper
distortion-4-colouring.

(1)

Note that (1) easily implies a proper distortion-colouring of E(G) with 4 colours: the sets
MC∩A | C ∈ C are pairwise edge disjoint, and their union is M . Thus, we can begin by
colouring each of them by a colouring fA as in (1), and then we can extend the colouring
to each C ∈ C keeping it proper.

So let us prove (1). Given a C ∈ C, pick a 2-edge subarc uvy of C with u, y ∈ A.
Distinguish two cases:

If the distortions of the edges uv, vy are identical, then give the edges mu,my of M
incident with u, y colours that are different (when seen from A). If C happens to be a
2-cycle, in which case u = y, give mu = my any colour.

If those distortions are not identical, then colour (the A side of) both mu,my with a
colour α such that vu(α) 6= vy(α).

In both cases, colour the rest of MC∩A arbitrarily; those colours will not matter.
We claim that this colouring fA has the desired property. To prove this, let fB be any

colouring of MC∩B, and note that for every edge e ∈ E(C) the set Le of still available
colours for e, that is, the colours that would not conflict with fA ∪ fB if given to e on
its B side, say, has at least 2 elements; indeed, only 2 edges adjacent with e have been
coloured so far and we had 4 colours to begin with.
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Let us first deal with the case where C is not a 2-cycle, and consider again the two
edges vu, vy as above. We claim that Lvu 6= Lvy; indeed, the colours we gave to mu,my

were chosen is such a way so as to forbid a different candidate colour at the v side of each
of vu, vy, and so Lvu 6= Lvy holds. On the other hand, the colour of the edge in M incident
with v forbids the same colour for each of vu, vy, which implies that Lvu ∩ Lvy 6= ∅.

Thus, since Lvu, Lvy are neither equal nor disjoint, and each contains at least two
colours, we can find a common colour β ∈ Lvu∩Lvy and another 2 colours γ ∈ Lvu, δ ∈ Lvy

so that β, γ, δ are all distinct. Now colour vu with uv(γ) (so that its colour seems to be
γ on its B side), and note that our colouring is still proper, since this colour came from
the allowed list. Consider the next edge ux of C incident with u. This edge still has at
least 1 available colour after we coloured uv (recall that |Le| > 2), so give it that colour.
Continue like this along C, to properly colour all its edges except the last edge vy. Now
note that when we coloured vu we still left 2 colours available for the B side of vy, namely
β, δ 6= γ. At least one of them is still available now, and we assign it to the B side of vy
completing the proper distortion-colouring of C.

If C is a 2-cycle then the situation is much simpler, and it is straightforward to check
that (1) holds by distinguishing two cases according to whether its 2 edges bear the same
distortions.

This completes the proof. Note that we proved something stronger than (1): for each
C ∈ C, all but one of the edges in MC∩A can be precoloured arbitrarily.
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