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Abstract

A graph G is uniquely k-colorable if the chromatic number of G is k and G has
only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G

is edge-critical if G−e is not a uniquely k-colorable graph for any edge e ∈ E(G). In
this paper, we prove that if G is an edge-critical uniquely 3-colorable planar graph,
then |E(G)| 6 8

3 |V (G)| − 17
3 . On the other hand, there exists an infinite family of

edge-critical uniquely 3-colorable planar graphs with n vertices and 9
4n − 6 edges.

Our result gives a first non-trivial upper bound for |E(G)|.
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1 Introduction

In this paper, we only deal with finite undirected simple graphs, and for any vertex subset
U in a graph G, 〈U〉 means the subgraph of G induced by U .

A k-coloring of a graph G is a map c : V (G) → {1, 2, . . . , k} such that for any
uv ∈ E(G), c(u) 6= c(v). A graph G is k-colorable if there exists a k-coloring of G, and
the chromatic number of G, denoted by χ(G), is the minimum number k such that G is
k-colorable. A graph G is uniquely k-colorable if k = χ(G) and G has only one k-coloring
up to permutation of the colors, where the coloring is called a unique k-coloring (note
that if G is uniquely k-colorable, then it is clear that |V (G)| > k by the definition).
In other words, every two k-colorings of G produce the same partition of V (G) into k
independent subsets (color classes). Then, two k-colorings c and c′ are said to be distinct,
denoted by c 6= c′, if they produce two distinct partitions of V (G) into k color classes.
Moreover, we denote the set of uniquely k-colorable graphs by UCk. For two distinct
colors i, j ∈ {1, 2, . . . , k} in a k-coloring c of a graph G, define Gi,j = 〈c−1(i) ∪ c−1(j)〉.
For uniquely k-colorable graphs, Harary et al. proved the following theorem.
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Theorem 1 (Harary et al. [4]) If c : V (G) → {1, 2, . . . , k} is a unique k-coloring of

G ∈ UCk, then the graph Gi,j is connected for all i 6= j (i, j ∈ {1, 2, . . . , k}).

If a graph G is uniquely 1-colorable, then G has no edges. Hence, throughout this
paper, we only consider k > 2 for any uniquely k-colorable graphs. Moreover, the following
corollary holds by Theorem 1. (For other results and related topics, see [3].)

Corollary 2 If G ∈ UCk with |V (G)| > n, then G has at least (k − 1)n−
(

k

2

)

edges.

In this paper, we consider the size of edge-critical uniquely k-colorable planar graphs.
For a graph G ∈ UCk, G is edge-critical if G− e /∈ UCk for any edge e ∈ E(G). However,
since uniquely 5-colorable planar graphs do not exist [2], we only consider edge-critical
uniquely k-colorable planar graphs for k ∈ {2, 3, 4}.

By Corollary 2, if a uniquely k-colorable planar graph G has exactly (k−1)|V (G)|−
(

k

2

)

edges, then G is edge-critical. Moreover, it is not difficult to see that any edge-critical
uniquely 2-colorable planar graph G has at most |V (G)| − 1 edges (that is, G is a tree).
On the other hand, since every planar graph G has at most 3|V (G)| − 6 edges by Euler’s
formula, we have Table 1. (Following this, we denote the upper bound of the size of
any edge-critical uniquely 3-colorable planar graph by f(n), where n is the number of
vertices.) In Table 1, it is clear that f(n) is at most 3n − 6 by the planarity, but this is
not a “good” bound.

k Lower bound (Corollary 2) Upper bound
2 n− 1 n− 1
3 2n− 3 f(n)
4 3n− 6 3n− 6

Table 1: The upper (or lower) bound of the size of any edge-critical uniquely k-colorable
planar graph G, where |V (G)| = n and k ∈ {2, 3, 4}.

In 1977, Aksionov [1] conjectured that f(n) = 2n − 3. However, in the same year,
Mel’nikov and Steinberg [5] disproved the conjecture by constructing a counterexample
shown in Figure 1. Hence f(n) is greater than 2n− 3. However, we have not yet known
any reasonable upper bound.

Our main results are the followings.

Theorem 3 If G is an edge-critical uniquely 3-colorable planar graph, then,

|E(G)| 6
8

3
|V (G)| −

17

3
.

Theorem 4 For any integer n > 12 such that n ≡ 0 (mod 4), there exists an edge-critical

uniquely 3-colorable planar graphs with n vertices and 9
4
n− 6 edges.
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Figure 1: This graph is a counterexample for Aksionov’s conjecture with n = 16 vertices
and 30 edges, where 2n− 3 6= 30 and two x′s are the same vertices.

By our results, we have the following corollary.

Corollary 5 For any n > 12 such that n ≡ 0 (mod 4), we have

9

4
n− 6 6 f(n) 6

8

3
n−

17

3
.

In the next section, we prove Theorem 3. In Section 3, we construct an infinite family
of edge-critical uniquely 3-colorable planar graphs with n vertices and 9

4
n− 6 edges.

2 Proof of Theorem 3

For a plane graph G, a ∆-face cycle C = T1T2 . . . Tk is a subgraph of G which consists
of the vertices and edges of Ti’s, where Ti is a triangular face and Ti and Ti+1 share an
edge for any 1 6 i 6 k (Tk+1 = T1), see Figure 2. Similarly to a ∆-face cycle, we define
a ∆-face path P = T0T1 . . . Tl−1, where T0 and Tl−1 do not share an edge. Note that any
3-coloring of a ∆-face cycle and a ∆-face path is unique.

Figure 2: A ∆-face cycle C

Lemma 6 Let G be an edge-critical uniquely 3-colorable plane graph. Then G has no

∆-face cycle.
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Proof. Suppose that G has a ∆-face cycle C = T1T2 . . . Tk, and let T1 = e1eke with
e1 ∈ E(T1) ∩ E(T2) and ek ∈ E(T1) ∩ E(Tk), where e = uv (see Figure 3).

e
e1

ek

u

v

T1

T2

Tk

Figure 3: Surrounding of T1

Since G ∈ UC3, there exists a unique coloring c : V (G) → {1, 2, 3}. Moreover, since
G−e /∈ UC3 by the assumption, there exists another coloring c′ : V (G−e) → {1, 2, 3} such
that c 6= c′. In this case, since the ∆-face path P = T2T3 . . . Tk is uniquely 3-colorable,
we now have c′(u) 6= c′(v) (otherwise, it contradicts to G is 3-colorable since e ∈ E(G)).
Therefore, we can obtain the coloring c′ of G by adding e to G − e, that is, there exist
two distinct 3-colorings c and c′ of G. However, this contradicts G ∈ UC3.

Lemma 7 Let G be a plane graph with n vertices. If G has no ∆-face cycle, then |E(G)| 6
8
3
n− 17

3
, where this estimation is best possible.

Proof. It is well-known that any plane graph can be transformed into a triangulation

(which is a plane graph such that each face is bounded by a cycle of length three) only
by adding edges preserving the simpleness. Hence we regard G as a plane graph obtained
from a triangulation T by removing k edges. (Since |E(G)| 6 3n−6−k by |E(T )| = 3n−6,
we finally show k >

n−1
3
.)

We consider the dual graph of G, denoted by G∗. Let V3 be the set of vertices of
degree 3 in G∗ (which is the set of triangular faces in G) and let V>4 = V (G∗) \ V3. We
now have |E(G∗)| = 3n − 6 − k and |V3| > 2n − 4 − 2k, since removing a single edge
decreases the number of triangular faces by at most two in G and any triangulation with
n vertices has 2n − 4 triangular faces by Euler’s formula. We may suppose that V3 6= ∅,
otherwise, the lemma holds since we have |E(G)| 6 2n − 4 by k > n − 2. Moreover,
by the assumption, 〈V3〉 is a forest (otherwise, G has a ∆-face cycle). Then, we let
〈V3〉 = T1 ∪ T2 ∪ · · · ∪ Tm, where each Ti is a tree. Then we now have

m
∑

i

|V (Ti)| = |V3|, |E(〈V3〉)| =
m
∑

i

|E(Ti)| =
m
∑

i

(|V (Ti)| − 1) = |V3| −m.

Let e(V3, V>4) = E(G∗) \ (E(〈V3〉)∪E(〈V>4〉)) (see Figure 4, for example). Since each
vertex in V3 has degree exactly three, we have

|e(V3, V>4)| = 3
m
∑

i

|V (Ti)| − 2
m
∑

i

|E(Ti)| = |V3|+ 2m.
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Here, let us count |E(〈V>4〉)|. By the above equations, we have

|E(〈V>4〉)| = 3n− 6− k − |E(〈V3〉)| − |e(V3, V>4)|

= 3n− 6− k − (|V3| −m)− (|V3|+ 2m)

= 3n− 6− k −m− 2|V3|

6 3n− 6− k −m− 2(2n− 4− 2k)

= −n+ 2 + 3k −m.

Then, by m > 1 and |E(〈V>4〉)| > 0, we have

n− 1 6 3k.

Therefore, we have k >
n−1
3
, and hence, |E(G)| 6 3n− 6− k 6

8
3
n− 17

3
.

Figure 4: The black vertices and white ones are members in V3 and V>4, respectively, and
the dotted segments are members in e(V3, V>4).

Next, we show that the estimation is best possible by constructing an infinite family
of plane graphs which have no ∆-face cycle with n vertices and 8

3
n− 17

3
edges as follows:

We prepare two graphs R and X shown in Figures 5 and 6, respectively. Then, as
shown in Figure 7, we glue R to X by identifying a, b and c and a′, b′ and c′, respectively.
Moreover, we repeatedly apply the above operation to the resulting graph (the right hand
of Figure 7), but from the second step, we identify a, d and c and a′, b′ and c′, respectively.

Then, it is easy to check that plane graphs constructed by the above operation have
no ∆-face cycle with n vertices and 8

3
n− 17

3
edges. Therefore, the lemma holds.

a

b

c

Figure 5: A graph R (7 vertices and 13 edges)

a′

b′

c′

d

Figure 6: A graph X (6 vertices and 8 edges)

Proof of Theorem 3. By combining Lemmas 6 and 7, we have |E(G)| 6 8
3
|V (G)| − 17

3

for any edge-critical uniquely 3-colorable planar graph G. Therefore, this completes the
proof of Theorem 3.
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a

b

c

a′

b′

c′

d

a

c

d

R X

Figure 7: A construction of a plane graph which has no ∆-face cycle with n vertices and
8
3
n− 17

3
edges

In this paper, we estimate the size of plane graphs with no ∆-face cycle, since such
graphs are edge-critical uniquely 3-colorable planar graphs. However, since Lemma 7 is
best possible, we have to find another structure of uniquely 3-colorable planar graphs to
improve Theorem 3.

3 Proof of Theorem 4

In [5], Mel’nikov and Steinberg stated that an infinite family of edge-critical uniquely
3-colorable planar graphs with n vertices and more than 2n− 3 edges can be obtained by
combining the graph K shown in Figure 8 several times. However, they did not clarify
its structure. Hence, we give a construction of an infinite family of edge-critical uniquely
3-colorable planar graphs with n vertices and 9

4
n− 6 edges.

baa

t

Figure 8: A graph K

Then we construct a graph Hk, as follows:

Prepare k triangles u1v1u2, u2v2u3, . . . , uk−1vk−1uk, ukvku1, where k > 5 is an odd
integer and for each i, ui is shared by exactly two triangles ui−1vi−1ui and uiviui+1 and
add edges u3uk, u5uk, . . . , uk−4uk (if k = 5, then we do not add u1u5 since there is a
triangle u5v5u1). Finally, we add two vertices x joined to v1, v2, . . . , vk−3, vk−2 and y
joined to vk−2, vk−1, vk. (For example, see Figure 9. If k = 7, then Hk is isomorphic to
the graph of Figure 1.)
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u1 u2 u1u3 u4 u5 u6 u7 u8 u9

x y

v1 v2 v3 v4 v5 v6 v7 v8 v9

1 2

3 3 3 3 3

3

331 1

1 1 2

2 2 2

2

1

1

Figure 9: H9

It is easy to see that Hk is planar and |V (Hk)| = n = 2k + 2 > 12. Moreover, since
deg(x) = k − 2, deg(y) = 3 and there exist edges uik (3 6 i 6 k − 4, i : odd), we have

|E(Hk)| = 3k + (k − 2) + 3 +

(

k − 1

2
− 2

)

=
9

2
k −

3

2

Hence, we have |E(Hk)| =
9
4
n − 6 by n = 2k + 2. Then, we shall prove the following

theorem. By the above equation, this theorem implies Theorem 4.

Theorem 8 For any odd integer k > 5, Hk is an edge-critical uniquely 3-colorable planar
graph.

Proof. We first show that Hk is uniquely 3-colorable. (finally, we have a unique 3-coloring
of Hk shown in Figure 9). It is not difficult to see that for each i (1 6 i 6 k− 4), ui, ui+3

and x correspond to a, b and t in the graph K shown in Figure 8, respectively. Hence, we
use the following claim. Moreover, since it is not difficult to check that the theorem holds
for H5 using the following claim, we suppose k > 7.

Claim 9 [5] Any 3-coloring of K assigns different colors to the vertices a and b.

Let c be a 3-coloring of Hk, and by Claim 9, we now have c(ui) 6= c(ui+3) for each i
(1 6 i 6 k − 4). Hence, without loss of generality, we may suppose that c(uk−4) = 1 and
c(uk−1) = 2. Then we have c(uk) = 3 and c(vk−1) = 1.

Firstly, we show c(x) = 2. If c(x) = 3, then we have c(vk−2) = 1, c(uk−2) = 3, c(uk−3) =
2 and c(vk−4) = 3, but this is a contradiction since an edge xvk−4 ∈ E(Hk). Hence we
suppose that c(x) = 1. Then we now have c(vk−2) = 3, c(y) = 2, c(vk) = 1, c(u1) =
2, c(v1) = 3 and c(u2) = 1. Since u3uk ∈ E(Hk) and c(uk) = 3, we have c(u3) = 2
and then c(v3) = 3 and c(u4) = 1. Then we next consider c(u5) similarly to c(u3). By
repeating the above argument, we have c(uk−5) = 1. However, this is a contradiction
since uk−5uk−4 ∈ E(Hk). Therefore, we have c(x) = 2.

Then, since c(uk−4) = 1 and c(x) = 2, we now have c(vk−5) = c(vk−4) = 3 and
c(uk−5) = c(uk−3) = 2. By uk−6uk ∈ E(Hk) and c(uk) = 3, we have c(uk−6) = 1, and
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hence, c(vk−6) = c(vk−7) = 3 and c(uk−7) = 2. By repeating this, we have the following
coloring for each i (2 6 i 6 k − 5);

c(ui) =

{

1 (i : odd)
2 (i : even)

}

, c(vi) = 3.

Finally, since we have c(u1) = 1 by c(uk) = 3 and c(u2) = 2, we can obtain c(v1) =
3, c(vk) = 2, c(y) = 3, c(vk−2) = 1, c(uk−2) = 3 and c(vk−3) = 1. Therefore, since the
3-coloring c is uniquely decided as shown in Figure 9, Hk is uniquely 3-colorable.

Next, we shall show that Hk is edge-critical. Let c be a unique coloring of Hk (for
example, see Figure 9. Observe that G1,2 and G1,3 are trees. Hence, it suffices to prove
that for any edge e which is contained in cycles in G2,3, Hk − e /∈ UC3. In G2,3, as shown
in Figure 9 for example, there exists a 4-cycle xvi−1uivi for each i (2 6 i 6 k − 5, i :
even). Hence, we need to consider the following two cases. For any edge e, let c′ be a new
3-coloring of Hk − e.

Case 1. Remove xvi−1 or vi−1ui (see Figure 10)

We re-color the vertices of Hk − xvi−1 (or vi−1ui) as follows (i 6 j 6 k − 5);

c′(uj) =

{

2 (j : odd)
3 (j : even)

}

, c′(vj) = 1,

c′(uk−4) = c′(uk−2) = c′(vk−1) = 2, c′(uk−3) = c′(uk−1) = c′(y) = 1,

c′(vk−3) = c′(vk−2) = 3.

Moreover, vi−1 can be re-colored by the third color since deg(vi−1) = 2. In this case,
since we do not change the color of x, c′ and c are distinct 3-colorings.

u1

x y

u1

2 1

31
2 11 1 2 22 3332

111111233 3 23
21

3

uk−4 uk

v1 v2 v3 v4 v5 v6

vk−7

vk

uk−5uk−6u2 u3 u4 u5 u6

vk−6 vk−5 vk−4

vk−3

vk−2 vk−1

uk−3

uk−2

uk−1

Figure 10: A new 3-coloring c′ of Hk − xvi−1 in Case 1 for fixed i = 4

Case 2. Remove xvi or uivi (see Figure 11)
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Similarly to Case 1, we re-color the vertices as follows (1 6 j 6 i);

c′(uj) =

{

2 (j : odd)
3 (j : even)

}

, c′(vj) = 1, c′(vk) = 1.

u1

x y

u1

2 3

32
1 22 2 1 11 2233

333332111 1 11
32

3

uk−4 uk

v1 v2 v3 v4 v5 v6

vk−7

vk

uk−5uk−6u2 u3 u4 u5 u6

vk−6 vk−5 vk−4

vk−3

vk−2 vk−1

uk−3

uk−2

uk−1

Figure 11: A new 3-coloring c′ of Hk − xvi in Case 2 for fixed i = 4

Moreover, vi can be re-colored by the third color since deg(vi) = 2. In this case, since
we do not change the color of x, c′ and c are distinct 3-colorings.

Therefore, since we can obtain distinct 3-colorings of the graph in both cases, Hk is
edge-critical. Hence we complete the proof.

4 Concluding Remarks

In this section, we describe the size of edge-critical uniquely 3-colorable abstract graphs.
Similarly to Lemma 6, it is not difficult to see that any edge-critical uniquely 3-colorable
graph has no wheel as its subgraphs. In [6], the size of any graph G which has no wheel as

its subgraphs is at most ⌊ |V (G)|2

4
⌋+⌊ |V (G)|+1

4
⌋. Hence, the size of any edge-critical uniquely

3-colorable abstract graph G is at most ⌊ |V (G)|2

4
⌋+ ⌊ |V (G)|+1

4
⌋.

We think that this estimation is not sharp similarly to our main results in this paper.
However, since the estimation in [6] is best possible, we have to find a “good” structure
to improve the estimation.
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