The size of edge-critical uniquely 3-colorable planar graphs

Naoki Matsumoto
Graduate School of Environment and Information Sciences
Yokohama National University, Japan

matsumoto-naoki-gn@ynu.ac.jp
Submitted: Mar 23, 2013; Accepted: Sep 19, 2013; Published: Sep 26, 2013
Mathematics Subject Classifications: 05C10, 05C15, 05C35

Abstract

A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if $G-e$ is not a uniquely k-colorable graph for any edge $e \in E(G)$. In this paper, we prove that if G is an edge-critical uniquely 3 -colorable planar graph, then $|E(G)| \leqslant \frac{8}{3}|V(G)|-\frac{17}{3}$. On the other hand, there exists an infinite family of edge-critical uniquely 3 -colorable planar graphs with n vertices and $\frac{9}{4} n-6$ edges. Our result gives a first non-trivial upper bound for $|E(G)|$.

Keywords: uniquely colorable; edge-critical; planar graph

1 Introduction

In this paper, we only deal with finite undirected simple graphs, and for any vertex subset U in a graph $G,\langle U\rangle$ means the subgraph of G induced by U.

A k-coloring of a graph G is a map $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that for any $u v \in E(G), c(u) \neq c(v)$. A graph G is k-colorable if there exists a k-coloring of G, and the chromatic number of G, denoted by $\chi(G)$, is the minimum number k such that G is k-colorable. A graph G is uniquely k-colorable if $k=\chi(G)$ and G has only one k-coloring up to permutation of the colors, where the coloring is called a unique k-coloring (note that if G is uniquely k-colorable, then it is clear that $|V(G)| \geqslant k$ by the definition). In other words, every two k-colorings of G produce the same partition of $V(G)$ into k independent subsets (color classes). Then, two k-colorings c and c^{\prime} are said to be distinct, denoted by $c \neq c^{\prime}$, if they produce two distinct partitions of $V(G)$ into k color classes. Moreover, we denote the set of uniquely k-colorable graphs by $U C_{k}$. For two distinct colors $i, j \in\{1,2, \ldots, k\}$ in a k-coloring c of a graph G, define $G_{i, j}=\left\langle c^{-1}(i) \cup c^{-1}(j)\right\rangle$. For uniquely k-colorable graphs, Harary et al. proved the following theorem.

Theorem 1 (Harary et al. [4]) If $c: V(G) \rightarrow\{1,2, \ldots, k\}$ is a unique k-coloring of $G \in U C_{k}$, then the graph $G_{i, j}$ is connected for all $i \neq j(i, j \in\{1,2, \ldots, k\})$.

If a graph G is uniquely 1 -colorable, then G has no edges. Hence, throughout this paper, we only consider $k \geqslant 2$ for any uniquely k-colorable graphs. Moreover, the following corollary holds by Theorem 1. (For other results and related topics, see [3].)

Corollary 2 If $G \in U C_{k}$ with $|V(G)| \geqslant n$, then G has at least $(k-1) n-\binom{k}{2}$ edges.
In this paper, we consider the size of edge-critical uniquely k-colorable planar graphs. For a graph $G \in U C_{k}, G$ is edge-critical if $G-e \notin U C_{k}$ for any edge $e \in E(G)$. However, since uniquely 5 -colorable planar graphs do not exist [2], we only consider edge-critical uniquely k-colorable planar graphs for $k \in\{2,3,4\}$.

By Corollary 2, if a uniquely k-colorable planar graph G has exactly $(k-1)|V(G)|-\binom{k}{2}$ edges, then G is edge-critical. Moreover, it is not difficult to see that any edge-critical uniquely 2-colorable planar graph G has at most $|V(G)|-1$ edges (that is, G is a tree). On the other hand, since every planar graph G has at most $3|V(G)|-6$ edges by Euler's formula, we have Table 1. (Following this, we denote the upper bound of the size of any edge-critical uniquely 3 -colorable planar graph by $f(n)$, where n is the number of vertices.) In Table 1, it is clear that $f(n)$ is at most $3 n-6$ by the planarity, but this is not a "good" bound.

k	Lower bound (Corollary 2)	Upper bound
2	$n-1$	$n-1$
3	$2 n-3$	$f(n)$
4	$3 n-6$	$3 n-6$

Table 1: The upper (or lower) bound of the size of any edge-critical uniquely k-colorable planar graph G, where $|V(G)|=n$ and $k \in\{2,3,4\}$.

In 1977, Aksionov [1] conjectured that $f(n)=2 n-3$. However, in the same year, Mel'nikov and Steinberg [5] disproved the conjecture by constructing a counterexample shown in Figure 1. Hence $f(n)$ is greater than $2 n-3$. However, we have not yet known any reasonable upper bound.

Our main results are the followings.
Theorem 3 If G is an edge-critical uniquely 3-colorable planar graph, then,

$$
|E(G)| \leqslant \frac{8}{3}|V(G)|-\frac{17}{3}
$$

Theorem 4 For any integer $n \geqslant 12$ such that $n \equiv 0(\bmod 4)$, there exists an edge-critical uniquely 3 -colorable planar graphs with n vertices and $\frac{9}{4} n-6$ edges.

Figure 1: This graph is a counterexample for Aksionov's conjecture with $n=16$ vertices and 30 edges, where $2 n-3 \neq 30$ and two $x^{\prime} s$ are the same vertices.

By our results, we have the following corollary.
Corollary 5 For any $n \geqslant 12$ such that $n \equiv 0(\bmod 4)$, we have

$$
\frac{9}{4} n-6 \leqslant f(n) \leqslant \frac{8}{3} n-\frac{17}{3} .
$$

In the next section, we prove Theorem 3. In Section 3, we construct an infinite family of edge-critical uniquely 3 -colorable planar graphs with n vertices and $\frac{9}{4} n-6$ edges.

2 Proof of Theorem 3

For a plane graph G, a Δ-face cycle $C=T_{1} T_{2} \ldots T_{k}$ is a subgraph of G which consists of the vertices and edges of T_{i} 's, where T_{i} is a triangular face and T_{i} and T_{i+1} share an edge for any $1 \leqslant i \leqslant k\left(T_{k+1}=T_{1}\right)$, see Figure 2 . Similarly to a Δ-face cycle, we define a Δ-face path $P=T_{0} T_{1} \ldots T_{l-1}$, where T_{0} and T_{l-1} do not share an edge. Note that any 3 -coloring of a Δ-face cycle and a Δ-face path is unique.

Figure 2: A Δ-face cycle C

Lemma 6 Let G be an edge-critical uniquely 3-colorable plane graph. Then G has no Δ-face cycle.

Proof. Suppose that G has a Δ-face cycle $C=T_{1} T_{2} \ldots T_{k}$, and let $T_{1}=e_{1} e_{k} e$ with $e_{1} \in E\left(T_{1}\right) \cap E\left(T_{2}\right)$ and $e_{k} \in E\left(T_{1}\right) \cap E\left(T_{k}\right)$, where $e=u v$ (see Figure 3).

Figure 3: Surrounding of T_{1}
Since $G \in U C_{3}$, there exists a unique coloring $c: V(G) \rightarrow\{1,2,3\}$. Moreover, since $G-e \notin U C_{3}$ by the assumption, there exists another coloring $c^{\prime}: V(G-e) \rightarrow\{1,2,3\}$ such that $c \neq c^{\prime}$. In this case, since the Δ-face path $P=T_{2} T_{3} \ldots T_{k}$ is uniquely 3-colorable, we now have $c^{\prime}(u) \neq c^{\prime}(v)$ (otherwise, it contradicts to G is 3-colorable since $e \in E(G)$). Therefore, we can obtain the coloring c^{\prime} of G by adding e to $G-e$, that is, there exist two distinct 3 -colorings c and c^{\prime} of G. However, this contradicts $G \in U C_{3}$.

Lemma 7 Let G be a plane graph with n vertices. If G has no Δ-face cycle, then $|E(G)| \leqslant$ $\frac{8}{3} n-\frac{17}{3}$, where this estimation is best possible.

Proof. It is well-known that any plane graph can be transformed into a triangulation (which is a plane graph such that each face is bounded by a cycle of length three) only by adding edges preserving the simpleness. Hence we regard G as a plane graph obtained from a triangulation T by removing k edges. (Since $|E(G)| \leqslant 3 n-6-k$ by $|E(T)|=3 n-6$, we finally show $k \geqslant \frac{n-1}{3}$.)

We consider the dual graph of G, denoted by G^{*}. Let V_{3} be the set of vertices of degree 3 in G^{*} (which is the set of triangular faces in G) and let $V_{\geqslant 4}=V\left(G^{*}\right) \backslash V_{3}$. We now have $\left|E\left(G^{*}\right)\right|=3 n-6-k$ and $\left|V_{3}\right| \geqslant 2 n-4-2 k$, since removing a single edge decreases the number of triangular faces by at most two in G and any triangulation with n vertices has $2 n-4$ triangular faces by Euler's formula. We may suppose that $V_{3} \neq \emptyset$, otherwise, the lemma holds since we have $|E(G)| \leqslant 2 n-4$ by $k \geqslant n-2$. Moreover, by the assumption, $\left\langle V_{3}\right\rangle$ is a forest (otherwise, G has a Δ-face cycle). Then, we let $\left\langle V_{3}\right\rangle=T_{1} \cup T_{2} \cup \cdots \cup T_{m}$, where each T_{i} is a tree. Then we now have

$$
\sum_{i}^{m}\left|V\left(T_{i}\right)\right|=\left|V_{3}\right|, \quad\left|E\left(\left\langle V_{3}\right\rangle\right)\right|=\sum_{i}^{m}\left|E\left(T_{i}\right)\right|=\sum_{i}^{m}\left(\left|V\left(T_{i}\right)\right|-1\right)=\left|V_{3}\right|-m .
$$

Let $e\left(V_{3}, V_{\geqslant 4}\right)=E\left(G^{*}\right) \backslash\left(E\left(\left\langle V_{3}\right\rangle\right) \cup E\left(\left\langle V_{\geqslant 4}\right\rangle\right)\right)$ (see Figure 4, for example). Since each vertex in V_{3} has degree exactly three, we have

$$
\left|e\left(V_{3}, V_{\geqslant 4}\right)\right|=3 \sum_{i}^{m}\left|V\left(T_{i}\right)\right|-2 \sum_{i}^{m}\left|E\left(T_{i}\right)\right|=\left|V_{3}\right|+2 m .
$$

Here, let us count $|E(\langle V \geqslant 4\rangle)|$. By the above equations, we have

$$
\begin{aligned}
\left|E\left(\left\langle V_{\geqslant 4}\right\rangle\right)\right| & =3 n-6-k-\left|E\left(\left\langle V_{3}\right\rangle\right)\right|-\left|e\left(V_{3}, V_{\geqslant 4}\right)\right| \\
& =3 n-6-k-\left(\left|V_{3}\right|-m\right)-\left(\left|V_{3}\right|+2 m\right) \\
& =3 n-6-k-m-2\left|V_{3}\right| \\
& \leqslant 3 n-6-k-m-2(2 n-4-2 k) \\
& =-n+2+3 k-m .
\end{aligned}
$$

Then, by $m \geqslant 1$ and $\left|E\left(\left\langle V_{\geqslant 4}\right\rangle\right)\right| \geqslant 0$, we have

$$
n-1 \leqslant 3 k .
$$

Therefore, we have $k \geqslant \frac{n-1}{3}$, and hence, $|E(G)| \leqslant 3 n-6-k \leqslant \frac{8}{3} n-\frac{17}{3}$.

Figure 4: The black vertices and white ones are members in V_{3} and $V_{\geqslant 4}$, respectively, and the dotted segments are members in $e\left(V_{3}, V_{\geqslant 4}\right)$.

Next, we show that the estimation is best possible by constructing an infinite family of plane graphs which have no Δ-face cycle with n vertices and $\frac{8}{3} n-\frac{17}{3}$ edges as follows:

We prepare two graphs R and X shown in Figures 5 and 6, respectively. Then, as shown in Figure 7, we glue R to X by identifying a, b and c and a^{\prime}, b^{\prime} and c^{\prime}, respectively. Moreover, we repeatedly apply the above operation to the resulting graph (the right hand of Figure 7), but from the second step, we identify a, d and c and a^{\prime}, b^{\prime} and c^{\prime}, respectively.

Then, it is easy to check that plane graphs constructed by the above operation have no Δ-face cycle with n vertices and $\frac{8}{3} n-\frac{17}{3}$ edges. Therefore, the lemma holds.

Figure 5: A graph R (7 vertices and 13 edges) Figure 6: A graph X (6 vertices and 8 edges)
Proof of Theorem 3. By combining Lemmas 6 and 7, we have $|E(G)| \leqslant \frac{8}{3}|V(G)|-\frac{17}{3}$ for any edge-critical uniquely 3 -colorable planar graph G. Therefore, this completes the proof of Theorem 3.

Figure 7: A construction of a plane graph which has no Δ-face cycle with n vertices and $\frac{8}{3} n-\frac{17}{3}$ edges

In this paper, we estimate the size of plane graphs with no Δ-face cycle, since such graphs are edge-critical uniquely 3 -colorable planar graphs. However, since Lemma 7 is best possible, we have to find another structure of uniquely 3-colorable planar graphs to improve Theorem 3.

3 Proof of Theorem 4

In [5], Mel'nikov and Steinberg stated that an infinite family of edge-critical uniquely 3 -colorable planar graphs with n vertices and more than $2 n-3$ edges can be obtained by combining the graph K shown in Figure 8 several times. However, they did not clarify its structure. Hence, we give a construction of an infinite family of edge-critical uniquely 3 -colorable planar graphs with n vertices and $\frac{9}{4} n-6$ edges.

Figure 8: A graph K
Then we construct a graph H_{k}, as follows:
Prepare k triangles $u_{1} v_{1} u_{2}, u_{2} v_{2} u_{3}, \ldots, u_{k-1} v_{k-1} u_{k}, u_{k} v_{k} u_{1}$, where $k \geqslant 5$ is an odd integer and for each i, u_{i} is shared by exactly two triangles $u_{i-1} v_{i-1} u_{i}$ and $u_{i} v_{i} u_{i+1}$ and add edges $u_{3} u_{k}, u_{5} u_{k}, \ldots, u_{k-4} u_{k}$ (if $k=5$, then we do not add $u_{1} u_{5}$ since there is a triangle $u_{5} v_{5} u_{1}$). Finally, we add two vertices x joined to $v_{1}, v_{2}, \ldots, v_{k-3}, v_{k-2}$ and y joined to v_{k-2}, v_{k-1}, v_{k}. (For example, see Figure 9. If $k=7$, then H_{k} is isomorphic to the graph of Figure 1.)

Figure 9: H_{9}

It is easy to see that H_{k} is planar and $\left|V\left(H_{k}\right)\right|=n=2 k+2 \geqslant 12$. Moreover, since $\operatorname{deg}(x)=k-2, \operatorname{deg}(y)=3$ and there exist edges $u_{i} k(3 \leqslant i \leqslant k-4, i$: odd), we have

$$
\left|E\left(H_{k}\right)\right|=3 k+(k-2)+3+\left(\frac{k-1}{2}-2\right)=\frac{9}{2} k-\frac{3}{2}
$$

Hence, we have $\left|E\left(H_{k}\right)\right|=\frac{9}{4} n-6$ by $n=2 k+2$. Then, we shall prove the following theorem. By the above equation, this theorem implies Theorem 4.

Theorem 8 For any odd integer $k \geqslant 5, H_{k}$ is an edge-critical uniquely 3-colorable planar graph.

Proof. We first show that H_{k} is uniquely 3-colorable. (finally, we have a unique 3-coloring of H_{k} shown in Figure 9). It is not difficult to see that for each $i(1 \leqslant i \leqslant k-4), u_{i}, u_{i+3}$ and x correspond to a, b and t in the graph K shown in Figure 8, respectively. Hence, we use the following claim. Moreover, since it is not difficult to check that the theorem holds for H_{5} using the following claim, we suppose $k \geqslant 7$.

Claim 9 [5] Any 3-coloring of K assigns different colors to the vertices a and b.
Let c be a 3 -coloring of H_{k}, and by Claim 9, we now have $c\left(u_{i}\right) \neq c\left(u_{i+3}\right)$ for each i $(1 \leqslant i \leqslant k-4)$. Hence, without loss of generality, we may suppose that $c\left(u_{k-4}\right)=1$ and $c\left(u_{k-1}\right)=2$. Then we have $c\left(u_{k}\right)=3$ and $c\left(v_{k-1}\right)=1$.

Firstly, we show $c(x)=2$. If $c(x)=3$, then we have $c\left(v_{k-2}\right)=1, c\left(u_{k-2}\right)=3, c\left(u_{k-3}\right)=$ 2 and $c\left(v_{k-4}\right)=3$, but this is a contradiction since an edge $x v_{k-4} \in E\left(H_{k}\right)$. Hence we suppose that $c(x)=1$. Then we now have $c\left(v_{k-2}\right)=3, c(y)=2, c\left(v_{k}\right)=1, c\left(u_{1}\right)=$ $2, c\left(v_{1}\right)=3$ and $c\left(u_{2}\right)=1$. Since $u_{3} u_{k} \in E\left(H_{k}\right)$ and $c\left(u_{k}\right)=3$, we have $c\left(u_{3}\right)=2$ and then $c\left(v_{3}\right)=3$ and $c\left(u_{4}\right)=1$. Then we next consider $c\left(u_{5}\right)$ similarly to $c\left(u_{3}\right)$. By repeating the above argument, we have $c\left(u_{k-5}\right)=1$. However, this is a contradiction since $u_{k-5} u_{k-4} \in E\left(H_{k}\right)$. Therefore, we have $c(x)=2$.

Then, since $c\left(u_{k-4}\right)=1$ and $c(x)=2$, we now have $c\left(v_{k-5}\right)=c\left(v_{k-4}\right)=3$ and $c\left(u_{k-5}\right)=c\left(u_{k-3}\right)=2$. By $u_{k-6} u_{k} \in E\left(H_{k}\right)$ and $c\left(u_{k}\right)=3$, we have $c\left(u_{k-6}\right)=1$, and
hence, $c\left(v_{k-6}\right)=c\left(v_{k-7}\right)=3$ and $c\left(u_{k-7}\right)=2$. By repeating this, we have the following coloring for each $i(2 \leqslant i \leqslant k-5)$;

$$
c\left(u_{i}\right)=\left\{\begin{array}{ll}
1 & (i: \text { odd }) \\
2 & (i: \text { even })
\end{array}\right\}, \quad c\left(v_{i}\right)=3 .
$$

Finally, since we have $c\left(u_{1}\right)=1$ by $c\left(u_{k}\right)=3$ and $c\left(u_{2}\right)=2$, we can obtain $c\left(v_{1}\right)=$ $3, c\left(v_{k}\right)=2, c(y)=3, c\left(v_{k-2}\right)=1, c\left(u_{k-2}\right)=3$ and $c\left(v_{k-3}\right)=1$. Therefore, since the 3 -coloring c is uniquely decided as shown in Figure $9, H_{k}$ is uniquely 3 -colorable.

Next, we shall show that H_{k} is edge-critical. Let c be a unique coloring of H_{k} (for example, see Figure 9. Observe that $G_{1,2}$ and $G_{1,3}$ are trees. Hence, it suffices to prove that for any edge e which is contained in cycles in $G_{2,3}, H_{k}-e \notin U C_{3}$. In $G_{2,3}$, as shown in Figure 9 for example, there exists a 4 -cycle $x v_{i-1} u_{i} v_{i}$ for each $i(2 \leqslant i \leqslant k-5, i$: even). Hence, we need to consider the following two cases. For any edge e, let c^{\prime} be a new 3-coloring of $H_{k}-e$.

Case 1. Remove $x v_{i-1}$ or $v_{i-1} u_{i}$ (see Figure 10)
We re-color the vertices of $H_{k}-x v_{i-1}$ (or $v_{i-1} u_{i}$) as follows $(i \leqslant j \leqslant k-5$);

$$
\begin{gathered}
c^{\prime}\left(u_{j}\right)=\left\{\begin{array}{cc}
2 & (j: \text { odd }) \\
3 & (j: \text { even })
\end{array}\right\}, \quad c^{\prime}\left(v_{j}\right)=1, \\
c^{\prime}\left(u_{k-4}\right)=c^{\prime}\left(u_{k-2}\right)=c^{\prime}\left(v_{k-1}\right)=2, \quad c^{\prime}\left(u_{k-3}\right)=c^{\prime}\left(u_{k-1}\right)=c^{\prime}(y)=1, \\
c^{\prime}\left(v_{k-3}\right)=c^{\prime}\left(v_{k-2}\right)=3
\end{gathered}
$$

Moreover, v_{i-1} can be re-colored by the third color since $\operatorname{deg}\left(v_{i-1}\right)=2$. In this case, since we do not change the color of x, c^{\prime} and c are distinct 3 -colorings.

Figure 10: A new 3 -coloring c^{\prime} of $H_{k}-x v_{i-1}$ in Case 1 for fixed $i=4$

Case 2. Remove $x v_{i}$ or $u_{i} v_{i}$ (see Figure 11)

Similarly to Case 1 , we re-color the vertices as follows $(1 \leqslant j \leqslant i)$;

$$
c^{\prime}\left(u_{j}\right)=\left\{\begin{array}{cc}
2 & (j: \text { odd }) \\
3 & (j: \text { even })
\end{array}\right\}, \quad c^{\prime}\left(v_{j}\right)=1, \quad c^{\prime}\left(v_{k}\right)=1 .
$$

Figure 11: A new 3-coloring c^{\prime} of $H_{k}-x v_{i}$ in Case 2 for fixed $i=4$
Moreover, v_{i} can be re-colored by the third color since $\operatorname{deg}\left(v_{i}\right)=2$. In this case, since we do not change the color of x, c^{\prime} and c are distinct 3 -colorings.

Therefore, since we can obtain distinct 3-colorings of the graph in both cases, H_{k} is edge-critical. Hence we complete the proof.

4 Concluding Remarks

In this section, we describe the size of edge-critical uniquely 3-colorable abstract graphs. Similarly to Lemma 6, it is not difficult to see that any edge-critical uniquely 3 -colorable graph has no wheel as its subgraphs. In [6], the size of any graph G which has no wheel as its subgraphs is at most $\left\lfloor\frac{|V(G)|^{2}}{4}\right\rfloor+\left\lfloor\frac{|V(G)|+1}{4}\right\rfloor$. Hence, the size of any edge-critical uniquely 3-colorable abstract graph G is at most $\left\lfloor\frac{|V(G)|^{2}}{4}\right\rfloor+\left\lfloor\frac{|V(G)|+1}{4}\right\rfloor$.

We think that this estimation is not sharp similarly to our main results in this paper. However, since the estimation in [6] is best possible, we have to find a "good" structure to improve the estimation.

References

[1] V. A. Aksionov, On uniquely 3-colorable planar graphs, Discrete Math. 20 (1977), 209-216.
[2] G. Chartrand and D. P. Geller, On uniquely colorable planar graphs, J. Combin. Theory 6 (1969), 271-278.
[3] T. Fowler, Unique Coloring of Planar Graphs, Ph.D. thesis, Georgia Institute of Technology Mathematics Department, (1998).
[4] F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colorable graphs, J. Combin. Theory 6 (1969), 264-270.
[5] L. S. Mel'nikov and R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977), 203-206.
[6] J. W. Moon, On extremal graphs containing no wheels, Acta Math. Acad. Sci. Hungar. 16 (1965), 13-18.

