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Abstract

Linked partitions were introduced by Dykema in the study of transforms in
free probability theory, whereas permutation tableaux were introduced by Ste-
ingŕımsson and Williams in the study of totally positive Grassmannian cells. Let
[n] = {1, 2, . . . , n}. Let L(n, k) denote the set of linked partitions of [n] with k blocks,
let P (n, k) denote the set of permutations of [n] with k descents, and let T (n, k)
denote the set of permutation tableaux of length n with k rows. Steingŕımsson and
Williams found a bijection between the set of permutation tableaux of length n
with k rows and the set of permutations of [n] with k weak excedances. Corteel and
Nadeau gave a bijection between the set of permutation tableaux of length n with
k columns and the set of permutations of [n] with k descents. In this paper, we es-
tablish a bijection between L(n, k) and P (n, k− 1) and a bijection between L(n, k)
and T (n, k). Restricting the latter bijection to noncrossing linked partitions and
nonnesting linked partitions, we find that the corresponding permutation tableaux
can be characterized by pattern avoidance.

Keywords: linked partition; permutation; descent; permutation tableau.

the electronic journal of combinatorics 20(3) (2013), #P53 1



1 Introduction

The notion of linked partitions was introduced by Dykema [8] in the study of the un-
symmetrized T-transform in free probability theory. Let [n] = {1, 2, . . . , n}. A linked
partition of [n] is a collection of nonempty subsets B1, B2, . . . , Bk of [n], called blocks,
such that the union of B1, B2, . . . , Bk is [n] and any two distinct blocks are nearly dis-
joint. Two blocks Bi and Bj are said to be nearly disjoint if for any k ∈ Bi ∩ Bj, one of
the following conditions holds:

(a) k = min(Bi), |Bi| > 1 and k 6= min(Bj), or

(b) k = min(Bj), |Bj| > 1 and k 6= min(Bi).

The linear representation of a linked partition was introduced by Chen, Wu and Yan
[1]. For a linked partition τ of [n], list the n vertices in a horizontal line with labels
1, 2, . . . , n. For a block B = {i1, i2, . . . , ik} with k > 2 and i1 < i2 < · · · < ik, draw an
arc from i1 to ij for j = 2, . . . , k. For example, the linear representation of the linked
partition {1, 2, 4}{2, 3}{3, 9}{5, 6}{6, 7}{8} is illustrated in Figure 1.1.

r r r r r r r r r
1 2 3 4 5 6 7 8 9

Figure 1.1: The linear representation of a linked partition.

For i < j, we use a pair (i, j) to denote an arc from i to j, and we call i and j the left-
hand endpoint and the right-hand endpoint of (i, j), respectively. Two arcs (i1, j1) and
(i2, j2) form a crossing if i1 < i2 < j1 < j2, and form a nesting if i1 < i2 < j2 < j1. For the
linked partition in Figure 1.1, there is one crossing formed by (1, 4) and (3, 9), while there
are three nestings: (1, 4) and (2, 3), (3, 9) and (5, 6), (3, 9) and (6, 7). A linked partition is
called noncrossing (resp., nonnesting) if there does not exist any crossing (resp., nesting)
in its linear representation. Dykema [8] showed that the number of noncrossing linked
partitions of [n + 1] is equal to the n-th large Schröder number. The sequence of the
large Schröder numbers is listed as A006318 in OEIS [9]. Chen, Wu and Yan [1] found a
bijective proof of this fact and proved that the number of nonnesting linked partitions of
[n] is also equal to the number of noncrossing linked partitions of [n].

Permutation tableaux were introduced by Steingŕımsson and Williams [11] in the
study of totally positive Grassmannian cells. They are closely related to the PASEP
(partially asymmetric exclusion process) model in statistical physics [2, 4, 5, 6]. Permuta-
tion tableaux are also in one-to-one correspondence with alternative tableaux introduced
by Viennot [12]. More precisely, a permutation tableau is defined as a Ferrers diagram
possibly with empty rows such that the cells are filled with 0’s and 1’s, and

(1) each column contains at least one 1;

(2) there does not exist any 0 with a 1 above (in the same column) and a 1 to the left
(in the same row).
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The length of a permutation tableau is defined as the number of rows plus the number
of columns. A permutation tableau T of length n is labeled by the elements in [n] in
increasing order from the top right corner to the bottom left corner, see Figure 1.2. We
use (i, j) to denote the cell in row i and column j. The shape of a permutation tableau T
is meant to be the shape of the underlying Ferrers diagram of T with empty rows allowed.
In other words, the shape of T is a partition (λ1, λ2, . . . , λk), where λi is the number of
cells in i-th row of the underlying Ferrers diagram of T , for i = 1, 2, . . . , k. For example,
Figure 1.2 gives a permutation tableau of shape (5, 5, 3, 2, 1, 0) and length 11.

1

2

5

7

9

11

34

6

8

10

1

0

0

0

1

0

1

0

0

0

0

1

1

1

0

1

Figure 1.2: A permutation tableau of length 11 with shape (5, 5, 3, 2, 1, 0).

Corteel and Nadeau [3] found a bijection from permutation tableaux of length n with
k columns and permutations of [n] with k descents. Steingŕımsson and Williams [11]
established a one-to-one correspondence between permutation tableaux of length n with
k rows and permutations of [n] with k weak excedances.

This paper aims to demonstrate that linked partitions play a role as an intermediate
structure between permutations and permutation tableaux. To this end, we present a
bijection between linked partitions and permutations, and a bijection between linked
partitions and permutation tableaux. In fact, the first bijection maps a linked partition
of [n] with k blocks to a permutation of [n] with k− 1 descents, and the second bijection
transforms a linked partition of [n] with k blocks to a permutation tableau of length n
with k rows.

Combining the above two bijections, we are led to a one-to-one correspondence be-
tween permutations and permutation tableaux, which implies some known properties of
permutation tableaux obtained by Corteel and Nadeau [3] and Steingŕımsson and Williams
[11].

When restricting the second bijection to noncrossing linked partitions, we find that
the corresponding permutation tableaux are exactly those that avoid a pattern J2. Simi-
larly, when restricting this bijection to nonnesting linked partitions, we get permutation
tableaux that avoid a pattern I2. The definitions of the patterns I2 and J2 are given in
Section 4.
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2 Linked partitions and permutations

In this section, we present a bijection between linked partitions of [n] with k blocks and
permutations of [n] with k − 1 descents.

To describe the construction of this bijection, we give a classification of vertices in the
linear representation of a linked partition. Let τ be a linked partition of [n]. A vertex i
in the linear representation of τ is called an origin if it is only a left-hand endpoint, or a
transient if it is both a left-hand point and a right-hand endpoint, or a singleton if it is an
isolated vertex, or a destination if it is only a right-hand endpoint. Figure 2.1 illustrates
the four types of vertices.

q q q q
origin transient singleton destination

Figure 2.1: Four types of vertices in linked partitions.

Let L(n, k) denote the set of linked partitions of [n] with k blocks. Let π = π1π2 · · · πn
be a permutation of [n]. An integer i (1 6 i 6 n− 1) is called a decent (resp., ascent) of
π if πi > πi+1 (resp., πi < πi+1). Let P (n, k) denote the set of permutations of [n] with k
descents, which is counted by the Eulerian number A(n, k + 1), see, for example, Stanley
[10].

Theorem 2.1. For n > 1 and 1 6 k 6 n, there is a bijection ϕ between L(n, k) and
P (n, k − 1).

Proof. We conduct induction on n. If n = 1, that is, τ = {1}. In this case, we have k = 1.
Then we set ϕ(τ) = 1, which is a permutation with no descent. So the theorem holds for
n = 1.

We now assume that n > 2 and that the theorem holds for n−1. We aim to construct
a map ϕ from L(n, k) to P (n, k − 1), which is easily seen to be a bijection. To define
ϕ, let τ ∈ L(n, k) be a linked partition of [n] with k blocks and let τ ′ denote the linked
partition of [n−1] obtained from τ by removing the vertex n along with the arcs possibly
associated to n. Starting with ϕ(τ ′), we proceed to generate a permutation ϕ(τ) of [n]
with k − 1 descents.

Suppose that τ ′ contains s blocks. Notice that n is either a singleton or a destination
in τ . If n is a singleton, then it is clear that s = k− 1; if n is a destination, then we have
s = k. By the induction hypothesis, ϕ(τ ′) is a permutation of [n− 1] with s− 1 descents.
Now ϕ(τ) can be defined by inserting n into the permutation ϕ(τ ′). More precisely, let
ϕ(τ ′) = π1π2 · · · πn−1. Let i1, i2, . . . , is be the minimum elements of blocks in τ ′ listed
in increasing order, and let j1, j2, . . . , jt be the destinations of τ ′ listed also in increasing
order. Clearly, we have t = n − 1 − s. Assume that m is the minimum element in the
block of τ that contains n. To ensure that ϕ is a bijection, we need to find a position to
insert n into ϕ(τ ′) such that the inserting procedure is reversible. There are four cases.
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Case 1: m = ir, where 1 6 r 6 s − 1, that is, there is an arc (ir, n) in the linear
representation of τ . Set

ϕ(τ) = π1π2 · · · π` nπ`+1 · · · πn−1, (2.1)

where ` is the r-th descent of ϕ(τ ′) from left to right.
Case 2: m = is. Set

ϕ(τ) = ϕ(τ ′)n.

Case 3: m = jr, where 1 6 r 6 t. Set

ϕ(τ) = π1π2 · · · π` nπ`+1 · · · πn−1,

where ` is the r-th ascent in ϕ(τ ′) from left to right.
Case 4: m = n, that is, n is a singleton in τ . Set

ϕ(τ) = nϕ(τ ′).

Clearly, ϕ(τ) is a permutation of [n] in any of the above cases. It remains to prove
that ϕ(τ) has k − 1 descents. Here we shall only give the proof for Case 1, since the
other cases can be justified by the same reasoning. In Case 1, there is an arc (m,n) in
τ , where m is the minimum element of a block of τ . Hence τ ′ has the same number of
blocks as τ , namely, τ ′ belongs to L(n− 1, k). By the induction hypothesis, ϕ(τ ′) belongs
to P (n − 1, k − 1). It is clear from (2.1) that ϕ(τ) has the same number of descents as
ϕ(τ ′). Thus ϕ(τ) has k − 1 descents.

It is not difficult to see that the above procedure is reversible. Hence the map ϕ is a
bijection, and the proof is complete by induction.

For example, Figure 2.2 illustrates the linked partitions of {1, 2, 3} and the correspond-
ing permutations.

123

r r r
1 2 3

{1, 2, 3}

132

r r r
1 2 3

{1, 2}{2, 3}

231

r r r
1 2 3

{1, 3}{2}

312

r r r
1 2 3

{1, 2}{3}

213

r r r
1 2 3

{1}{2, 3}

321

r r r
1 2 3

{1}{2}{3}

Figure 2.2: Linked partitions of {1, 2, 3} and the corresponding permutations.

3 Linked partitions and permutation tableaux

The objective of this section is to present a bijection between linked partitions of [n]
with k blocks and permutation tableaux of length n with k rows. As consequences, we
obtain equidistribution properties between linked partitions and permutation tableaux
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with certain restrictions. For example, we find that the number of permutation tableaux
of length n with k rightmost restricted 0’s is equal to the number of linked partitions
of [n] with k transients. Our bijections also lead to some known results on permutation
tableaux obtained by Corteel and Nadeau [3] and Steingŕımsson and Williams [11].

To construct the bijection between linked partitions and permutation tableaux, we
introduce the shape of a linked partition. Let τ be a linked partition of [n]. Using the
linear representation of τ , we obtain a sequence S = s1s2 · · · sn by letting si = H if i is a
destination, and si = V otherwise, where H stands for the horizontal step (−1, 0) and V
stands for the vertical step (0,−1). Consider the sequence S as a lattice path, and let λ
be the Ferrers diagram of a partition having the lattice path S as its boundary from the
top right corner to the bottom left corner. This partition λ with empty parts allowed is
defined as the shape of the linked partition τ . For example, Figure 3.1 demonstrates the
shape of the linked partition in Figure 1.1.

Figure 3.1: The shape of linked partition {1, 2, 4}{2, 3}{3, 9}{5, 6}{6, 7}{8}.

The construction of our bijection also requires a fact proved by Corteel and Nadeau
[3] that a permutation tableau is determined by its topmost 1’s and rightmost restricted
0’s. By a topmost 1 we mean the topmost 1 in a column. A 0 is said to be restricted if it
is below a 1 in the same column. A rightmost restricted 0 means the rightmost restricted
0 in a row. For example, in the permutation tableau in Figure 1.2, the topmost 1’s are in
the cells (1, 4), (1, 10), (2, 3), (2, 8) and (5, 6), while the rightmost restricted 0’s are in the
cells (2, 10), (5, 8) and (7, 8). To see that a permutation tableau is uniquely determined
by its topmost 1’s and rightmost restricted 0’s, it suffices to observe the fact that if the
positions of topmost 1’s are given, then all the cells above these positions (in the same
columns) are filled with 0’s; if the positions of the rightmost restricted 0’s are given, then
all the cells to the left of these positions (in the same rows) are filled with 0’s; and the
remaining cells are filled with 1’s.

Let T (n, k) denote the set of permutation tableaux of length n with k rows. We have
the following correspondence and the explicit construction is given in the proof.

Theorem 3.1. For n > 1 and 1 6 k 6 n, there is a shape preserving bijection φ between
L(n, k) and T (n, k).
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Proof. Let τ be a linked partition in L(n, k). We construct a permutation tableau T =
φ(τ) of the same shape as τ .

First, we generate the shape λ of τ , and label the boundary of λ by using the elements
of [n] in increasing order from the top right corner to the bottom left corner.

Next, we fill the cells of the diagram of λ with topmost 1’s and rightmost restricted
0’s. Let i1 be the minimum origin in τ , and let j be the largest destination such that
there exists a path (i1, i2, . . . , im, j) from i1 to j in the linear representation of τ . Then
we fill the cell (i1, j) with 1. For ` = 2, . . . ,m, we fill the cells (i`, j) with 0.

Let τ ′ be the linked partition of [n] obtained from τ by removing the arcs in the path
(i1, i2, . . . , im, j). Repeating the above process for τ ′, we can fill each column with a 1
possibly along with some 0’s until there are no arcs left in the linear representation of τ .

Finally, we obtain a permutation tableau T for which the 1’s and 0’s filled in λ are
the topmost 1’s and rightmost restricted 0’s of T , respectively.

The inverse map of φ can be described as follows. Let T be a permutation tableau
of length n and shape λ. We construct a linked partition τ of [n] such that T =
φ(τ). For the column labeled with j, let (i1, j) be the cell filled with a topmost 1
and (i2, j), (i3, j), . . . , (im, j) be the cells filled with the rightmost restricted 0’s. For
` = 1, 2, . . . ,m, let (i`, i`+1) be an arc in the linear representation of τ , where im+1 = j.
Note that there is a unique topmost 1 in each column and at most one rightmost restricted
0 in each row. Thus, for any vertex j in τ , there is at most one arc whose right-hand
endpoint is j. This implies that τ is a linked partition of [n]. Moreover, it is not difficult
to see that T and τ have the same shape. This completes the proof.

For example, the permutation tableau corresponding to the linked partition in Figure
1.1 is given in Figure 3.2.
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1
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1

1

Figure 3.2: From a linked partition to a permutation tableau.

For the permutation tableau given in Figure 1.2, the corresponding linked partition is
given in Figure 3.3.

The bijection φ has the following properties.
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q q q q q q q q q q q
1 2 3 4 5 6 7 8 9 10 11

Figure 3.3: The linked partition corresponding to the permutation tableau in Figure 1.2.

Corollary 3.2. For n > 1, let τ be a linked partition of [n], and let T = φ(τ). Then the
number of arcs in the linear representation of τ is equal to the total number of topmost
1’s and rightmost restricted 0’s in T .

Corollary 3.3. Assume that n > 2.

(1) For 0 6 k 6 n − 2, the number of linked partitions of [n] with k transients equals
the number of permutation tableaux of length n with k rightmost restricted 0’s;

(2) For 0 6 k 6 n, the number of linked partitions of [n] with k singletons equals the
number of permutation tableaux of length n in which there are k rows that do not
contain any topmost 1 or restricted 0.

To conclude this section, we remark that the bijections ϕ and φ lead to some known
results on permutation tableaux. Recall that P (n, k) denotes the set of permutations of
[n] with k descents and T (n, k) denotes the set of permutation tableaux of length n with
k rows. Let P ′(n, k) be the set of permutations of [n] with k excedances, and T ′(n, k)
be the set of permutation tableaux of length n with k columns. On one hand, since
|P (n, k − 1)| = |P (n, n− k)|, we see that |T (n, k)| = |P (n, n− k)|, which is equivalent to
the relation |T ′(n, k)| = |P (n, k)| given by Corteel and Nadeau [3]. On the other hand,
it is well-known that |P (n, k − 1)| = |P ′(n, k)|, see, for example, Stanley [10, Chapter
1]. This implies the relation |T (n, k)| = |P ′(n, k)| proved by Steingŕımsson and Williams
[11].

4 Pattern avoiding permutation tableaux

In this section, we discuss restrictions of the bijection φ in Section 3 to noncrossing
linked partitions and nonnesting linked partitions, and we characterize the corresponding
permutation tableaux by pattern avoidance.

We introduce two patterns I2 and J2 as given in Figure 4.1, where a dot means a
topmost 1 or a rightmost restricted 0 in a permutation tableau. We choose I2 and J2
to denote these two patterns because It and Jt are used to stand for a diagonal chain of
length t and an antidiagonal chain of length t in the context of fillings of Ferrers diagrams,
see de Mier [7].

A permutation tableau that avoids the pattern I2 or the pattern J2 can be defined as
follows. Let T be a permutation tableau, and let T ′ be the permutation tableau obtained
from T by replacing the topmost 1’s and rightmost restricted 0’s by dots and removing
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s
s

I2

...
...· · ·

· · ·

· · ·

j2 j1

i2

i1 s
s

J2

...
...· · ·

· · ·

· · ·

j2 j1

i2

i1

Figure 4.1: Patterns I2 and J2.

all other 1’s and 0’s. We say that T avoids the pattern I2 if T ′ does not contain four cells
(i1, j1), (i1, j2), (i2, j1) and (i2, j2), where i1 < i2 < j1 < j2, such that the cells (i1, j2) and
(i2, j1) are filled with dots, while the cell (i2, j2) is empty. Similarly, we say that T avoids
the pattern J2 if T ′ does not contain four cells (i1, j1), (i1, j2), (i2, j1) and (i2, j2), where
i1 < i2 < j1 < j2, such that the cells (i1, j1) and (i2, j2) are filled with dots, while the
cell (i2, j1) is empty. For example, Figure 4.2 gives a permutation tableau avoiding the
pattern I2. Note that this permutation tableau contains the pattern J2, as exemplified by
the cells {(1, 3), (1, 6), (2, 3), (2, 6)}.

1

2

4

5

8

9

3

67

10111213

s

s

s

s s s

s s s

Figure 4.2: A permutation tableau avoiding I2.

By the construction of the bijection φ in Section 3, we obtain characterizations of per-
mutation tableaux corresponding to noncrossing linked partitions and nonnesting linked
partitions. To be more specific, we have the following correspondences.

Theorem 4.1. For n > 1, there is a bijection between noncrossing linked partitions of
[n] and J2-avoiding permutation tableaux of length n, and there is a bijection between
nonnesting linked partitions of [n] and I2-avoiding permutation tableaux of length n.

Since the number of noncrossing linked partitions of [n] equals the number of nonnest-
ing linked partitions of [n], see Chen, Wu and Yan [1], one sees that the number of J2-
avoiding permutation tableaux of length n equals the number of I2-avoiding permutation
tableaux of length n.
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