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Abstract

Each positive rational number x > 0 can be written uniquely as x = a/(b− a)
for coprime positive integers 0 < a < b. We will identify x with the pair (a, b).
In this paper we define for each positive rational x > 0 a simplicial complex
Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial com-
plex of dimension a − 2, and its maximal faces are counted by the rational Catalan
number

Cat(x) = Cat(a, b) :=
(a + b− 1)!

a! b!
.

The cases (a, b) = (n, n + 1) and (a, b) = (n, kn + 1) recover the classical asso-
ciahedron and its “Fuss-Catalan” generalization studied by Athanasiadis-Tzanaki
and Fomin-Reading. We prove that Ass(a, b) is shellable and give nice product for-
mulas for its h-vector (the rational Narayana numbers) and f -vector (the rational
Kirkman numbers). We define Ass(a, b) via rational Dyck paths: lattice paths from
(0, 0) to (b, a) staying above the line y = a

bx. We also use rational Dyck paths
to define a rational generalization of noncrossing perfect matchings of [2n]. In the
case (a, b) = (n,mn + 1), our construction produces the noncrossing partitions of
[(m + 1)n] in which each block has size m + 1.
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1 Motivation

The classical Catalan numbers Cat(n) are parametrized by a positive integer n. In this
paper we will study a Catalan number Cat(x) ∈ Z>0 defined for every positive rational
number x which agrees with the classical Catalan number when x is an integer. These
‘rational Catalan numbers’ have additional number theoretic structure coming from the
Euclidean algorithm. In this paper we initiate the systematic study of rational Catalan
combinatorics by generalizing Dyck paths, the associahedron, noncrossing perfect match-
ings, and noncrossing partitions to this rational setting. These rational generalizations
are further generalizations of the so-called ‘Fuss analogs’ and share many of the nice com-
binatorial properties of their classical counterparts. In a companion paper [ALW], the
first author, Loehr, and Warrington will develop rational analogs of parking functions
and their associated q, t-statistics.

The classical Catalan numbers1

Cat(n, n+ 1) =
1

n+ 1

(
2n

n

)
are among the most important sequences in combinatorics. As of this writing, they are
known to count at least 201 distinct families of combinatorial objects [Stan]. For our
current purpose, the following three are the most important:

1. Dyck paths from (0, 0) to (n, n),

2. Triangulations of a convex (n+ 2)-gon, and

3. Noncrossing partitions of [n] := {1, 2, . . . , n}.

There are two observations that have spurred recent progress in this field. The first is
that Catalan objects are revealed to be “type A” phenomena (corresponding to the sym-
metric group) when properly interpreted in the context of reflection groups. The second
is that many definitions of Catalan objects can be further generalized to accommodate an
additional parameter, so that the resulting objects are counted by Fuss-Catalan numbers
(see [Arm, Chapter 5]).

Both of these generalizations can be motivated from Garsia’s and Haiman’s [GH]
observation that the Catalan numbers play a deep role in representation theory. The
symmetric group Sn acts on the polynomial ring DSn := Q[x1, . . . , xn, y1, . . . , yn] by
permuting variables “diagonally.” That is, for w ∈ Sn we define w.xi = xw(i) and w.yi =
yw(i). Weyl [We] proved that the subring of “diagonal invariants” is generated by the
polarized power sums pr,s =

∑
i x

r
iy

s
i for r + s > 0 with 1 6 r + s 6 n. The quotient ring

of “diagonal coinvariants” DRn := DSn/(pr,s) inherits the structure of an Sn-module
which is “bigraded” by x-degree and y-degree. Garsia and Haiman conjectured that
dimDRn = (n + 1)n−1 (a number famous from Cayley’s formula [Cay]) and that the
dimension of the sign-isotypic component is the Catalan number Cat(n, n + 1). These

1This notation will be justified shortly.
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conjectures turned out to be difficult to resolve, and were proved about ten years later by
Haiman using the geometry of Hilbert schemes.

An excellent introduction to this subject is Haiman’s paper [Hai1], in which he laid the
foundation for generalizing the theory of diagonal coinvariants to other reflection groups.
Let W be a Weyl group, so that W acts irreducibly on R` by reflections and stabilizes
a full-rank lattice Z` ≈ Q ⊆ R`, called the root lattice. The group also comes equipped
with special integers d1 6 · · · 6 d` called degrees, of which the largest h := d` is called
the Coxeter number. Haiman showed that the number of orbits of W acting on the “finite
torus” Q/(h+ 1)Q is equal to

Cat(W ) :=
∏
i

h+ di
di

,

which we now refer to as the Catalan number of W .
From this modern perspective, our three examples above become:

1. W -orbits of the finite torus Q/(h+ 1)Q [Shi1, Hai1, Ath1, CP],

2. Clusters in Fomin and Zelevinsky’s finite type cluster algebras [FZ], and

3. Elements beneath a Coxeter element c in the absolute order on W [Rei, Arm].

More generally, given any positive integer p coprime to the Coxeter number h, Haiman
showed that the number of orbits of W acting on the finite torus Q/pQ is equal to

Cat(W, p) :=
∏
i

p+ di − 1

di
, (1)

which we now refer to as a rational Catalan number.
The cases p = mh + 1 have been extensively studied as the “Fuss-analogues”, which

further generalize our initial three examples to:

1. Dominant regions in the m-Shi arrangement [Ath2, FV],

2. Clusters in the generalized cluster complex [FR], and

3. m-multichains in the noncrossing partition lattice. [Edel, Arm].

The broad purpose of “rational Catalan combinatorics” is to complete the generaliza-
tion from p = +1 mod h to all parameters p coprime to h. That is, we wish to define
and study Catalan objects such as parking functions, Dyck paths, triangulations, and
noncrossing partitions for each pair (W, p), where W is a finite reflection group and p
is a positive integer coprime to the Coxeter number h. We may think of this as a two-
dimensional problem with a “type axis” W and a “parameter axis” p. The level set
p = h + 1 is understood fairly well, and the “Fuss-Catalan” cases p = +1 mod h are
discussed in Chapter 5 of Armstrong [Arm]. However, it is surprising that the type A
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level set (i.e. W = Sn) is an open problem. This could have been pursued fifty years ago,
but no one has done so in a systematic way.

Thus, we propose to begin the study of “rational Catalan combinatorics” with the
study of “classical rational Catalan combinatorics” corresponding to a pair (Sa, b) with
b coprime to a. In this case we have the classical rational Catalan number

Cat(Sa, b) =
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
. (2)

Note the surprising symmetry between a and b; i.e. that Cat(Sa, b) = Cat(Sb, a). This
will show up as a conjectural Alexander duality in our study of rational associahedra.

First we will set down notation for the rational Catalan numbers Cat(Sa, b) in Section
2. Then in Section 3 we will define the “rational Dyck paths” which are the heart of the
theory. In Section 4 we will use the Dyck paths to define and study “rational associahe-
dra.” The project of generalizing these constructions to reflection groups beyond Sn is
left for the future.

2 Rational Catalan Numbers

Given a rational number x ∈ Q outside the range [−1, 0], note that there is a unique way
to write x = a/(b− a) where a 6= b are coprime positive integers. We will identify x ∈ Q
with the ordered pair (a, b) ∈ N2 when convenient.

Inspired by the formulas (1) and (2) above, we define the rational Catalan number:

Cat(x) = Cat(a, b) :=
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
.

Note that this formula is symmetric in a and b. This, together with the fact that a/(b−
a) = x if and only if b/(a− b) = −x− 1, gives us

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(−x− 1).

That is, the function Cat : Q \ [−1, 0] → N is symmetric about x = −1/2. Now observe
that − 1

x−1 − 1 = x
1−x , and hence Cat(1/(x− 1)) = Cat(x/(1− x)). We call this value the

derived Catalan number:

Cat′(x) := Cat(1/(x− 1)) = Cat(x/(1− x)).

Furthermore, note that 1
1/x−1 = x

1−x , hence

Cat′(x) = Cat′(1/x). (3)

We call this equation rational duality and it will play an important role in our study of
rational associahedra below. Equation (3) can also be used to extend the domain of Cat′
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from Q \ [−1, 0] to Q \ {0}, but we don’t know if this holds combinatorial significance. In
terms of a and b we can write

Cat′(x) = Cat′(a, b) =

{(
b
a

)
/b if a < b,(

a
b

)
/a if b < a.

The “derivation” of Catalan numbers can be viewed as a “categorification” of the Eu-
clidean algorithm. For example, consider x = 5/3 (that is, a = 5 and b = 8). The
continued fraction expansion of x is

5

3
= 1 +

1

1 +
1

1 +
1

1

with “convergents” (that is, successive truncations) 1
1
, 2
1
, 3
2
, 5
3
. Thus we have

Cat(5/3) = 99,

Cat′(5/3) = Cat(3/2) = 7,

Cat′′(5/3) = Cat′(3/2) = Cat(2) = 2,

Cat′′′(5/3) = Cat′′(3/2) = Cat′(2) = Cat(1) = 1.

The process stabilizes because Cat′(1) = 1. Finally, we observe the most important feature
of the rational Catalan numbers. They are backwards-compatible:

Cat(n) = Cat(n/1) = Cat(n, n+ 1) =
1

2n+ 1

(
2n+ 1

n, n+ 1

)
=

1

n+ 1

(
2n

n

)
.

3 Rational Dyck Paths

At the heart of our constructions lies a family of lattice paths called “rational Dyck paths”.
We motivate their definition with results from the theory of Weyl groups.

3.1 Weyl Groups

Let W be a Weyl group with root system Φ and simple roots Π ⊆ Φ (so that Φ = W.Π,
and every element of Φ is a non-negative or non-positive Z-linear comination of simple
roots). Let Φk ⊆ Φ be the set of roots of “height k,” in which the Π-coefficients sum to
k. It is true that Φ contains a unique root θ of maximum height h − 1, where h is the
Coxeter number of W . The group Ŵ generated by the reflections in the linear hyperplanes
(•, α) = 0 for all α ∈ Π and the affine hyperplane (•, θ) = 1 is called the affine Weyl group.
The simplex

A◦ :=
{
x ∈ R` : (x, α) > 0 for all α ∈ Π and (x, θ) < 1

}
the electronic journal of combinatorics 20(3) (2013), #P54 5



Figure 1: The simplex D4 and the Shi arrangement for W = S3.

is a fundamental domain for Ŵ , called the fundamental alcove. More generally, let p be
coprime to h and write p = qh + r, where 1 6 r < p. Sommers [Som] proved that the
simplex

Dp :=
{
x ∈ R` : (x, α) < q for α ∈ Φr and (x, α) < q + 1 for α ∈ Φr−h

}
is congruent to the dilation pA◦ of the fundamental alcove, and hence Dp contains p`

alcoves Aw (corresponding to p` group elements w ∈ Ŵ ). Furthermore, the alcoves
Aw ∈ Dp such that Aw−1 is “positive” (i.e. (x, α) > 0 for all x ∈ Aw−1) are in bijection
with W -orbits on Q/pQ, and hence are counted by the number Cat(W, p). For example,
the left side of Figure 1 displays the simplex D4 for the symmetric group W = S3. Here
we have (`, h, p) = (2, 3, 4), which gives 42 = 16 alcoves in D4 and Cat(S3) = 5 positive
alcoves.

In the cases p = ±1 mod h, the collection of alcoves Aw−1 for Aw ∈ Dp are related to
the m-Shi hyperplane arrangement, consisting of the hyperplanes (•, α) ∈ {−m+1, . . . ,m}
for α ∈ Φ+ (these are the positive roots whose Π-expansions have positive coefficients).
In particular, Fishel and Vazirani proved that the inverses of Dmh+1 are precisely the
minimal alcoves in the chambers of the m-Shi arrangement [FV, Theorem 6.1], and the
inverses of Dmh−1 are precisely the maximal alcoves in the bounded chambers of the
m-Shi arrangement [FV, Theorem 6.2]. The right side of Figure 1 displays the inverses of
the alcoves in D4, along with the 1-Shi arrangement for W = S3.

3.2 Lattice Paths

Now consider the simplex Db corresponding to W = Sa, with b coprime to a. (In Figure 1
we have a = 3 and b = 4.) The positive alcoves in this simplex are counted by Cat(Sa, b)
and they can be encoded by “abacus diagrams” satisfying certain restrictions. It turns
out that these are the same abacus diagrams that define the set of (a, b)-cores (i.e. integer
partitions in which no cell has hook length equal to a or b). Hence the number of such
cores is the Catalan number Cat(Sa, b). This result was first proved by Anderson [Ande]
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Figure 2: This is a (5, 8)-Dyck path.

using a different method. She gave a beautiful bijection from the set of (a, b)-cores to a
collection of certain lattice paths, which we now define.

A rational Dyck path is a path from (0, 0) to (b, a) in the integer lattice Z2 using steps
of the form (1, 0) and (0, 1) and staying above the diagonal y = a

b
x. (Because a and b

are coprime, it will never touch the diagonal.) More specifically, we call this an x-Dyck
path or an (a, b)-Dyck path. For example, Figure 2 displays a (5, 8)-Dyck path. When a
and b are clear from context, we will sometimes refer to (a, b)-Dyck paths as simply ‘Dyck
paths’.

In the proofs of Theorem 4.9 and Proposition 5.2 below, we will use an alternative
characterization of Dyck paths in terms of partitions. A partition λ is a weakly decreasing
sequence λ = (λ1 > . . . > λk) of nonnegative integers. The number k is called the number
of parts of the partition. The Ferrers diagram associated with a partition λ consists of λi
left justified boxes in row i (this is the English notation).

Given an (a, b)-Dyck path D, let λ(D) be the partition with a− 1 parts whose Ferrers
diagram is the northwest region traced out by D inside the rectangle with corners (0, 0)
and (b, a). For example, if D is the (5, 8)-Dyck path in Figure 2, we have that λ(D) =
(5, 2, 2, 0). It follows that a partition λ = (λ1 > . . . > λa−1) with a − 1 parts comes

from an (a, b)-Dyck path if and only if the parts of λ satisfy λi 6 max(b (a−i)b
a
c, 0) for all

1 6 i 6 a− 1.
For the proof of Proposition 5.2, we will also think of an (a, b)-Dyck path D as tracing

out an order ideal (i.e., a down-closed subset) I = I(D) of the poset whose elements
are the lattice squares inside the rectangle with corners (0, 0) and (b, a) and increasing
directions north and west. The boxes in I(D) form the complement of the Ferrers diagram
of λ(D).

Note that the final step of an (n, n+1)-Dyck path must travel from (n, n) to (n, n+1).
Upon removing this step we obtain a path from (0, 0) to (n, n) that stays weakly above the
line of slope 1; that is, we obtain a classical Dyck path. The following result generalizes
the fact that there are Cat(n, n+1) classical Dyck paths and can be proven using the Cycle
Lemma of Dvorestky and Motzkin [DM]. While this result is perhaps best attributed to
‘folklore’, a proof was given by Bizley [Biz] in 1954 in the now-defunct Journal for the
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Institute of Actuaries.

Theorem 3.1. For a 6= b coprime positive integers, the number of (a, b)-Dyck paths is
the Catalan number Cat(a, b) = 1

a+b

(
a+b
a,b

)
.

Theorem 3.1, as well as the following refinement, can be proven using the Cycle
Lemma. We thank Nick Loehr for suggesting this argument.

Theorem 3.2. A vertical run in a Dyck path is a maximal consecutive sequence of (0, 1)
steps. The number of (a, b)-Dyck paths with i nontrivial vertical runs is the Narayana
number

Nar(a, b; i) :=
1

a

(
a

i

)(
b− 1

i− 1

)
,

and the number of (a, b)-Dyck paths with rj vertical runs of length j is the Kreweras
number

Krew(a, b; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b− 1)!

r0!r1! · · · ra!
.

Equivalently, the first formula counts the (a, b)-Dyck paths with i − 1 “valleys.” We
include trivial vertical runs of “length 0” in the second formula just to make it look
nice. For example, the path in Figure 2 has 3 nontrivial vertical runs (i.e. 2 valleys) and
r = (5, 1, 2, 0, 0, 0). The rational Narayana numbers will appear below as the h-vector of
the “rational” associahedron.

Proof. (Sketch.) Fix a sequence r = (r0, r1, . . . , ra) of nonnegative integers satisfying∑
rj = b and

∑
jrj = a. By reading vertical run lengths from southwest to northeast, we

can think of an (a, b)-Dyck path with vertical run length sequence given by r as a length b
word in the letters x0, x1, . . . , xa which contains ri occurrences of xi for all i. For example,
the word corresponding to the (5, 8)-Dyck path in Figure 2 is x2x0x2x0x0x1x0x0.

Let W (r) denote the set of all possible words in x0, x1, . . . , xa which contain xj with
multiplicity rj. Then W (r) is counted by the multinomial coefficient

|W (r)| =
(

b

r0, r1, . . . , ra

)
.

One checks (using the coprimality of a and b) that each of the length b words in W (r)
has b distinct cyclic conjugates and that exactly one of these conjugates corresponds to
an (a, b)-Dyck path. The desired Kreweras enumeration follows.

The Narayana enumeration also relies on a ‘cycle’ type argument. By reading hori-
zontal run lengths from northeast to southwest, we can think of an (a, b)-Dyck path as a
length a word in the letters y0, y1, . . . , yb. For example, the path in Figure 2 corresponds
to the word y3y3y0y2y0. For any such word coming from a Dyck path, the number of
nontrivial vertical runs equals the number of letters yk with k > 0.

Let W (i) be the set of all possible length a words yk1 · · · yka in y0, y1, . . . , yb such that
k1 + · · · + ka = b and exactly i elements of the sequence (k1, . . . , ka) are nonzero. We
claim that

|W (i)| =
(
a

i

)(
b− 1

i− 1

)
.
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This is because there are
(
a
i

)
ways to choose which i-element subset of the terms in the

sequence (k1, . . . , ka) are nonzero. Since the nonzero terms must add up to b, they form
a strict composition of b with i parts. There are

(
b−1
i−1

)
of these. One checks as before that

every word in W (i) has a distinct cyclic conjugates, exactly one of which comes from an
(a, b)-Dyck path. The desired Narayana enumeration follows.

3.3 The Laser Construction

Our generalizations of associahedra and noncrossing partitions to the rational case will
be based on a topological decomposition of rational Dyck paths using ‘lasers’. We devote
a subsection to this key construction.

Let D be an (a, b)-Dyck paths with a < b coprime and let P = (i, j) be a lattice point
on D other than the origin (0, 0) which is the bottom of a north step of D. The laser fired
from P is the line segment `(P ) which has slope a

b
, southwest endpoint P , and northeast

endpoint the lowest point higher than P where the line y − j = a
b
(x − i) intersects the

Dyck path D. That is, the segment `(P ) is obtained by firing a laser of slope a
b

northeast
from P , where we consider the Dyck path D to be ‘solid’. The lower left of Figure 3 shows
an example of a (5, 8)-Dyck path D with lasers `(P ) fired from every possible nonzero
lattice point P which is at the bottom of a north step in D. In our constructions we will
often be interested in firing lasers from only some of the possible lattice points in D.

By coprimality, the laser `(P ) does not intersect any lattice points other than P . In
particular, the northeast endpoint of `(P ) intersects D in the interior of an east step. We
will often associate `(P ) with the pair of lattice points {P,Q}, where Q is at the right
end of this east step. Also observe that the lasers `(P ) and `(P ′) do not cross for P 6= P ′

because they have the same slope.

4 Rational Associahedra

4.1 Simplicial Complexes

We recall a collection of definitions related to simplicial complexes. A simplicial complex
∆ on a finite ground set E is a collection of subsets of E such that if S ∈ ∆ and T ⊆ S,
then T ∈ ∆. The elements of ∆ are called faces, the maximal elements of ∆ are called
facets, and ∆ is called pure if all of its facets have the same cardinality. The dimension of
a face S ∈ ∆ is dim(S) := |S| − 1 and the dimension of ∆ is the maximum dimension of
a face in ∆. Observe that the ‘empty face’ ∅ has dimension −1.

A simplicial complex ∆ on a ground set E is called flag if for any subset F ⊆ E, we
have that F is a face of ∆ whenever every two-element subset of F is a face of ∆. Flag
simplicial complexes are therefore determined by their 1-dimensional faces.

If ∆ is a d-dimensional simplicial complex, the f -vector of ∆ is the integer sequence
f(∆) = (f−1, f0, . . . , fd), where f−1 = 1 and fi is the number of i-dimensional faces in ∆
for 0 6 i 6 d. The reduced Euler characteristic χ(∆) is given by χ(∆) :=

∑d
i=−1(−1)ifi.
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The h-vector of ∆ is the sequence h(∆) = (h−1, h0, . . . , hd) defined by the following poly-
nomial equation in t:

∑d
i=−1 fi(t− 1)d−i =

∑d
k=−1 hkt

d−k. The sequences f(∆) and h(∆)
determine one another completely for any simplicial complex ∆.

Shellability is a key property possessed by some pure simplicial complexes which deter-
mines the homotopy type and h-vector of the complex. Let ∆ be a pure d-dimensional sim-
plicial complex. A total order F1 ≺ · · · ≺ Fr on the facets F1, . . . , Fr of ∆ is called a shelling
order if for 2 6 k 6 r, the subcomplex of the simplex Fk defined by Ck := (

⋃k−1
i=1 Fi) ∩ Fk

is a pure (d−1)-dimensional simplicial complex. The complex ∆ is called shellable if there
exists a shelling order on its facets; it can be shown that any pure d-dimensional shellable
simplicial complex is homotopy equivalent to a wedge of spheres, all of dimension d.

For future use, we record the following sufficient (and also necessary) condition of
McMullen [McM] for a total order on the facets of a complex to be a shelling order. We
also recall McMullen’s combinatorial interpretation of the entries of an h-vector in terms
of a shelling order.

Lemma 4.1. Let ∆ be a pure d-dimensional simplicial complex and let F1 ≺ · · · ≺ Fr be
a total order on the facets of ∆. Suppose that for 1 6 i 6 k there exists a unique minimal
face Mk of the facet Fk which is not contained in the previous subcomplex

⋃k−1
i=1 Fi. Then

the order ≺ is a shelling order and the ith entry hi of the h-vector h(∆) equals the number
of minimal faces Mk with dim(Mk) = i− 1.

4.2 Construction, Basic Facts, and Conjectures

For n > 3, let Pn denote the regular n-gon. Recall that the (dual of the) classical
associahedron Ass(n, n + 1) consists of all (noncrossing) dissections of Pn+2, ordered by
inclusion.2 The diagonals of Pn+2 are therefore the vertices of Ass(n, n+ 1) and the facets
of Ass(n, n + 1) are labeled by triangulations of Pn+2. Associahedra were introduced by
Stasheff [St] in the context of nonassociative products arising in algebraic topology. Since
its introduction, the associahedron has become one of the most well-studied complexes in
geometric combinatorics, with connections to the permutohedron and exchange graphs of
cluster algebras.

The classical associahedron has a Fuss analog due to Tzanaki [Tan]. Let m > 1 be a
Fuss parameter. The Fuss associahedron Ass(n,mn + 1) has as its facets the collection
of all dissections of Pmn+2 into (m + 2)-gons. Fomin and Reading [FR] extended this
construction to define generalized cluster complexes for arbitrary root systems

We define our further generalization Ass(a, b) of the classical associahedron by describ-
ing its facets as follows. Label the vertices of Pb+1 clockwise with 1, 2, . . . , b+ 1.

Given any Dyck path D and any lattice point P which is the bottom of a north step
in D, we associate a diagonal e(P ) in Pb+1 as follows. Starting at the point P , consider
the laser `(P ) fired from P . As in Subsection 3.3, we associate P to the pair of lattice
points {P,Q}, where Q is the right endpoint of the east step whose interior contains the
northeast endpoint of `(P ). We define e(P ) to be the diagonal (i + 1, j + 1), where i is

2This notation will soon be justified.
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Figure 3: A (5,8)-Dyck path and the corresponding dissection of P9.

the x-coordinate of P and j is the x-coordinate of Q. We let F (D) be the set of possible
‘laser diagonals’ corresponding to D:

F (D) := {e(P ) : P is the bottom of a north step in D}. (4)

The right of Figure 3 shows the collection F (D) of diagonals corresponding to the given
Dyck path D on P9. Observe that if we did not assume that a < b, the ‘diagonals’
described by the set F (D) might join adjacent vertices of Pb+1. It is topologically clear
that the collection F (D) of diagonals in Pb+1 is noncrossing for any Dyck path D. The
sets F (D) form the facets of our simplicial complex.

Definition 4.2. Let Ass(a, b) be the simplicial complex with facets

{F (D) : D is an (a, b)-Dyck path}. (5)

Figure 4 shows the complex Ass(3, 5) in red and the complex Ass(2, 5) in blue. These
complexes are embedded inside the larger associahedron Ass(4, 5) of dissections of P6.

It is natural to ask which diagonals of Pb+1 appear as vertices in Ass(a, b). The proof
of the following proposition follows from the geometry of lines of slope a

b
and is left to the

reader.

Proposition 4.3. Define a subset S(a, b) of [b−1] by S(a, b) = {b ib
a
c : 1 6 i < a}, where

bsc is the greatest integer 6 s. A diagonal of Pb+1 which separates i vertices from b− i−1
vertices appears as a vertex in the complex Ass(a, b) if and only if i ∈ S(a, b).

A diagonal of Pb+1 which appears as a vertex of Ass(a, b) will be called (a, b)-admissible.
The following basic facts about Ass(a, b) can be proven directly from its definition.
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Proposition 4.4. 1. The simplicial complex Ass(a, b) is pure and has dimension a−2.

2. The number of facets in Ass(a, b) is Cat(a, b).

Proof. Part 1 follows from the fact that an (a, b)-Dyck path contains a north steps. For
Part 2, observe that if D and D′ are distinct Dyck paths, the multisets of x-coordinates
of the bottoms of the north steps of D and D′ are distinct. In particular, this means that
F (D) and F (D′) are distinct sets of diagonals in Pb+1. Part 2 follows from the fact that
there are Cat(a, b) Dyck paths.

In the case b ≡ 1 (mod a), we have the following more widely used description of the
complex Ass(a, b).

Proposition 4.5. Assume that b = ma + 1. Then Ass(a, b) is the simplicial complex
whose faces are collections of mutually noncrossing (a, b)-admissible diagonals in Pb+1.
In particular, the complex Ass(a, b) is flag and carries an action of the cyclic group Zb+1

given by rotation.

Proof. Let ∆ be the complex so described. Certainly Ass(a, b) ⊆ ∆. The facets of ∆ are
precisely the dissections of Pb+1 = Pma+2 into (m + 2)-gons. It is well known that the
number of such dissections is the Fuss-Catalan number Cat(a, b) = Cat(a,ma + 1). By
Part 2 of Proposition 4.4, this is also the number of facets of Ass(a, b). Since complexes
Ass(a, b) and ∆ have the same collection of facets, we conclude that Ass(a, b) = ∆.

Proposition 4.5 is false at the full rational level of generality. Indeed, when (a, b) =
(3, 5), the diagonals (1, 5) and (3, 5) of P6 are (3, 5)-admissible and mutually noncrossing.
However, the set {(1, 5), (3, 5)} is not a face of Ass(3, 5). A glance at Figure 4 shows that
the red complex Ass(3, 5) is not closed under rotation of P6.

In spite of the last paragraph, we conjecture that Ass(a, b) carries a rotation action
‘up to homotopy’. More precisely, we make the following definition.

Definition 4.6. Let Âss(a, b) denote the simplicial complex whose faces are collections of
mutually noncrossing a, b-admissible diagonals in Pb+1.

It is clear that Âss(a, b) carries a rotation action and that Ass(a, b) is a flag subcomplex

of Âss(a, b). When b ≡ 1 (mod a) the complexes Ass(a, b) and Âss(a, b) coincide.
Before stating our conjecture, we recall what it means for a complex to collapse onto a

subcomplex; this is a combinatorial deformation retraction. Let ∆ be a simplicial complex,
F ∈ ∆ be a facet, and suppose F ′ ⊂ F satisfies |F ′| = |F | − 1. If F ′ is not contained
in any facet of ∆ besides F , we can perform an elementary collapse by replacing ∆ with
∆−{F, F ′}. A simplicial complex is said to collapse onto a subcomplex if the subcomplex
can be obtained by a sequence of elementary collapses.

Conjecture 4.7. The complexes Ass(a, b) and Âss(a, b) are homotopy equivalent. In fact,

the complex Âss(a, b) collapses onto the subcomplex Ass(a, b).
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Figure 4: Ass(2, 5) and Ass(3, 5) are Alexander dual within Ass(4, 5).

Figure 4 displays Ass(2, 5) (shown in blue) and Ass(3, 5) (shown in red) as subcom-

plexes of the sphere Ass(4, 5). The complex Âss(2, 5) coincides with Ass(2, 5) and the

complex Âss(3, 5) is obtained from the complex Ass(3, 5) by adding the front and back
triangles to the red complex. Observe that Ass(3, 5) can be obtained by performing two

elementary collapses on Âss(3, 5).
Conjecture 4.7 would also have implications regarding Alexander duality. Recall that

two topological subspaces X any Y of a fixed sphere S are said to be Alexander dual to
one another if Y is homotopy equivalent to the complement of X in S. With b > 1 fixed,
we have that a and b are coprime for 1 6 a < b if and only if b − a and b are coprime.
Both of the complexes Ass(a, b) and Ass(a − b, b) sit within the classical associahedron
Ass(b− 1, b). The proof of Conjecture 4.7 would imply that Ass(a, b) and Ass(a− b, b) are
Alexander dual.

Proposition 4.8. Let a < b be coprime for b > 1. The subcomplexes Âss(a, b) and

Âss(b− a, b) are Alexander dual within the sphere Ass(b− 1, b). If Conjecture 4.7 is true,
then the subcomplexes Ass(a, b) and Ass(b−a, b) are also Alexander dual within Ass(b−1, b).

Proof. It is routine to check that any diagonal of Pb+1 is either (a, b)-admissible or (b−a, b)-
admissible, but not both. This means that the vertex sets of Âss(a, b) and Âss(b − a, b)
partition the vertex set of the simplicial sphere Âss(b − 1, b). By definition, the faces of

Âss(a, b) and Âss(b − a, b) are precisely the faces of Ass(b − 1, b) whose vertex sets are

contained in Âss(a, b) and Âss(b − a, b), respectively. It follows that the complement of

Âss(a, b) inside Ass(b− 1, b) deformation retracts onto Âss(b− a, b). This proves the first
statement. The second statement is clear.
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4.3 Shellability and f- and h-vectors

We will prove that the simplicial complex Ass(a, b) is shellable by giving an explicit shelling
order on its facets. This shelling order will be induced by lexicographic order on the
partitions whose Ferrers diagrams lie to the northwest of (a, b)-Dyck paths.

Theorem 4.9. The simplicial complex Ass(a, b) is shellable, hence homotopy equivalent
to a wedge of spheres. Moreover, there is a total order D1 ≺ D2 ≺ · · · ≺ DCat(a,b) on
the set of (a, b)-Dyck paths which induces a shelling order on the facets of Ass(a, b) such
that the dimension of the minimal face added upon addition of the facet F (Di) equals the
number of nonempty vertical runs in Di, less one.

Proof. We will find it convenient to identify the facets of Ass(a, b) with both Dyck paths
and partitions. For this proof we will use the lexicographical order on partitions with a−1
parts defined by λ ≺ µ if there exists 1 6 i 6 a− 1 such that λi < µi and λj = µj for all
1 6 j < i.

Let λ(1) ≺ · · · ≺ λ(Cat(a,b)) be the restriction of lexicographic order to set of partitions
with a − 1 parts which satisfy λi 6 max(b (a−i)b

a
c, 0) for all i, that is, those partitions

coming from (a, b)-Dyck paths. In particular, we have that λ(1) is the empty partition and

λ
(Cat(a,b))
i = max(b (a−i)b

a
c, 0). The total order ≺ induces a total order D1 ≺ · · · ≺ DCat(a,b)

on (a, b)-Dyck paths and a total order F (D1) ≺ · · · ≺ F (DCat(a,b)) on the facets of Ass(a, b).
In the case (a, b) = (3, 5), our order on partitions is

(0, 0) ≺ (1, 0) ≺ (1, 1) ≺ (2, 0) ≺ (2, 1) ≺ (3, 0) ≺ (3, 1).

The corresponding order on facets of Ass(3, 5) (written as diagonal sets in P6) is

{(1, 3), (1, 5)} ≺ {(2, 4), (1, 5)} ≺ {(2, 4), (2, 6)} ≺
{(1, 3), (3, 5)} ≺ {(2, 6), (3, 5)} ≺ {(1, 3), (4, 6)} ≺ {(2, 4), (4, 6)}.

We will prove that ≺ is a shelling order on the facets of Ass(a, b) and that the minimal
added faces corresponding to ≺ have the required dimensions. In fact, we will be able to
describe these minimal added faces explicitly. Given any Dyck path D, recall that the
corresponding facet F (D) in Ass(a, b) is given by F (D) = {e(P ) : P is the bottom of
a north step in D}. We define the valley face V (D) to be the subset of F (D) given by
V (D) := {e(P ) : P is a valley in D}.

In the case (a, b) = (3, 5), the valley faces V (D) written in the order ≺ are

∅ ≺ {(2, 4)} ≺ {(2, 6)} ≺ {(3, 5)} ≺ {(2, 6), (3, 5)} ≺ {(4, 6)} ≺ {(2, 4), (4, 6)}.

The reader is invited to check that ≺ is a shelling order on the facets of Ass(3, 5) and that
the valley face is the minimal face added at each stage. Keeping track of the sizes of the
valley faces, this recovers the fact that the h-vector of Ass(3, 5) is (1, 4, 2). We claim that
this is a general phenomenon.

Claim: For 1 6 k 6 Cat(a, b), the valley face V (Dk) is the unique minimal face of
F (Dk) which is not contained in

⋃k−1
i=1 F (Di).

the electronic journal of combinatorics 20(3) (2013), #P54 14



Let 1 6 k 6 Cat(a, b). The proof of our claim comes in two parts: we first show that
V (Dk) is not contained in

⋃k−1
i=1 F (Di) and then show that if Tk is any face of F (Dk) which

does not contain V (Dk), then Tk is contained in
⋃k−1

i=1 F (Di). We break this up into two
lemmas.

Lemma 4.10. Let 1 6 k 6 Cat(a, b). The valley face V (Dk) is not contained in⋃k−1
i=1 F (Di).

Proof. When k = 1, the Dyck path D1 has λ(D1) equal to the empty partition, the
valley face V (D1) is the empty face, and V (D1) is not contained in the void complex⋃k−1

i=1 F (Di). Assume therefore that 2 6 k 6 r and suppose there exists 1 6 i 6 k
such that V (Dk) is contained in F (Di). We will prove that λ(Di) = λ(Dk). Indeed,
let P1 = (x1, y1), . . . , Ps = (xs, ys) be the set of valleys of Dk from right to left, so that
x1 > · · · > xs > 0 and y1 > · · · > ys > 0. (Since k > 1, the Dyck path Dk has at least one
valley, so s > 1.) This implies that λ(Dk) = (xa−y11 , xy2−y12 , . . . , xys−1−ys

s ), where exponents
denote repeated parts. Since V (Dk) ⊆ F (Di), we have that e(P1) ∈ F (Di). This forces
x1 to appear as a part of the partition λ(Di). Since b

a
> 1, by geometric considerations

involving the slope of the laser `(P1) defining e(P1) the minimum multiplicity with which
x1 could occur as a part of λ(Di) is a − y1. The fact that λ(Di) � λ(Dk) forces x1
to appear with multiplicity exactly equal to a − y1 in λ(Di), and any parts > x1 to
appear with multiplicity zero in λ(Di). In other words, the partition λ(Di) has the form
(xa−y11 , . . . ), where the parts after xa−y11 are all < x1. We now focus on the valley P2 of
Dk. Since V (Dk) ⊆ F (Di), we have that e(P2) ∈ F (Di). This forces x2 to appear as a
part of the partition λ(Di). Since we already know that λ(Di) has the form (xa−y11 , . . . ),
where the parts after xa−y11 are all < x1, geometric considerations involving the slope of
the laser `(P2) defining e(P2) together with the fact that λ(Di) � λ(Dk) force λ(Di) to be
of the form (xa−y11 , xy1−y22 , . . . ), where the parts occurring after xa−y11 , xy1−y22 are all < x2.
Iterating this process with the valleys P3, P4, . . . , Ps, we eventually get that λ(Di) has
the form (xa−y11 , xy1−y22 , . . . , xys−1−ys

s , . . . ), where the parts occurring in the ellipses are all
< xs. But the fact that λ(Di) � λ(Dk) forces λ(Di) = λ(Dk). The completes the proof
that V (Dk) does not appear in

⋃k−1
i=1 F (Di).

Lemma 4.11. Let 1 6 k 6 r and let Tk be any face of F (Dk) which does not contain
V (Dk). Then Tk is contained in

⋃k−1
i=1 F (Di).

Proof. Without loss of generality we may assume that Tk is maximal among the subsets
of F (Dk) which do not contain V (Dk). This means that there exists a valley P of the
Dyck path Di such that

Tk = {e(Q) : Q is the bottom of a north step in Dk and Q 6= P}. (6)

Since D1 does not have any valleys, we have that k > 1. We will show that Tk is
contained in

⋃k−1
i=1 F (Di).

We can factor Dk into north and east runs as Dk = N i1Ej1 · · ·N inEjn , where each of
the north and east runs are nonempty. Let 1 6 r < n be such that P is at the end of the
east run Ejr .
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P

Figure 5: The construction Dk 7→ D′k.

We will produce a new Dyck path D′k such that D′k ≺ Dk and Tk ⊂ F (D′k). Roughly
speaking, the path D′k will be built from the path Dk by raising certain east runs of Dk

by one unit. More formally, let s be the maximal number 6 r such that there exists a
laser emanating from a lattice point on the north run N is of Dk which intersects Dk in a
point to the east of P . (If no such laser exists, set s = 0.) We define our new path D′k in
terms of north and east runs by

D′k = N i1Ej1 · · ·N ir+1EjrN ir+1−1Ejr+1 · · ·N inEjn , (7)

if s = 0, or

D′k = N i1Ej1 · · ·N is+1Ejs · · ·N ir−1EjrN ir+1Ejr+1 · · ·N inEjn , (8)

if 1 6 s 6 r. In other words, if 1 6 s 6 r − 1, D′k is formed from Dk by stretching the
vertical run N is by one unit and by shrinking N ir by one unit. If s = 0, D′k is formed
from Dk by stretching N ir by one unit and shrinking N ir+1 by one unit. In either case,
the point P does not appear in the lattice path D′k, the paths Dk and D′k agree to the
northeast of P , and we have that D′k ≺ Dk.

Figure 5 shows an example of the construction Dk 7→ D′k when (a, b) = (5, 8). The
Dyck path Dk is shown on the left and factors as N2E1N1E2N1E1N1E4, so that n = 4,
(i1, i2, i3, i4) = (2, 1, 1, 1), and (j1, j2, j3, j4) = (1, 2, 1, 4). For the given valley P = (3, 3),
we have that r = 2 and s = 1. To construct D′k from Dk, we extend the north run
N i1 in Dk by one unit and shrink the north run N i3 in Dk by one unit. The resulting
path D′k is shown on the right of Figure 5 and factors as N3E1N1E3N1E4. Observe
that λ(Dk) = (4, 3, 1) and λ(D′k) = (4, 1), so that we have the lexicographic comparison
D′k ≺ Dk.

We claim that Tk ⊂ F (D′k). For the example in Figure 5, the lasers which correspond
to the elements in Tk are shown on the Dyck path Dk on the left; observe that a laser is
fired from every possible vertex other than the valley P . On the right, we have drawn a
subset of the lasers corresponding to the elements in F (D′k) such that this subset coincides
with Tk. Observe that we have fired a laser from every vertex which is the bottom of a
north step in D′k except for a single vertex in the ‘stretched’ north run.

To see that Tk ⊂ F (D′k) in general, consider a lattice point Q which is the bottom of
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a north step in Dk such that Q 6= P . We will show that e(Q) appears as a vertex in the
facet F (D′k). This breaks up into several cases depending on the position of Q.

If Q is to the northeast of P , i.e., Q is contained in a north run N im for m > r, then
e(Q) is contained in the facet F (D′k) because the paths Dk and D′k agree to the northeast
of P .

For example, in Figure 5, the vertex Q = (4, 4) lies to the northeast of P on Dk and
its position (as well as the laser emanating from it) remains unchanged in D′k.

If Q appears in a north run N im of Dk for s < m 6 r and s > 0, all of the lasers
emanating from lattice points in the north run N im intersect Dk to the west of P . Since
the portion of D′k between Q and P is just the corresponding portion of Dk shifted north
one unit, it follows that if Q = Q′+ (0, 1) is Q shifted up one unit, then Q′ is the bottom
of a north step in D′k and the diagonal e(Q) coming from Dk equals the diagonal e(Q′)
coming from D′k.

For example, in Figure 5, the vertex Q = (1, 2) on Dk satisfies the conditions of
the preceding paragraph. This vertex and its laser are translated up one unit in the
transformation Dk 7→ D′k. This has no effect on the horizontal endpoint of the laser, and
hence no effect on the corresponding diagonal in P9.

If Q appears in the north run N is of Dk and s > 0, then the laser `(Q) may intersect
Dk either to the east or west of P . By construction, the path D′k is obtained from the
path Dk by stretching the vertical run N is by one unit. If `(Q) intersects Dk to the east
of P , then we have that the vertex e(Q) coming from Dk equals the vertex e(Q) coming
from D′k. On the other hand, if `(Q) intersects Dk to the west of P , then Q′ = Q+(0, 1) is
the bottom of a north step in D′k, and the vertex e(Q) coming from Dk equals the vertex
e(Q′) coming from D′k.

For example, in Figure 5, the point Q = (0, 1) on Dk satisfies the conditions of the
preceding paragraph. Since the laser emanating from Q hits Dk to the east of P , we see
that the laser in D′k emanating from Q has endpoints with the same x-coordinates.

If Q appears in a north run N im of Dk for m < s and s > 0, then `(Q) either intersects
Dk at a point to the east of P or to the west of the east run Eis . However, the lattice
paths Dk and D′k agree in these two regions. It follows that Q remains the bottom of a
north step in D′k and that the vertex e(Q) coming from Dk equals the vertex e(Q) coming
from D′k.

Finally, if Q appears in a north run N im of Dk for 0 6 m 6 r and s = 0, then all of
the lasers emanating from lattice points in the north run N im intersect Dk to the east of
P . By the construction of D′k, the point Q also appears as the bottom of a north step
in the path D′k. Since Dk and D′k agree to the east of P and D′k is obtained from Dk

by shifting a east run of Dk up one unit, we have that the vertex e(Q) coming from Dk

equals the vertex e(Q) coming from D′k.
We conclude that Tk ⊂ F (D′k) and D′k ≺ Dk.

Lemmas 4.10 and 4.11 complete the proof of our claim that the valley face V (Dk) is
indeed the unique minimal face in F (Dk) which is not contained in

⋃k−1
i=1 F (Di). This

completes the proof of the Theorem.
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As a corollary to the above result, we get product formulas for the f - and h-vectors of
Ass(a, b), as well as its reduced Euler characteristic. Define the rational Kirkman numbers
by

Kirk(a, b; i) :=
1

a

(
a

i

)(
b+ i− 1

i− 1

)
. (9)

Corollary 4.12. Let (f−1, f0, . . . , fa−2) and (h−1, h0, . . . , ha−2) be the f - and h-vectors
of Ass(a, b). For 1 6 i 6 a we have that fi−2 = Kirk(a, b; i) and hi−2 = Nar(a, b; i).
The reduced Euler characteristic of Ass(a, b) is (−1)a+1 times the derived Catalan number
Cat′(a, b).

Conjecture 4.7 and Proposition 4.8 assert that the symmetry (a < b) ↔ (b − a < b)
on pairs of coprime positive integers shows up in rational associahedra as an instance of
Alexander duality. Corollary 4.12 shows that the categorification Cat(x) 7→ Cat′(x) of
the Euclidean algorithm presented in Section 2 sends the number of facets of Ass(a, b)
to the reduced Euler characteristic of Ass(a, b). This ‘categorifies’ the number theoretic
properties of rational Catalan numbers to the context of associahedra.

Proof. For this proof we will need the standard extension
(
n
k

)
:= n(n−1)···(n−k+1)

k!
of the

binomial coefficient to any n ∈ Z and the Vandermonde convolution
∑k

i=0

(
n
i

)(
m
k−i

)
=(

n+m
k

)
which holds for any m,n, k ∈ Z with k > 0.

By Theorem 4.9 and Lemma 4.1, we have that hi−2 equals the number of (a, b)-Dyck
paths which have exactly i vertical runs. By Theorem 3.2, this equals the Narayana
number Nar(a, b; i).

To prove the statement about the f -vector, one must check that

a−2∑
i=−1

Kirk(a, b; i+ 2)(t− 1)a−i−2 =
a−2∑
k=−1

Nar(a, b; k + 2)ta−2−k. (10)

Applying the transformation t 7→ t + 1, expanding in t, and equating the coefficients of
ta−i−2 on both sides of Equation 10 yields the equivalent collection of binomial relations

1

a

(
a

i

)(
b+ i− 1

i− 1

)
=

i∑
k=1

1

a

(
a

k

)(
b− 1

k − 1

)(
a− k
a− i

)
(11)

for 1 6 i 6 a. To prove Equation 11, one uses the following chain of equalities:

i∑
k=1

1

a

(
a

k

)(
b− 1

k − 1

)(
a− k
a− i

)
=

1

a

i∑
k=1

a!(a− k)!

k!(a− k)!(a− i)!(i− k)!

(
b− 1

k − 1

)

=
1

a

i∑
k=1

a!

(a− i)!i!
i!

k!(i− k)!

(
b− 1

k − 1

)

=
1

a

i∑
k=1

(
a

i

)(
i

k

)(
b− 1

k − 1

)
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=
1

a

(
a

i

) i∑
k=1

(
i

i− k

)(
b− 1

k − 1

)
=

1

a

(
a

i

)(
b+ 1− 1

i− 1

)
,

where the final equality uses the Vandermonde convolution.
The statement about the Euler characteristic reduces to proving that

a−2∑
i=−1

(−1)i+1Kirk(a, b; i+ 2) = (−1)a+1Cat′(a, b). (12)

Recalling that Cat′(a, b) = 1
b

(
b
a

)
and Kirk(a, b; i + 2) = 1

a

(
a
i

)(
b+i−1
i−1

)
, we have the following

chain of equalities:

a∑
i=1

(−1)i+1

a

(
a

i

)(
b+ i− 1

i− 1

)
=

a∑
i=1

(−1)i+1

b

(
a− 1

i− 1

)(
b+ i− 1

i

)
=

a∑
i=1

(−1)2i+1

b

(
a− 1

i− 1

)(
−b
i

)
= −1

b

a∑
i=1

(
a− 1

a− i

)(
−b
i

)
= −1

b

(
−b+ a− 1

a

)
= (−1)a+11

b

(
b

a

)
.

The fourth equality uses the Vandermonde convolution.

5 Rational Noncrossing “Matchings”

5.1 Construction, Basic Properties

Recall that a (perfect) matching µ on [2n] is said to be noncrossing if there do not exist
indices 1 6 a < b < c < d 6 2n such that a ∼ c and b ∼ d in µ. There exist bijections
between the set of noncrossing matchings on [2n], the set of standard Young tableaux
of shape 2 × n, and noncrossing partitions on [n] which send rotation on noncrossing
matchings to promotion on tableaux to Kreweras complementation on noncrossing parti-
tions [Wh]. We define a rational extension of noncrossing matchings; rational analogs of
standard tableaux and noncrossing partitions are less well understood.

As with the case of the rational associahedron Ass(a, b), we will use (a, b)-Dyck paths
to define rational analogs of noncrossing matchings. We begin by defining the rational
analog of noncrossing matchings. These will no longer be matchings in general, so we call
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Figure 6: A homogeneous noncrossing partition for (a, b) = (5, 8).

them homogeneous (a, b)-noncrossing partitions (where we omit reference to (a, b) when it
is clear from context).

Let D be an (a, b)-Dyck path. We define a noncrossing set partition µ(D) of [a+b−1]
as follows. Label the internal lattice points in D by 1, 2, . . . , a + b − 1 from southwest
to northeast. As in the construction of Ass(a, b), for any lattice point P which is the
bottom of a north step of D, consider the laser `(P ). These lasers give a topological
decomposition of the region between D and the line y = a

b
x. For 1 6 i < j 6 a + b − 1,

we say that i ∼ j in π(D) if the labels i and j belong to the same connected component
(where we consider the labels i and j to lie just below their vertices).

Figure 6 gives an example of this construction for (a, b) = (5, 8). The internal lattice
points of the Dyck path are labeled with 1, 2, . . . , 5+8−1 = 12 and the relevant lasers are
shown. The resulting noncrossing partition of [12] is drawn both on the Dyck path and
on a disk. (The red indices will be deleted when we define inhomogeneous noncrossing
partitions in the next section.)

Proposition 5.1. The set partition µ(D) of [a + b − 1] is noncrossing for any Dyck
path D and the map D 7→ µ(D) is injective. Hence, there are Cat(a, b) homogeneous
(a, b)-noncrossing partitions.

Proof. It is topologically evident that the set partitions µ(D) are noncrossing. It can be
shown that the labels on the bottoms of the north steps of D are the minimal labels of
the blocks of µ(D); the claim about injectivity follows.

Figure 7 shows 22 of the 1
13

(
13
5

)
= 99 (a, b)-homogeneous noncrossing partitions in the

case (a, b) = (5, 8) as (5, 8)-Dyck paths and as set partitions of [12]. In Figure 7 a Dyck
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path D is drawn by leaving the cells to the northwest of D white and shading in the
cells to the southeast of D. These 22 partitions are grouped together into orbits of the
promotion operator on Dyck paths, to be defined in the next subsection.

In the classical case (a, b) = (n, n + 1), the homogeneous noncrossing partitions are
precisely the noncrossing matchings on [2n]. In the Fuss case (a, b) = (n, kn+ 1), the ho-
mogeneous noncrossing partitions are the (k+1)-equal noncrossing partitions on [(k+1)n]
(i.e., every block has size k + 1). This explains the adjective ‘homogeneous’ in ‘homo-
geneous noncrossing partitions’. As can be seen in Figure 7, homogeneous noncrossing
partitions may have different block sizes in the general rational case.

5.2 Rotation and Promotion

In the classical and Fuss cases, homogeneous noncrossing partitions are closed under the
order (a + b − 1) rotation operator. It is natural to ask whether homogeneous rational
noncrossing partitions are also closed under rotation. It turns out that they are, and we
can describe the corresponding action on Dyck paths explicitly.

If D is a Dyck path and if P is an internal lattice point of D, let tP (D) be the Dyck
path defined as follows. If P is not a corner vertex, let tP (D) = D. If P is a corner
vertex, let tP (D) be the lattice path obtained by interchanging the north and east steps
on either side of P (this turns P from an outer corner to an inner corner, and vice versa),
provided that this switch preserves the property of being a Dyck path (if it does not, set
tP (D) = D). Define the promotion operator ρ on (a, b)-Dyck paths by

ρ(D) = tPa+b−1
· · · tP2tP1(D),

where Pi is the ith internal lattice point from the southeast of tPi−1
· · · tP1(D). Roughly

speaking, the promotion image ρ(D) is computed from D by reading D from southwest
to northeast and swapping corners of the form NE and corners of the form EN whenever
possible.

Proposition 5.2. The promotion operator on (a, b)-Dyck paths maps to counterclockwise
rotation on homogeneous (a, b)-noncrossing partitions. In particular, homogeneous non-
crossing partitions are closed under rotation and ρa+b−1 is the identity operator on Dyck
paths.

Figure 7 shows three orbits of the promotion and rotation operators when (a, b) =
(5, 8). The top orbit has size 3, the middle orbit has size 6, and the bottom orbit has size
12.

Proof. We find it convenient to give a more global description of promotion acting on an
(a, b)-Dyck path D. Interpret the path D as tracing out an order ideal I, where boxes to
the south-east of D are in I and boxes to the north-west of D are not. The ideals I are
the shaded boxes in Figure 7.

Given a Dyck path D with ideal I, let j be the west-most column of D which contains
no boxes in I, or ∞ if every column of D contains boxes in I. Then I breaks naturally
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into two pieces: IW , containing those boxes to the west of column j, and IE, containing
those boxes to the east of column j. Let ρ(I) be defined by shifting IW one unit south
(discarding any boxes to the south that would find themselves outside the allowed region)
while shifting IE one unit west (appending new boxes to the south and to the east so that
the resulting configuration is an order ideal). By interpreting ρ(I) as a Dyck path, it is
easy to see that this is equivalent to the definition of the promotion ρ(D) of the Dyck
path.

We must now check that this rotates the homogenous (a, b)-noncrossing partition cor-
responding to D. Let k be the label of the south-easternmost internal lattice point of the
west-most empty column j—or, if there was no empty column, then let k = a + b − 1.
As the description of promotion given above preserves the relative positions of internal
lattice points of D within IE and IW , we conclude from the laser construction of the (a, b)-
noncrossing partition that those blocks with all labels greater than k and those blocks
with all labels less than k are rotated by one. On the other hand, by considering the
laser originating at the lattice point labeled 1, k is the smallest number that occurs in the
same block as the label 1. In particular, since the blocks define a noncrossing partition,
this means that the only block that can contain both labels less than k and labels greater
than k is the block containing 1.

The last verification we must perform, then, is that the block containing 1 is rotated
correctly. All of the labels of the block containing 1—other than 1 and k—are greater
than k. After promotion, the step originating at k is sent to a north step originating at
k−1. If the step originating at k is already north, then after shifting left, all of the labels
previously visible to k remain visible to k − 1 and a + b− 1 becomes visible, so that the
block is rotated by one. If the step originating at k is east, let l be the first label greater
than k such that the step originating at l is north (if k = a+ b− 1, then let l = a+ b− 1).
Then k, k + 1, . . . , l were in the same block as 1; after promotion, the laser emanating
from k − 1 ensures that k, . . . , l − 1 are still in the same block, and the laser from l − 1
ensures that the rest of the block is also correctly rotated (with a+ b−1 becoming visible
because of the shift west).

We conclude that all blocks are rotated by one, so that promotion of an (a, b)-Dyck
path corresponds to rotation of the corresponding homogenous noncrossing partition.

We make the following conjecture about the cycle structure of ρ on the set of (a, b)-
Dyck paths. Recall that a triple (X,C,X(q)) is said to exhibit the cyclic sieving phenomenon
if C = 〈c〉 is a finite cyclic group acting on a finite set X, X(q) ∈ N[q] is a polynomial,
and for all d > 0, we have that

|Xcd | = |{x ∈ X : cd.x = x}| = X(ωd),

where ω ∈ C is a primitive |C|th root of unity. We use the standard q-analog notation

[m]q = 1−qm
1−q , [m]!q := [m]q[m− 1]q · · · [1]q, and

[
m+ n
m, n

]
q

:= [m+n]!q
[m]!q [n]!q

. The following cyclic

sieving conjecture has been verified in the case b ≡ 1 (mod a) [Krat].
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8 <8 <8 <
Figure 7: Three orbits of promotion and rotation for noncrossing matchings with (a, b) =
(5, 8).

Conjecture 5.3. Let X be the set of (a, b)-Dyck paths and let C = Za+b−1 = 〈ρ〉 act on
X by promotion. The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon, where

X(q) = 1
[a+b]q

[
a+ b
a, b

]
q

is the q-analog of the rational Catalan number Cat(a, b).

6 Rational Noncrossing Partitions

6.1 Construction

The (a, b)-analog of rational noncrossing partitions will form a subset of the collection of
classical noncrossing partitions of [b− 1].

Let D be an (a, b)-Dyck path. Label the right ends of the east steps of D (besides the
terminal lattice point (a, b)) with the labels 1, 2, . . . , (b − 1). For every valley P of the
path D, fire the laser `(P ). These valley lasers give a topological decomposition of the
region between D and the line y = a

b
x. Define a partition π(D) of [b− 1] by saying that

i ∼ j in π(D) if and only if the labels i and j belong to the same connected component
(where labels, as before, lie just below their vertices). Observe that we only fire lasers
from valleys in this construction. The partition π(D) is called an inhomogeneous (a, b)-
noncrossing partition. Figure 8 gives an example of an inhomogeneous (5, 8)-noncrossing
partition.

We understand inhomogeneous noncrossing partitions less well than their homogeneous
counterparts. When (a, b) = (n, n+ 1), the inhomogeneous noncrossing partitions are the
ordinary noncrossing partitions of [n]. When (a, b) = (n, kn + 1), the inhomogeneous
noncrossing partitions are exactly the k-divisible noncrossing partitions of [kn]; that is,
the noncrossing partitions of [kn] whose block sizes are all divisible by k.
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Figure 8: An inhomogeneous noncrossing partition for (a, b) = (5, 8).

Proposition 6.1. 1. For any (a, b)-Dyck path D, the set partition π(D) of [b − 1] is
noncrossing.

2. The number of blocks of π(D) equals the number of vertical runs of D.
3. The map D 7→ π(D) is injective, so there are Cat(a, b) inhomogeneous (a, b)-

noncrossing partitions.
4. The collection of inhomogeneous (a, b)-noncrossing partitions forms an order filter

(i.e., an up-closed set) in the lattice of all noncrossing partitions of [b− 1] given by µ 6 τ
if and only if µ refines τ .

Proof. Claim 1 is a topological consequence of the construction of π(D) from the Dyck
path D. Claim 2 is also clear from the construction.

For Claim 3, observe that for any Dyck path D and any block B of π(D), the number
of contiguous components of B (as a subset of 1 < 2 < · · · < b − 1) equals the number
of horizontal runs in D on which the labels of B lie. For example, for the partition in
Figure 8, the block {1, 2, 7} has two contiguous components and lies on two horizontal
runs of the corresponding path, whereas the blocks {3, 4, 5} and {6} both have a single
contiguous component and lie on a single horizontal run.

We can use this observation to recursively construct D from the partition π(D). Form
a total order B1 < · · · < Bk on the blocks of π(D) by the rule min(B1) < · · · < min(Bk),
where min(B) denotes the minimal element of a block B. Suppose that D factors into
nonempty north and east runs as D = N i1Ej1 · · ·N ikEjk . If D′ is a Dyck path satisfying
π(D) = π(D′), by considering the fact that the block Bk is the rightmost contiguous
block of π(D′), we conclude that D′ ends in N ikEjk . Similarly since Bk−1 is the rightmost
contiguous block in the set partition obtained from π(D′) by removing Bk, the presence
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of the block Bk−1 in π(D′) forces D′ to end in N ik−1Eik−1N ikEjk . Continuing this process,
we see that D = D′ and that the map D 7→ π(D) is injective.

The proof of Claim 4 is topological in nature. Let D be an (a, b)-Dyck path and let π′

be a noncrossing partition of [b−1] which covers π(D) in the poset of noncrossing partitions
of [b − 1]. We want to show that there exists a Dyck path D′ such that π′ = π(D′). We
know that π′ is obtained from π(D) by merging two blocks of π(D). Call these merged
blocks B1 and B2, so that π′ = (π(D)∪{B1∪B2})−{B1, B2}. Without loss of generality
min(B1) < min(B2).

Let `1 and `2 be the lasers defining the ‘lower boundaries’ of the regions corresponding
to B1 and B2 in D (if min(B1) = 1, then we interpret `1 to be the line y = a

b
x). Let P1

and P2 be the lattice points on D from which `1 and `2 are fired. We form a new path
D′ by moving the steps of the vertical run above P2 in D to the steps of the vertical run
above P1 in D. Since `1 is below `2, the resulting lattice path D′ is still an (a, b)-Dyck
path. We leave it to the reader to check that π(D′) = π′.

As an example of Part 4 of Proposition 6.1 (and an illustration of its proof), consider
the (5, 8)-inhomogeneous noncrossing partition π = {1, 2, 7/3, 4, 5/6} shown in Figure 8.
The set partition π′ := {1, 2, 6, 7/3, 4, 5} covers π within the lattice of all noncrossing
partitions of [7]. The partition π′ was formed from π by merging the blocks B1 = {1, 3, 7}
and B2 = {6}. The lasers `1 and `2 defining the lower boundaries of B1 and B2 emanate
from the lattice points (0, 0) and (5, 4) on the given Dyck path D. To form a Dyck
path D′ giving rise to π′, we move the vertical run above (5, 4) in D (which consists
of a single north step) to the vertical run above (0, 0) in D. The resulting path D′ is
D′ = N3E2N2E6. We leave it to the reader to verify that π(D′) = π′.

6.2 Open Problems

The inhomogeneous analog of Proposition 5.2 is still conjectural.

Problem 6.2. Prove that the inhomogeneous (a, b)-noncrossing partitions are closed un-
der the rotation action on [b−1]. Describe the corresponding order b−1 operator on Dyck
paths.

More ambitiously, one could ask for a cyclic sieving phenomenon describing the action
of rotation on (a, b)-noncrossing partitions. The action of rotation on the level of Dyck
paths seems hard to describe even in the classical case (a, b) = (n, n + 1). A possible
method of attack would be to solve the following problem.

Problem 6.3. Give a nicer characterization of when a noncrossing partition of [b− 1] is
a homogeneous (a, b)-noncrossing partition.
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