
Note on Nordhaus-Gaddum problems for
Colin de Verdière type parameters∗

Wayne Barrett
Department of Mathematics
Brigham Young University

Provo, UT, USA

wayne@math.byu.edu

Shaun M. Fallat†

Department of Mathematics and Statistics
University of Regina,
Regina, SK, Canada

sfallat@math.uregina.ca

H. Tracy Hall
Department of Mathematics
Brigham Young University

Provo, UT, USA

H.Tracy@gmail.com

Leslie Hogben
Department of Mathematics

Iowa State University
Ames, IA, USA

American Institute of Mathematics
Palo Alto, CA, USA

LHogben@iastate.edu, hogben@aimath.org

Submitted: Jul 19, 2012; Accepted: Sep 24, 2013; Published: Oct 7, 2013

Mathematics Subject Classifications: 05C50, 05C40, 05C83, 15A03, 15B57

Abstract

We establish the bounds 4
3 6 bν 6 bξ 6

√
2, where bν and bξ are the Nordhaus-

Gaddum sum upper bound multipliers, i.e., ν(G)+ν(G) 6 bν |G| and ξ(G)+ξ(G) 6
bξ|G| for all graphs G, and ν and ξ are Colin de Verdière type graph parameters.
The Nordhaus-Gaddum sum lower bound for ν and ξ is conjectured to be |G| − 2,
and if these parameters are replaced by the maximum nullity M(G), this bound is
called the Graph Complement Conjecture in the study of minimum rank/maximum
nullity problems.
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1 Introduction

Nordhaus-Gaddum problems have been studied for many different graph parameters,
including chromatic number, independence number, domination number, Hadwiger num-
ber, etc. (see, for example, [6] and the references therein). In this note we discuss the
Nordhaus-Gaddum sum upper bounds for the Colin de Verdière type parameters ν, ξ, and
µ. The Graph Complement Conjecture in the study of minimum rank/maximum nullity
problems is a conjectured lower bound for related Nordhaus-Gaddum problems.

All graphs in this paper are simple, undirected, and finite. The complement of a graph
G = (V,E) is the graph G = (V,E), where E consists of all possible edges between vertices
in V that are not in E. Let G be a graph with vertices {1, . . . , n} and let Sn denote the
set of symmetric n × n real matrices. For A = [aij] ∈ Sn, the graph of A, denoted by
G(A), is the graph with vertices {1, . . . , n} and edges {ij : aij 6= 0 and i 6= j}. The set of
symmetric matrices associated with G is S(G) = {A ∈ Sn : G(A) = G}. The maximum
nullity of G is M(G) = max{nullA : A ∈ S(G)}, and the maximum positive semidefinite
nullity of G is M+(G) = max{nullA : A ∈ S(G) and A is positive semidefinite}.

In [7] and [8], Colin de Verdière introduced the parameters µ(G) and ν(G), defined
to be the maximum nullity among matrices A ∈ S(G) that satisfy the Strong Arnold
Hypothesis and additional conditions. In [4] the parameter ξ(G) was defined to be the
maximum nullity among matrices A ∈ S(G) that satisfy the Strong Arnold Hypothesis.
A real symmetric matrix A satisfies the Strong Arnold Hypothesis provided there does not
exist a nonzero real symmetric matrix X satisfying AX = 0, A ◦ X = 0, and I ◦ X =
0, where ◦ denotes the Hadamard (entry-wise) product and I is the identity matrix.
The Strong Arnold Hypothesis is equivalent to the requirement that certain manifolds
intersect transversally (see [13]). For ν, the only additional condition (besides the Strong
Arnold Hypothesis) is that the matrix must be positive semidefinite. For µ, the additional
conditions are that the matrix must be a generalized Laplacian (i.e., have nonpositive off-
diagonal entries) and have exactly one negative eigenvalue. Clearly ν(G) 6 M+(G) 6
M(G), ν(G) 6 ξ(G) 6 M(G), and µ(G) 6 ξ(G), and each of these inequalities can be
strict (see [2]).

An important property of Colin de Verdière type parameters is minor monotonicity.
The contraction of edge e = uv ofG is obtained by identifying the vertices u and v, deleting
any loops that arise in this process, and replacing any multiple edges by a single edge.
A minor of G arises by performing a sequence of deletions of edges, deletions of isolated
vertices, and/or contractions of edges. The notation H � G means that H is a minor of
G. A graph parameter β is minor monotone if for any minor H of G, β(H) 6 β(G). In
[7], [8], and [4] (respectively) it is shown that µ, ν, and ξ are minor monotone.

For any graph G, the Hadwiger number h(G) is the maximum order of a clique minor
of G. It was shown in [7] and [8] that µ(Kn) = n − 1 and ν(Kn) = n − 1 (where Kn

denotes the complete graph on n vertices), so by minor monotonicity h(G) − 1 6 µ(G)
and h(G)− 1 6 ν(G).

Let κ(G) denote the vertex connectivity of G, i.e., if G is not complete, the smallest
number k such that there is a set of vertices S, with |S| = k, for which the graph obtained
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by deleting the vertices in S and all edges incident with a vertex in S, denoted by G−S, is
disconnected (by convention, κ(Kn) = n− 1). It is proved in [15, 16] that κ(G) 6 M+(G)
for every graph G. It was noted in [12] that the proof in [15] establishes κ(G) 6 ν(G) for
all G. As defined in [2], the minor monotone ceiling of κ is dκe(G) = max{κ(H) : H � G}.
It follows from the definition that h(G)− 1 6 dκe(G), since the Kh(G) minor of G implies
κ(Kh(G)) 6 dκe(G), and dκe(G) 6 ν(G), since κ(G) 6 ν(G) and ν is minor monotone
(see [2] for more detail).

A Nordhaus-Gaddum type result is a (sharp) lower or upper bound on the sum or
product of a parameter of a graph and of its complement. The Graph Complement
Conjecture for ν [3] is a Nordhaus-Gaddum sum lower bound.

Conjecture 1.1 (GCCν). For any graph G,

ν(G) + ν(G) > |G| − 2. (1)

It is not possible to raise the lower bound |G| − 2 since equality is attained for any
tree that includes a P4: For such a tree, it is shown in [1] that M+(T ) = |T | − 3. Since
M+(T ) = 1, M+(T ) + M+(T ) = |T | − 2. It is shown in [17] that GCCν is true for graphs
with tree-width at most 3, and thus for trees. Thus GCCν conjectures that |G| − 2 is a
tight Nordhaus-Gaddum sum lower bound for ν. This conjecture is studied in [3], where
it is established for certain graphs. Various other forms of this conjecture have appeared,
including: GCC+, i.e., M+(G)+M+(G) > |G|−2, [3]; GCC, i.e., M(G)+M(G) > |G|−2,
[5]; and GCCξ, i.e., ξ(G) + ξ(G) > |G| − 2, [9]. Of course GCCν implies GCC+ implies
GCC, and GCCν implies GCCξ implies GCC. The graph complement conjecture for µ,
i.e., µ(G) + µ(G) > |G| − 2, appeared in [14].

Here we discuss values of the multiplier b for a Nordhaus-Gaddum sum upper bound
for the parameter β where β is one of h, dκe, ν, ξ, or µ. We denote by bβ the least value
of b making

β(G) + β(G) 6 b |G|

true for every graph of order at least two, and call bβ the NG upper multiplier for β.
Stiebitz [18] has shown that

h(G) + h(G) 6
6

5
|G|

and there exist graphs achieving h(G) + h(G) = 6
5
(1 − ε)|G| for arbitrarily small ε, so

bh = 6
5
. We establish bounds for bdκe, bν , and bξ. Clearly bh 6 bdκe 6 bν 6 bξ, and

bh 6 bµ 6 bξ. In Section 2 we construct a family of graphs to show that bdκe > 4
3
. In

Section 3 we show that bξ 6
√

2. In Section 4 we summarize our conclusions. Note that
the Nordhaus-Gaddum sum upper bound for the parameters M and M+ is not interesting
because it is trivially 2|G| − 1:

M(Kn) + M(Kn) = M+(Kn) + M+(Kn) = (n− 1) + n = 2|Kn| − 1.
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2 Lower bound for NG upper multiplier for dκe
In this section we construct a self-complementary graph H(a) on 12a − 4 vertices for

a > 2, and show that H(a) has a minor Ĥ(a) with δ(Ĥ(a)) = κ(Ĥ(a)) = 8a − 4, where
δ(G) denotes the minimum degree of a vertex of G. It is shown that this example implies
that bdκe > 4/3.

Example 2.1. Construct the graph H(a) = (V,E) as follows (see Figure 1): The 12a−4
vertices of H(a) are partitioned into four sets Vi, i = 1, 2, 3, 4 of r = 3a− 1 vertices each.
The sets V1 and V2 are the “sparse part” of H(a), with H(a)[Vi] = Kr, i = 1, 2 (where
G[W ] denotes the subgraph of G induced by the subset W of the vertices of G). The sets
V3 and V4 are the “dense part” of H(a), with H(a)[Vi] = Kr, i = 3, 4. Every edge between
a vertex in V1 and a vertex in V3 is in the edge set E, and likewise for V2 and V4. There are
no edges between V1 and V4, nor between V2 and V3. Regarding the edges between V1 and
V2, number the vertices of V1 as u2i−1, i = 1, . . . , r and the vertices of V2 as u2i, i = 1, . . . , r.
Then vertex us ∈ V1 is adjacent to the a vertices us+j ∈ V2, j = 1, 3, . . . , 2a − 3, 2a − 1
(where for k = 6a − 1, . . . , 8a − 4, uk is interpreted as u` with ` ≡ k mod (6a − 2) and
1 6 ` 6 2a − 2). If u ∈ V1 ∪ V2, then degH(a) u = r + a = 4a − 1 (where degGw denotes
the degree of w in G). Regarding the edges between V3 and V4, number the vertices of
V3 as v2i−1, i = 1, . . . , r and the vertices of V4 as v2i, i = 1, . . . , r. Then vertex vs ∈ V3
is adjacent to all vertices vp ∈ V4 except for p = s + j, j = 1, 3, . . . , 2a − 3, 2a − 1. If
v ∈ V3∪V4, then degH(a) v = (r−1)+r+(r−a) = 8a−4. It is clear from the construction

that H(a) = H(a).

K
r

K
r

K
r

K
r

dense

sparse
V 2

V 1

V 4
V 3

Figure 1: Schematic diagram for the construction of H(a)

Construct the minor Ĥ(a) by contracting the edges u2i−1u2i, i = 1, . . . , r, and denote
the set of these r vertices by V1,2. If v ∈ V3 ∪ V4, then deg

Ĥ(a)
v = degH(a) v = 8a − 4.

Note that each of the new vertices in V1,2 has degree equal to 2((4a − 1) − 1) = 8a − 4,

so Ĥ(a) is (8a − 4)-regular. Furthermore, if w ∈ V1,2, w is adjacent to all 2r = 6a − 2

vertices in V3∪V4 so Ĥ(a)[V1,2] is (2a−2)-regular. Since each vertex in V3∪V4 is adjacent

to r = 3a− 1 vertices in V1,2, Ĥ(a)[V3 ∪ V4] is (5a− 3)-regular.
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To establish that κ(Ĥ(a)) = δ(Ĥ(a)), we use the property that for certain circulants C,

κ(C) = δ(C), establish a method for computing κ, and examine parts of Ĥ(a) separately.
For 1 6 t 6 bn−1

2
c, the consecutive circulant Circn〈1, . . . , t〉 is the graph on the vertices

{0, 1, . . . , n − 1} with vertex i adjacent to vertices i + j and i − j for j = 1, . . . , t (with
arithmetic mod n). We will use the fact that for a consecutive circulant the vertex
connectivity is equal to the (common) degree; Harary [11] gave the consecutive circulant
as an example of a graph having maximum vertex connectivity 2m

n
among graphs having

n vertices and m edges (when 2m
n

is an integer), and this result is now well known.

Theorem 2.2. [19, Theorem 4.1.5 (Harary)] For 1 6 t 6 bn−1
2
c,

κ(Circn〈1, . . . , t〉) = δ(Circn〈1, . . . , t〉) = 2t.

Theorem 2.3. Let G be a connected graph on n vertices with G 6= Kn and let 1 6 t 6
n− 1− δ(G). Define

f(t) = max{s ∈ Z+ : Kt,s is a subgraph of G},

where Ks,t denotes the complete bipartite graph on s and t vertices. Then

κ(G) = min{n− (t+ f(t)) : 1 6 t 6 n− 1− δ(G)}.

Proof. For every t such that 1 6 t 6 n−1−δ(G), G contains a Kt,1 (by choosing a vertex
v of degree δ(G) as the partite set of 1 vertex, and t of its non-neighbors as the other
partite set), so f(t) is defined.

Choose t such that 1 6 t 6 n − 1 − δ(G). Let U be a set of t vertices and let W be
a set of f(t) vertices such that G[U ∪W ] contains a Kt,f(t) subgraph. Then G[U ∪W ] is
disconnected, so κ(G) 6 |V \ (U ∪W )| = n− (t+ f(t)). Since this is true for every t such
that 1 6 t 6 n− 1− δ(G),

κ(G) 6 min{n− (t+ f(t)) : 1 6 t 6 n− 1− δ(G)}.

Choose a set S such that |S| = κ(G) and G − S is disconnected. Let U be the set
of vertices of one connected component, let t0 = |U |, and let W = V \ (U ∪ S); note
|W | = n − (t0 + κ(G)). Then G contains Kt0,n−(t0+κ(G)) with bipartition U,W . Thus
f(t0) > n− (t0 + κ(G)), so

κ(G) > n− (t0 + f(t0)) > min{n− (t+ f(t)) : 1 6 t 6 n− 1− δ(G)}.

We now return to establishing the properties of one of the graphs constructed in
Example 2.1.

Observation 2.4. Let G be a graph whose vertex set V can be partitioned as V = X∪̇Y
such that each vertex in X is adjacent to each vertex in Y . Let GX = G[X] and GY =
G[Y ]. Then
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• δ(G) = min{δ(GX) + |Y |, δ(GY ) + |X|},

• κ(G) = min{κ(GX) + |Y |, κ(GY ) + |X|}.

Theorem 2.5. For Ĥ(a) as in Example 2.1,

κ(Ĥ(a)) = δ(Ĥ(a)) = 8a− 4.

Proof. Let X = V1,2 and Y = V3 ∪ V4. Then V (Ĥ(a)) = X∪̇Y and every vertex in X

is adjacent to every vertex in Y . By Observation 2.4, if we show that κ(Ĥ(a)[V1,2]) =

δ(Ĥ(a)[V1,2]) and κ(Ĥ(a)[V3∪V4]) = δ(Ĥ(a)[V3∪V4]), it follows that κ(Ĥ(a)) = δ(Ĥ(a)).

Since Ĥ(a)[V1,2] = Circr〈1, . . . , a− 1〉, we have κ(Ĥ(a)[V1,2]) = δ(Ĥ(a)[V1,2]) by The-
orem 2.2.

Recall that in Ĥ(a)[V3 ∪ V4] = H(a)[V3 ∪ V4], the vertices of V3 are numbered as
v2i−1, i = 1, . . . , r and the vertices of V4 as v2i, i = 1, . . . , r, and vertex vs ∈ V3 is adjacent
to all vertices vp ∈ V4 except for p = s+j, j = 1, 3, . . . , 2a−3, 2a−1 (where for p > 6a−2, vp
means vp−(6a−2)). Thus the vertex vs in H(a)[V3 ∪ V4] is adjacent to precisely the vertices
vp, p = s+j, j = 1, 3, . . . , 2a−3, 2a−1. This is a bipartite regular graph with a great deal
of symmetry, so in determining the shared neighborhood of two vertices, no generality is
lost by considering the vertices 1 and 1 + 2d (with d 6 d3a−1

2
e). The size of the shared

neighborhood is max(a− d, 0). For 1 6 t 6 a = 2r− 1− (5a− 3) = |Ĥ(a)[V3 ∪ V4]| − 1−
δ(Ĥ(a)[V3 ∪ V4]), the maximum neighborhood intersection of a set of t vertices happens
when those vertices are consecutive in the same bipartition set, and it follows that in this

case f(t) = a+ 1− t. So for all t ∈ {1, . . . , a}, |Ĥ(a)[V3 ∪ V4]| − (t+ f(t)) = 5a− 3. Thus

κ(Ĥ(a)[V3 ∪ V4]) = 5a− 3 = δ(Ĥ(a)[V3 ∪ V4]).

Corollary 2.6. For the graph H(a) in Example 2.1,

dκe(H(a)) > 8a− 4

and

dκe(H(a)) + dκe(H(a)) >
4

3
(1− 1

6a− 2
)|H(a)|.

Thus

bdκe >
4

3
.

Proof. By Theorem 2.5, dκe(H(a)) > κ(Ĥ(a)) = 8a−4. SinceH(a) is self-complementary,
dκe(H(a)) > 8a−4 also, and thus dκe(H(a))+dκe(H(a)) > 16a−8. The second statement
can then be established by arithmetic. Since bdκe > 1

|H(a)|(dκe(H(a)) + dκe(H(a))), by

taking the limit as a→∞ we see that bdκe > 4
3
.
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3 Upper bound for NG upper multiplier for ξ

In this section we show that the NG upper multiplier bξ is at most
√

2.

Theorem 3.1. [10] Let G = (VG, EG) be a connected graph. Then

|EG|+ a >
ξ(G)(ξ(G) + 1)

2
(2)

where a = 1 if G is bipartite and every optimal matrix for ξ(G) has zero diagonal, and
a = 0 otherwise.

Since ξ(G) is the maximum of ξ(Gi) taken over the connected components Gi of G,
the hypothesis that G is connected is unnecessary.

Corollary 3.2. Let G = (VG, EG) be a graph. Then

|EG|+ 1 >
ξ(G)(ξ(G) + 1)

2
. (3)

Corollary 3.3. Let G = (VG, EG) be a graph with at least one edge. Then

ξ(G) 6
√

2|EG|. (4)

Proof. Algebraic manipulation of (3) gives ξ(G) 6 1
2
(−1 +

√
8|EG|+ 9). Further manipu-

lation shows that the inequality 1
2
(−1+

√
8|EG|+ 9) 6

√
2|EG| is equivalent to 2 6 |EG|,

so (4) is true if G has at least two edges. If G has exactly one edge then G has components
K2 and possibly some K1’s, and thus ξ(G) = 1 <

√
2.

Nordhaus-Gaddum bounds usually take one of two forms: additive or multiplica-
tive. The form of inequality (4) suggests a third category of Nordhaus-Gaddum bound:
Pythagorean.

Corollary 3.4. Let G = (VG, EG) be a graph of order at least two. Then

ξ(G)2 + ξ(G)2 6 |G|2 − |G|.

Proof. Let |G| = n > 2. In the case where either G has no edges or G has no edges, ξ
will take the value 1 for one of the two graphs and the value n− 1 for the other, in which
case the result holds. In any other case inequality (4) applies both to G and to G, giving
us two inequalities the sum of whose squares is

ξ(G)2 + ξ(G)2 6 2|EG|+ 2|EG| = |G|2 − |G|.

Corollary 3.5. Let G = (VG, EG) be a graph of order at least two. Then

ξ(G) + ξ(G) 6
√

2|G|,

and thus bξ 6
√

2.

Proof. Let |G| = n > 2, and by Corollary 3.4 choose x > ξ(G) and y > ξ(G) such that x
and y lie on the circle x2+y2 = n2. The maximum value of x+y on this circle is

√
2n.

the electronic journal of combinatorics 20(3) (2013), #P56 7



4 Conclusions

In summary, we have established

1.333 <
4

3
6 bdκe 6 bν 6 bξ 6

√
2 < 1.415.

We have no evidence that the construction in Section 2 is tight, even for bdκe. On the
other hand, the inequality (2) with a = 0 is known to be tight for some small examples
and for complete graphs (it is tight with a = 1 for K3,3). For ν, since a diagonal entry
for a vertex of degree at least one cannot be zero, a = 0 and the inequality (2) becomes

|EG| > ν(G)(ν(G)+1)
2

for graphs with at least one edge; again this is tight for some small
graphs and complete graphs. This leaves open the possibility that Corollaries 3.3 — 3.5
may be asymptotically tight.

Question 4.1. Given x and y positive with x2 + y2 = 1, does there exist an increas-
ing sequence of graphs Gi on ni vertices such that ν(Gi)/ni approaches x and ν(Gi)/ni
approaches y? Or such that ξ(Gi)/ni approaches x and ξ(Gi)/ni approaches y?

The particular case of x = y =
√
2
2

suggests the next question.

Question 4.2. Do bν and bξ take the maximum possible value of
√

2?

On the other hand it seems more difficult to construct examples for bµ, and the only
bounds we know are those from h (due to Stiebitz [18]) and ξ. i.e.,

1.2 =
6

5
= bh 6 bµ 6 bξ 6

√
2 < 1.415.
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