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Abstract

A digraph I' is called n-Cayley digraph over a group G, if there exists a semiregu-
lar subgroup R of Aut(I") isomorphic to G with n orbits. In this paper, we represent
the adjacency matrix of I' as a diagonal block matrix in terms of irreducible repre-
sentations of G and determine its characteristic polynomial. As corollaries of this
result we find: the spectrum of semi-Cayley graphs over abelian groups, a relation
between the characteristic polynomial of an n-Cayley graph and its complement,
and the spectrum of Cayley graphs over groups having cyclic subgroups. Finally we
determine the eigenspace of n-Cayley digraphs and their main eigenvalues.

Keywords: n-Cayley digraph; linear representations of groups; characteristic poly-
nomial

1 Introduction

Graphs come in two principle types: directed graphs and undirected graphs. We shall
refer to directed graphs as digraphs and use the term graph to refer to undirected graphs.
A digraph I is a pair (V, E) of vertices V' and edges E where E C V' x V; the digraph T'
is said to be finite if V' is finite. A graph is a digraph with no edges of the form («, «)
and with the property that (a, 8) € E implies (8, ) € E. The set of all permutations of
V' which preserve the adjacency structure of I' is called the automorphism group of I'; it
is denoted by Aut(I'). In this paper all digraphs have no loops. For the group-theoretic
and graph-theoretic terminology not defined here we refer the reader to [9, 2].

Let G be a group and S a subset of G not containing the identity element 1. Recall
that the Cayley digraph I' = Cay(G, S) of G with respect to S has vertex set G and edge
set {(g,89) | g € G,s € S}. If S=S71 then Cay(G,S) can be viewed as an undirected
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graph, identifying an undirected edge with two directed edges (g, h) and (h, g). This graph
is called Cayley graph of G with respect to S. By a theorem of Sabidussi [8], a digraph I"
is a Cayley digraph over a group G if and only if there exists a regular subgroup of Aut(I")
isomorphic to GG. There is a natural generalization of the Sabidussi’s Theorem. A digraph
I' is called an n-Cayley digraph over a group G if there exists an m-orbit semiregular
subgroup of Aut(I") isomorphic to G. 2-Cayley graphs are called by some authors semi-
Cayley graph, see for example [3], and also bi-Cayley graph [5]. Also a special case of
2-Cayley graphs are also called bi-Cayley graph by some authors, see for example [10].

The spectrum of a finite digraph T' is the spectrum of its adjacency matrix A, that
is, the set of eigenvalues together with their multiplicities. The characteristic polynomial
of T is the characteristic polynomial of A, that is the polynomial defined by x(\) =
det(A — A). It is known that numerous proofs in graph theory depend on the spectrum
of graphs and the spectrum of a graph is one of the most important algebraic invariants.
The basic relationships between algebraic properties of these eigenvalues and the usual
properties of graphs are available in [2].

Lovész [7] showed that determination of the spectrum of a graph with transitive au-
tomorphism group can be reduced to the same task for some Cayley graph and found
a formula for certain power sums of the eigenvalues in terms of irreducible characters of
automorphism group of the graph. Babai [1] succeeded in simplifying Lovasz’ formula for
the power sums of the eigenvalues of Cayley graphs.

Spectrum of 2-Cayley graphs over abelian groups is computed by Gao and Luo in [3]
using matrix theory. It seems that their arguments cannot be extended to non-abelian
groups or n-Cayaley graphs, n > 3. In this paper we find a factorization of characteristic
polynomial of n-Cayley digraphs over an arbitrary group in terms of linear representations
of the group. We prove that every Cayley graph over a group having a subgroup of index
n can be regarded as an n-Cayley graph; and compute the spectrum of Caylay graphs over
groups having a cyclic subgroup of index 2. Finally we find the eigenvectors of n-Cayley
(di)graphs.

2 Main Results

In this paper all vector spaces are over the complex field C and have finite dimension.
Throughout the paper G denotes a finite group. We denote by C[G], the complex vector
space of dimension |G|. Let & = {e; | ¢ € G} be an arbitrary basis of C[G]. We
identify C[G] with the vector space of all complex-valued functions on G. Thus a function
¢ : G — C corresponds to the vector ¢ = deG ©(g)e, and vice versa. In particular, the
vector e, of the standard basis &7 corresponds to a function, also denoted by e,, where

eg(h):{(l) Z;z

The (left) regular representation p,e of G on C[G] is defined by its action on the basis
{en, | h € G}; that is for all g,h € G, preg(g)en = €gn. The regular representation has
degree |G]|.
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Let Irt(G) = {p1, . . ., pm} be the set of all irreducible inequivalent C-representations of
G. Let dj, and o® be the degree and a unitary matrix representation of py, k =1,...,m,
respectively. We keep these notations throughout the paper.

In the following lemma, which seems to be well-known, we construct an orthogonal
basis for C[G] using the matrix representations o, 1 < k < m.

Lemma 1. Let QU ( ) be the ijth entry of 0% (g), 1 < i,j < dy, and @Z(;-c) =D 4ec Qg-c)(g)eg,
where Z denotes the complex conjugate of a complex number z. Then

(1) {g |1 <k<m,1<14,5<d} form an orthogonal basis for C|G],

(”) preg( )ng Zl 1 le ( )@l(]k); fOT‘ all g < G and 1< i,j < dk; 1<k< m,

(iii) C[G) = @B, @d’“ W( , where Wj( <Qg€) | 1 <4 < di) which is a preg-invariant
subspace of C[G ] of dzmensz'on dy,.

Proof. Let 1 < k, k" < m. Then by [9, Corollaries 2, 3, p. 14],

_ 0ij1 i Opehr
Z Qz] z] 1) = %7 (1)

gEG

for all 1 < 4,5 < dp and 1 < 7,7 < dp. On the other hand the matrices Q(k)(g) are

unitary for all g€ Gand 1< k<mandso QEJ)(Q>_1 = ny) (g9). Hence (1) yields that

i/
JZ dk

Z (k’ 03104 O
gEG
Now
() 50y 04t 0gir Oy
<Qm 7Qj/1,/ |G| Z z] i’ dk )
geG

which shows that QEJ), gg, ) are mutually orthogonal vectors of (C[G] and hence indepen-

dent. On the other hand the cardinality of {gl] |1<k<m1<i,j<d}isy -, d;
which is equal to |G|, by |9, Corollary 2, p. 18] Since the dlmensmn of (C[G] as a C-vector
space is |G|, we conclude that {Q | 1< k<m,1<i,7<d}is abasis for C[G]. This
proves (i).

Now we prove (ii). First note that for every ¢ € C[G], and ¢g,h € G we have
Preg(9)p(h) = ©(g~th), since

Pres(9)2(h) = pres(9) Y @l(@)ea(h

zeG

> " o(x) preg(9)ea(h)

zeG
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= D wlz)e(h)

zeG

= @(g7'h).

Hence for each g, h € G we have (here we denote by [A];; the ijth entry of a matrix A)

Prea(9)B (h) = 8 (g7 h)
[0 (k>(g)_1@<k>(%

= Z le Ql] ( since o) (g) is a unitary matrix)

as desired. The statement (iii) is an immediate consequence of (i) and (ii). O

If a group G acts on a set 2 and o € Q, we denote by o and G, the orbit of G on Q
with representative o and the stabilizer of « in G, respectively. Now we will find a useful
decomposition of the characteristic polynomial of n-Cayley (di)graphs. First we state a
very useful and well known equivalent definition of n-Cayley (di)graphs.

Lemma 2. A digraph I' is n-Cayley digraph over G if and only if there exist subsets T;;
of G, where 1 < i,5 < n, such that " is isomorphic to a digraph X with

V(X)=Gx{1,2,...,n}, = |J {((9.9).(tg,5)) |g€ G and te Ty}
1<i,5<n
Proof. 7 = 7 Let af, 1 < i < n, be the orbits of G on V(T'). Let Tj; := {g € G |
(i, 0f) € E()}, 1 < 4,5 < n,and ¢ : V(I') — V(X), where of ~ (g,4) and X is
defined in (2). We show that ¢ is a digraph isomorphism. Since V(I') = |J, o, every
vertex v € V(T') is of the form of for some g € G and 1 < i < n. Also

o =dl=i=j ght€CGy(=1)=g=h i=]
Hence ¢ is well-defined and one to one. Clearly ¢ is onto. Moreover

(af,ah) € ET) <= (a,al ) e B
< hg_lej—;j
= ((9,1),(h, 7)) € E(X)

= ((a)?,(0)*) € E(X).

7

Thus ¢ is a digraph isomorphism as desired.

7 <7 Let X be the digraph defined in (2). We show that X is an n-Cayley digraph over
G. Consider the action of G on V(X) as (g,i)" := (gh,i). Let ¢ be the corresponding
permutation representation. Then G¥ < Sym(V(X)). Let (g,4), (h,j) € V(X). Then for
each a € GG, we have

((9.9), (h,j)) € B(X) <= hg™' €Ty
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(ha)(ga)™" € T
((ga,1), (ha, j)) € E(X)
((9.9)"", (h,5)™") € B(X).

(N

Therefore G¥ < Aut(X). Thus G = G¥ < Aut(X) and also G¥ acts on V(X) semi-
regularly. Note that V(X) = [Ji_,(g,i)%" is a partition of V(X) to G¥-orbits for any
g € G. Thus the proof is complete. n

By Lemma 2, an n-Cayley (di)graph is characterized by a group G and n? subsets Tj;
of G (some subsets may be empty). So we denote an n-Cayley (di)graph with respect to
n? subsets Tj; by ' = Cay(G;T;; | 1 < 4,5 < n). Note that this representation is not
unique. By Lemma 2, V(I') = G x {1,...,n}, (g,4) ~ (h,j) if and only if hg™' € T};
and I' is undirected if and only if for all 1 < 4,5 < n, Tj; = Tj;l. Note also that
[' is a (di)graph without loops if and only if T;; C G \ {1}, for all 1 < i < n. Let
A = [ag.i)(hj)lghea,i<ij<n be the adjacency matrix of I For a 1 x m vector v and
1 <i < n, we define v* to be a 1 x nm vector with n blocks, whose the ith block is v and
other blocks are 0yy,,. Let ez be the 1 x n|G| vector with n blocks, where ith block is
ey, as defined, and other blocks are 0;4|q| vectors. Let V' be the vector space with basis
{ei g€ G, 1<i<n}. Clearly V =ClG]aClG]@---aC[G], as C[G] = (¢4 | g € G).

-~
n—times

So dim¢ V' = ndimc C[G] = n|G|. Hence we can view A as the linear map

AV =V

n
G Y Y annen, 1<i<n, geG.
Jj=1 heG

For an element g € G, we define pyeg(g) : V — V with

ezl—>e;h, 1<i<n, hed.

Then g — preg(g) induces a representation pres : G — GL(V).
In the following lemma, we find a relation between A and pre,.

Lemma 3. Let A be the adjacency matriz of the digraph I' = Cay(G;T;; | 1 < 4,7 < n).
For all1 < i< n and g € G, we have Aeg = 377\ 37, r. Preg(t)e] (with the convention

ZtGTZ'j I/O\reg(t) = O Zf 7-;] = @)
Proof. We have a, jyg.5) = 1 if and only if hg™' € T;;. So

n

A = > amgene

=1 heG
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= izegg

Jj=1 teT;;
n
_ E E ~ J
- preg(t)eg
j=1 teTy;
as desired. O

Fori=1,...,n, let V; be a vector space with basis {ez | g € G}. Then for all h € G,
ﬁreg(h)e; = eﬁbg € V;. Thus V; is a preg-invariant subspace of V. Furthermore V;, 1 < i < n,
is isomorphic to C[G] as a C-vector space, V = @, V; and pres = D, Preg|v;- Note
that we can identify V; with C[G] and preg|y; With preg.

If we denote preg|v, DY Pregk, then by part (ii) of Lemma 1 we have the following result.

Lemma 4. Let p1,...,0, be all mequivalent C-irreducible representations of G with
degrees d, . .. dm, respectively. Let o) be a unitary matriz representation of ¢; and

)k

QEJ) = e Q” )(g)e F1<k<n 1<I<mandl <i,j<d. Then pregyk(g)ggj) =
! ),k

Zfl 1 Qf"z)(g)gfﬂj) :

_(1).k OV 0 F 0) 0 5
Proof. First note that g,;;" = > . 0,/ (9)eh = (deG 0i (g)eg> <QU ) where g,
defined in Lemma 1. Now we have

k
~ _(),k ~ (1
preg,k (g)gz(j) = pwg,k(g) (QEJ)>

k
(1
= (preg(g)gﬁj))

(Z of! (9)a); ) k

Z ,Q” QT] (by Lemma 1(7))

as desired. ]

For the rest of this section we keep the notations of Lemma 4. Using the notations of
this lemma we have the following corollary.

Corollary 5. Let A be the adjacency matriz of digraph I' = Cay(G;T;; | 1 < i,j < n).
D)k n 4 (
Then AQz 3 Zs:l ZtETkS Zrl 1 QS’Z) (t)gf"j) :

Proof. We have

AgVF = (Z D (g) z;)

geG
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= > o) (94

geG
= Z 0i; ( Z Z Preg(t)e; (by Lemma 3)
gGG s=1 teTy,

= Z 5SS 00 (9) et

s=1 teTys geG

= Y Y ) (0)3)

s=1 teTys geG

= S S ) (003)

s=1 teTys geG

= > Bregs(t) (Z 0t <g>e;>

s=1 teTys geG
n
_ E : § ' ~ ~(1),s
- preg,s( Qz]
s=1 te€Tks

— Z Z Z Qm glj) * (by Lemma 4)

s=1 teTy, r=1

as desired. O
Now we are ready to prove the main result of the paper.

Theorem 6. Let I' = Cay(G;T;; | 1 < i,j < n) be an n-Cayley digraph over a finite

group G. For each | € {1,...,m}, we define nd; x nd; block matriz A; = [AEH, where

A(;) = ZteTJ_Z_ o (t). Let xa,(\) and xa()\) be the characteristic polynomial of A; and A,
respectively. Then xa(\) = T, x 4,(A)%.

Proof. By the notations of Lemma 4 and using Lemma 1, if we put

2 = {o* 1<i<a} and V= <=%’(-””“>,

) J

then #* = J", U?lzl %’](-l)’k is a basis for V, = @, @dl Vi 1k

n m d m d; n
1),k 1),k
- BHEY - BBV
k=1 =1 j=1 =1 j=1 k=1
and B={%" |1 < k < n}isabasisfor V. Nowput‘gj {Qw |1< n,lgigdl}
and V= (7). Then V" = @}, V" Hence V = @1, @7, V"
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On the other hand, by Corollary 5, V;-(l) is A-invariant subspace of V' and [A\Va)] o =
il

[A|V(z):| for all 1 < 7,5 < d;, where [T]4 is the matrix of a linear transformation
g(l)

T with respect to the basis . So by the primary decomposition Theorem, [A]y =

diag(ly, ® Ay, Iy, @ Aoy ... 14, ® Ay, where A; = |:A|V(l):| w: 1 <1< m. We consider
1,

the ordering '

(0,1 (D)1 0,1 ()2 (0),2 (D)sm (D);n
015 1025 -1 0q5 +01f 5-+50g5 »-+5015 -+ 045

for the elements of ‘Kj(l). Now by Corollary 5, A; = [Ag)] is nd; x nd; block matrix with
d; x d; blocks AE?, 1 <i,7 < n, where Ag) =D e, o (t). Now the result is clear. [

Let K, ., be the n-partite complete graph. The complement of this graph consists
n components isomorphic with the complete graph K. By [2, p. 20], we have

Xty (A) = XD (L= n)) (A )"

Now we derive the latter formula using Theorem 6: To see this, suppose that G is a finite
group of order 7 and I' = Cay(G;T;; | 1 < 4,5 < n) where T};; = () and T;; = G, for
i # 4. Let o, 0@ ... o™ be all inequivalent unitary irreducible representations of G.
Let d; and n; be the degree and character of o, 1 < i < m, respectively. Also let 7; be
the trivial character. By Theorem 6, ya(A\) = I, x4, (A\)%, where A; = [Ag)]lgi,j@ and

=D er;, o (t). By our convention Ag) =0 (since Tj; = 0). Now let i # j. Then for
every g € G, we have

o(9)4; => o o (g) => oWgtg™) =D ¥

teG teG teG

Thus by Schur’s Lemma, we have AZ(»? = Z"E+W.le Put z; = M. Then A; =
Bi®1,,, where By is a circulant nxn matrix with first row [0, 2, 2y, ..., @ ] So by [2, p. 16],
x8,(\) = (A= (n—1)z;) (A +27)" " and therefore x4,(A) = (A — (n — 1)ay) % (A +z;) "Dk,

On the other hand, 21 = |G| and 2; = 0 for [ # 1. So

) = T (= (= D)+ )0

= (A= (n— DG+ |G IR, (A N1
= A+ (1 —n)|GHO+ |G tan it
= (A + (1 —n)|G)+ |G ianel=D,

Replacing |G| = r, we get I' = K,.,. _, and now the result is clear.
In what follows we present some applications of Theorem 6. It is well-known that
the diameter of any connected graph is less than the number of distinct eigenvalues of

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(3) (2013), #P57 8



its adjacency matrix (See [2], Corollary 2.7). Thus by Theorem 6, if ' is a connected
n-Cayley graph over a finite group G, then the diameter of I is less than ny ;" | d;, where
dy,...,d,, are character degrees of G. In particular the diameter of any Cayley graph
over G is less than sum of character degrees of G.

Since an n-Cayley (di)graph over a group G is Cayley (di)graph over G if and only if
n = 1, the following corollary is a direct consequence of Theorem 6.

Corollary 7. (See [4, Corollary 5.3]) Let I' = Cay(G,S) be a Cayley digraph over a
finite group G with irreducible unitary matriz representations oV, ..., o™ . Let d; be the

degree of oV. For each | € {1,...,m}, define a d; x d; block matriz A; = AY , where
s

Ag) = > s 0V(s). Let xa,(N) and xa(X) be the characteristic polynomial of A; and A,
the adjacency matriz of T, respectively. Then x a(\) =TI/ xa,(A)%.

Since all irreducible characters of an abelian group have degree 1, Theorem 6 can be
applied easily to compute the spectrum of n-Cayley (di)graphs over abelian groups. Let
I' = Cay(G,T;; | 1 <1i,j < n), be an n-Cayley (di)graph over a finite abelian group G
of order m with irreducible characters n,...,n,. By Theorem 6, xa(A\) = II]% x4, (),

where A; = [EteTji m(t)} , which generalizes Corollary 3.3 of [5]. In particular if

1<, g<n

n =2, then xa(A) = I, (A — A)(A = AD), where

l
)\(l) 011 + 022 + \/ 2+ 4C§Q)C§1)
+

and CZ(-;) = ZteTji n(t), which generalizes the main result of [3].
A Cayley digraph over a group with a subgroup of index n is an n-Cayley digraph, as
the following result shows.

Lemma 8. Let ' = Cay(G, S) be a Cayley (di)graph. Suppose that there exists a subgroup
H of G with indexn. If {t1,...,t,} is a left transversal to H in G, then I" = Cay(H, T; |
1<i,j<n), where T;; ={h € H | tj_lhti €S} =Hnt;St;".

Proof. Let ¥ = Cay(H,T;; | 1 <14,j <n). Since {t1,...,t,} is a left transversal to H in
G, every element of G is uniquely expressible in the form ¢;h with h € H and 1 <1 < n.
Define v : G — H x {1, ...,n} where (t;h)¥ = (h,i). Clearly ¢ is a bijection from V(T') to
V(). Now (t;hy,tjhy) € E(T) <= tjhohy't; € S <= hyhi' € Ty; <= ((h1,1), (ha,j)) €
E(Y). Hence ¢ is a (di)graph isomorphism from I' to X. ]

Corollary 9. Let I' = Cay(G, S) be a Cayley digraph, H = {(a) a cyclic subgroup of G of
order n and of index 2 with left transversal {t1,t2} . Then the characteristic polynomial
of the adjacency matriz of T is xa(\) = HZ3(A — AF) (A — A, where

M+ A2 1 /N = N2)Z 1+ AP
2

)\”—ZteTw and Ty; ={t|0<t<n—1,a €t;St;'}.

M A2 O X AT
2 )

/\Z-: 7)‘;:
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Proof. 1t is a direct consequence of Lemma 8 and Theorem 6. [

Let I' be a k-regular graph with n vertices and adjacency matrix A. Let A® be the
adjacency matrix of the complement of I Then (A + &k + 1)xac(\) = (—=1)"(A —n +
kE+ 1)xa(=X — 1), see [2, p. 20]. Clearly Cayley graphs are regular. If n > 2, n-
Cayley graphs are not necessarily regular, but we have a similar relation between the
characteristic polynomials of any n-Cayley graph and its complement which is given in
the next theorem.

Theorem 10. Let I' = Cay(G,T;; | 1 < i,5 < n) be an n-Cayley graph over a finite group
G. Let T° be the complement of I' with adjacency matriz A°. Then the characteristic
polynomials of I' and T'° are related with the following equation:

X (Axa(=A = 1) = (=11, (=X = Dxac (V).
where By = |G|J — I, — Ay, J is the all ones matriz of degree n, and A; = [|T}i|]1<

Proof. Since Aut(I') = Aut(I'*), I'® is an n-Cayley graph over G. Furthermore I'® =
Cay(G,S;; | 1 <14,j < n), where S;; = G\ (T}; U {1}) and S;; = G\ T};, where i # j.
By Theorem 6, xa-(\) = [[%, x5,(A\)%, where B, = [Bi(j)] is an nd; x nd; matrix and
Bi(;) =D ses;s o (s) and xa(A) = [T~ xa,(A\)% as A; defined in Theorem 6.

For i # j we have
=Y )= oP@) =D o

SESji zeG tGTji
and for ¢ = j we have
!
= § oY (x) E oV (t) — I,
zeG teTy;

Put X; =", 0" (x). Then for every g € G, we have

o9 X0 (9) ™ =D 09" (@) (g7 =D oW (grgT) =D o

zeG zeG zeG

Therefore by Schur’s Lemma, we have X; = Z"le()fdl Hence X; = |G| and X; = 0y
for | # 1, where 04, is the d; x d; zero matrix. Therefore for all [ # 1,

Bl = —Al — diag([dl, Idl, Cen ,Idl),

and By = |G|J — I, — Ay, where J is the all ones matrix of degree n. Furthermore if [ # 1
then x5,(A) = [],especiay (A + 1 +1). So

xasM) =xs, V][ TI G+p+nn
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Also we have

Xa(=A=1) = xa(=A-1) HXAl

= XAI _1H H - _1_:u)dl

=2 peSpec(A;)

= ( 1)d2+d2+ +danA1 _1 H H )\+1+’u
1=2 peSpec(A;)

= (D) (=2-D]] I +1+mwm*

=2 peSpec(A4;)

which implies that ypz, (A)xa(—A — 1) = (=1)/=x 4, (=X — 1)x4c()\) as desired. O

3 Eigenvectors of n-Cayley (di)graphs

In this section we determine the corresponding eigenspace of each eigenvalue of n-Cayley
digraph I'. We use the notations of Theorem 6.

Lemma 11. Let vy = (v1,...,v,) be an eigenvector of Ay, 1 < k < m, associated with
A. Then the following vectors are distinct linearly independent dj, eigenvectors of digraph
I' associated with \:

_ ZZ [Us ) @S,k)(g)] €, 1< j<dy

s=1 gel@

where - is the usual inner product and @;k) (g) is a vector whose coordinates are the complex
conjugate of the coordinates of jth column of o™ (g).

Proof. By Corollary 5, we have A@g-)’k =01 D e, S anll)( )QE,J) Fori=1,2,.
let V; = (Uib Vi2y ... ,U,'dk). Then

fo = S [ned0)4

s=1 geG

n dg
= YN wa ) o (9)e;

s=1 t=1 geG

_ szstws.

s=1 t=1
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Now we have

n

d
Avfy = D> vaday’”

s=1 t=1
= ZsztZ Z ZQ gm)s (by Corollary 5)
s=1 t=1 s'=1t'eT s r=1

n dg

=D 39 3p WERUGIFEE

s=1 r=1 | t=1 s/=1¢'€T, 4

= i Z /\USTQ k)7

s=1 r=1

-

as desired. Since {@gf)’s

1<k<m,1<s<n1<i, k}lsanorthogonalbasisofV
(the corresponding vector space of the adjacency matrix A), vgk)’s are distinct and linearly
independent. L

An eigenvector of the adjacency matrix of a graph I' is said to be main eigenvector if
it is not orthogonal to the all ones vector j. An eigenvalue of a graph I is said to be a
main eigenvalue if it has a main eigenvector. By Perron-Frobenius Theorem, the largest
eigenvalue of a graph is a main eigenvalue. It is also well known that a graph is regular if
and only if it has exactly one main eigenvalue. So for every Cayley graph I' = Cay(G, 5),
|S| is the only main eigenvalue of I'. Since n-Cayley graphs, for n > 2 are not necessarily
regular, determining the main eigenvalues of these graphs seems to be important. In the
following corollary we determine the main eigenvalues of n-Cayley graphs.

Corollary 12. Let I' = Cay(G,T;; | 1 < 4,5 < n) be an n-Cayley graph over a finite
group G and n > 2. The main eigenvalues of I' is equal to main eigenvalues of the matrix
Ay = [|Tiilh<ij<n-

Proof. Using the notations of Lemma 11, we have
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ivs : [Z 2" (g)] :

s=1 geG

Also ¥ ¢ @;k) (g) is the Complex conjugate of jth column of }_ 0% (g). On the other
hand, by Schur’s Lemma } 0 (g) = |G| and for all k # 1, > g 0™ (g) = 04, where

0Og,, is the all zeros matrix of order dj. This implies that
o 0 k#1
C G2 vs k=1,
Since v{l) J=|G| >0 vs = |G|(vay - §'), where j' is the all ones vector 1 X n, the result
is clear. u

Corollary 13. Let I' = Cay(G,T;; | 1 < 4,5 < 2) be a 2-Cayley graph over a group G.
Then T has exactly two main eigenvalues if and only if |T11| # |Tas|.

Proof. Let T" has exactly two main eigenvalues. If |T};| = |Tss|, then T is regular and by
[6, Proposition 1.4], T" must have exactly one main eigenvalue which is a contradiction.
Conversely, let |T11] # |Ts2|. Then I' is not regular. Also by Corollary 12, I' has at most
two main eigenvalues and by Perron-Frobenius Theorem, the largest eigenvalue of I' is a
main eigenvalue. So by [6, Proposition 1.4], " has exactly two main eigenvalues. O]

Corollary 14. Let I' = Cay(G,T;; | 1 < 4,j < 2) be a 2-Cayley graph over a group G. If
|T11| # |Tea| then T' has exactly two orbits on V(I') which are the same orbits of Rg.

Proof. Let |T11| # |Tss|. By Corollary 13, I' has exactly two main eigenvalues. On the
other hand, A := Aut(T) has at least two orbits on V(I'), say a* and 4. Let O; = aft¢
and O, = %< be two orbits of Rg then O; C o and O, C 4. Hence O; N Oy = () and
so O1 UOy =V = a? U B4, This shows that I' has exactly two distinct orbits which are
the same orbits of Rq. ]

Note that the converse of the above corollary is not true. To see this, consider the
generalized Peterson graph I' = P(h,t), where t* # 1 (mod h). Then P(h,t) is not
vertex-transitive (see [2, pp. 104, 105]), and so as we proved in the above corollary, T'
has two orbits on V(I') and is a 2-Cayley graph over a cyclic group (a) of order h, where
T11 = {CL, a_l}, T22 = {at,a_t} and T12 = T21 = {1}
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