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Abstract

A digraph Γ is called n-Cayley digraph over a group G, if there exists a semiregu-
lar subgroup RG of Aut(Γ) isomorphic to G with n orbits. In this paper, we represent
the adjacency matrix of Γ as a diagonal block matrix in terms of irreducible repre-
sentations of G and determine its characteristic polynomial. As corollaries of this
result we find: the spectrum of semi-Cayley graphs over abelian groups, a relation
between the characteristic polynomial of an n-Cayley graph and its complement,
and the spectrum of Cayley graphs over groups having cyclic subgroups. Finally we
determine the eigenspace of n-Cayley digraphs and their main eigenvalues.

Keywords: n-Cayley digraph; linear representations of groups; characteristic poly-
nomial

1 Introduction

Graphs come in two principle types: directed graphs and undirected graphs. We shall
refer to directed graphs as digraphs and use the term graph to refer to undirected graphs.
A digraph Γ is a pair (V,E) of vertices V and edges E where E ⊆ V × V ; the digraph Γ
is said to be finite if V is finite. A graph is a digraph with no edges of the form (α, α)
and with the property that (α, β) ∈ E implies (β, α) ∈ E. The set of all permutations of
V which preserve the adjacency structure of Γ is called the automorphism group of Γ; it
is denoted by Aut(Γ). In this paper all digraphs have no loops. For the group-theoretic
and graph-theoretic terminology not defined here we refer the reader to [9, 2].

Let G be a group and S a subset of G not containing the identity element 1. Recall
that the Cayley digraph Γ = Cay(G,S) of G with respect to S has vertex set G and edge
set {(g, sg) | g ∈ G, s ∈ S}. If S = S−1, then Cay(G,S) can be viewed as an undirected
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graph, identifying an undirected edge with two directed edges (g, h) and (h, g). This graph
is called Cayley graph of G with respect to S. By a theorem of Sabidussi [8], a digraph Γ
is a Cayley digraph over a group G if and only if there exists a regular subgroup of Aut(Γ)
isomorphic to G. There is a natural generalization of the Sabidussi’s Theorem. A digraph
Γ is called an n-Cayley digraph over a group G if there exists an n-orbit semiregular
subgroup of Aut(Γ) isomorphic to G. 2-Cayley graphs are called by some authors semi-
Cayley graph, see for example [3], and also bi-Cayley graph [5]. Also a special case of
2-Cayley graphs are also called bi-Cayley graph by some authors, see for example [10].

The spectrum of a finite digraph Γ is the spectrum of its adjacency matrix A, that
is, the set of eigenvalues together with their multiplicities. The characteristic polynomial
of Γ is the characteristic polynomial of A, that is the polynomial defined by χA(λ) =
det(λI − A). It is known that numerous proofs in graph theory depend on the spectrum
of graphs and the spectrum of a graph is one of the most important algebraic invariants.
The basic relationships between algebraic properties of these eigenvalues and the usual
properties of graphs are available in [2].

Lovász [7] showed that determination of the spectrum of a graph with transitive au-
tomorphism group can be reduced to the same task for some Cayley graph and found
a formula for certain power sums of the eigenvalues in terms of irreducible characters of
automorphism group of the graph. Babai [1] succeeded in simplifying Lovasz’ formula for
the power sums of the eigenvalues of Cayley graphs.

Spectrum of 2-Cayley graphs over abelian groups is computed by Gao and Luo in [3]
using matrix theory. It seems that their arguments cannot be extended to non-abelian
groups or n-Cayaley graphs, n > 3. In this paper we find a factorization of characteristic
polynomial of n-Cayley digraphs over an arbitrary group in terms of linear representations
of the group. We prove that every Cayley graph over a group having a subgroup of index
n can be regarded as an n-Cayley graph; and compute the spectrum of Caylay graphs over
groups having a cyclic subgroup of index 2. Finally we find the eigenvectors of n-Cayley
(di)graphs.

2 Main Results

In this paper all vector spaces are over the complex field C and have finite dimension.
Throughout the paper G denotes a finite group. We denote by C[G], the complex vector
space of dimension |G|. Let A = {eg | g ∈ G} be an arbitrary basis of C[G]. We
identify C[G] with the vector space of all complex-valued functions on G. Thus a function
ϕ : G→ C corresponds to the vector ϕ =

∑
g∈G ϕ(g)eg and vice versa. In particular, the

vector eg of the standard basis A corresponds to a function, also denoted by eg, where

eg(h) =

{
1 h = g
0 h 6= g.

The (left) regular representation ρreg of G on C[G] is defined by its action on the basis
{eh | h ∈ G}; that is for all g, h ∈ G, ρreg(g)eh = egh. The regular representation has
degree |G|.
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Let Irr(G) = {ρ1, . . . , ρm} be the set of all irreducible inequivalent C-representations of
G. Let dk and %(k) be the degree and a unitary matrix representation of ρk, k = 1, . . . ,m,
respectively. We keep these notations throughout the paper.

In the following lemma, which seems to be well-known, we construct an orthogonal
basis for C[G] using the matrix representations %(k), 1 6 k 6 m.

Lemma 1. Let %
(k)
ij (g) be the ijth entry of %(k)(g), 1 6 i, j 6 dk, and %̄

(k)
ij =

∑
g∈G %

(k)
ij (g)eg,

where z denotes the complex conjugate of a complex number z. Then

(i) {%̄(k)ij | 1 6 k 6 m, 1 6 i, j 6 dk} form an orthogonal basis for C[G],

(ii) ρreg(g)%̄
(k)
ij =

∑dk
l=1 %

(k)
li (g)%̄

(k)
lj , for all g ∈ G and 1 6 i, j 6 dk, 1 6 k 6 m,

(iii) C[G] =
⊕m

k=1

⊕dk
j=1W

(k)
j , where W

(k)
j = 〈%̄(k)ij | 1 6 i 6 dk〉 which is a ρreg-invariant

subspace of C[G] of dimension dk.

Proof. Let 1 6 k, k′ 6 m. Then by [9, Corollaries 2, 3, p. 14],

1

|G|
∑
g∈G

%
(k)
ij (g)%

(k′)
i′j′ (g

−1) =
δij′δji′δkk′

dk
, (1)

for all 1 6 i, j 6 dk and 1 6 i′, j′ 6 dk′ . On the other hand the matrices %(k)(g) are

unitary for all g ∈ G and 1 6 k 6 m and so %
(k)
ij (g)−1 = %

(k)
ji (g). Hence (1) yields that

1

|G|
∑
g∈G

%
(k)
ij (g)%

(k′)
j′i′ (g) =

δij′δji′δkk′

dk
.

Now

〈%̄(k)ij , %̄
(k′)
j′i′ 〉 =

1

|G|
∑
g∈G

%
(k)
ij (g)%

(k′)
j′i′ (g) =

δij′δji′δkk′

dk
,

which shows that %̄
(k)
ij , %̄

(k′)
j′i′ are mutually orthogonal vectors of C[G] and hence indepen-

dent. On the other hand the cardinality of {%̄(k)ij | 1 6 k 6 m, 1 6 i, j 6 dk} is
∑m

k=1 d
2
k

which is equal to |G|, by [9, Corollary 2, p. 18]. Since the dimension of C[G] as a C-vector

space is |G|, we conclude that {%̄(k)ij | 1 6 k 6 m, 1 6 i, j 6 dk} is a basis for C[G]. This
proves (i).

Now we prove (ii). First note that for every ϕ ∈ C[G], and g, h ∈ G we have
ρreg(g)ϕ(h) = ϕ(g−1h), since

ρreg(g)ϕ(h) = ρreg(g)
∑
x∈G

ϕ(x)ex(h)

=
∑
x∈G

ϕ(x)ρreg(g)ex(h)
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=
∑
x∈G

ϕ(x)egx(h)

= ϕ(g−1h).

Hence for each g, h ∈ G we have (here we denote by [A]ij the ijth entry of a matrix A)

ρreg(g)%̄
(k)
ij (h) = %̄

(k)
ij (g−1h)

= [%̄(k)(g)−1%̄(k)(h)]ij

=

dk∑
l=1

%
(k)
li (g)%̄

(k)
lj (h) ( since %(k)(g) is a unitary matrix)

as desired. The statement (iii) is an immediate consequence of (i) and (ii).

If a group G acts on a set Ω and α ∈ Ω, we denote by αG and Gα, the orbit of G on Ω
with representative α and the stabilizer of α in G, respectively. Now we will find a useful
decomposition of the characteristic polynomial of n-Cayley (di)graphs. First we state a
very useful and well known equivalent definition of n-Cayley (di)graphs.

Lemma 2. A digraph Γ is n-Cayley digraph over G if and only if there exist subsets Tij
of G, where 1 6 i, j 6 n, such that Γ is isomorphic to a digraph X with

V (X) = G× {1, 2, . . . , n}, E(X) =
⋃

16i,j6n

{
((g, i), (tg, j)) | g ∈ G and t ∈ Tij

}
. (2)

Proof. ” ⇒ ” Let αGi , 1 6 i 6 n, be the orbits of G on V (Γ). Let Tij := {g ∈ G |
(αi, α

g
j ) ∈ E(Γ)}, 1 6 i, j 6 n, and ϕ : V (Γ) −→ V (X), where αgi 7→ (g, i) and X is

defined in (2). We show that ϕ is a digraph isomorphism. Since V (Γ) =
⋃n
i=1 α

G
i , every

vertex v ∈ V (Γ) is of the form αgi for some g ∈ G and 1 6 i 6 n. Also

αgi = αhj ⇐⇒ i = j, gh−1 ∈ Gαi
(= 1)⇐⇒ g = h, i = j.

Hence ϕ is well-defined and one to one. Clearly ϕ is onto. Moreover

(αgi , α
h
j ) ∈ E(Γ) ⇐⇒ (αi, α

hg−1

j ) ∈ E(Γ)

⇐⇒ hg−1 ∈ Tij
⇐⇒ ((g, i), (h, j)) ∈ E(X)

⇐⇒ ((αgi )
ϕ, (αhj )ϕ) ∈ E(X).

Thus ϕ is a digraph isomorphism as desired.
”⇐ ” Let X be the digraph defined in (2). We show that X is an n-Cayley digraph over
G. Consider the action of G on V (X) as (g, i)h := (gh, i). Let ϕ be the corresponding
permutation representation. Then Gϕ 6 Sym(V(X)). Let (g, i), (h, j) ∈ V (X). Then for
each a ∈ G, we have

((g, i), (h, j)) ∈ E(X) ⇐⇒ hg−1 ∈ Tij
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⇐⇒ (ha)(ga)−1 ∈ Tij
⇐⇒ ((ga, i), (ha, j)) ∈ E(X)

⇐⇒ ((g, i)a
ϕ

, (h, j)a
ϕ

) ∈ E(X).

Therefore Gϕ 6 Aut(X). Thus G ∼= Gϕ 6 Aut(X) and also Gϕ acts on V (X) semi-
regularly. Note that V (X) =

⋃n
i=1(g, i)

Gϕ
is a partition of V (X) to Gϕ-orbits for any

g ∈ G. Thus the proof is complete.

By Lemma 2, an n-Cayley (di)graph is characterized by a group G and n2 subsets Tij
of G (some subsets may be empty). So we denote an n-Cayley (di)graph with respect to
n2 subsets Tij by Γ = Cay(G;Tij | 1 6 i, j 6 n). Note that this representation is not
unique. By Lemma 2, V (Γ) = G × {1, . . . , n}, (g, i) ∼ (h, j) if and only if hg−1 ∈ Tij
and Γ is undirected if and only if for all 1 6 i, j 6 n, Tij = T−1ji . Note also that
Γ is a (di)graph without loops if and only if Tii ⊆ G \ {1}, for all 1 6 i 6 n. Let
A = [a(g,i)(h,j)]g,h∈G,16i,j6n be the adjacency matrix of Γ. For a 1 × m vector v and
1 6 i 6 n, we define vi to be a 1× nm vector with n blocks, whose the ith block is v and
other blocks are 01×m. Let eig be the 1 × n|G| vector with n blocks, where ith block is
eg, as defined, and other blocks are 01×|G| vectors. Let V be the vector space with basis
{eig | g ∈ G, 1 6 i 6 n}. Clearly V ∼= C[G]⊕ C[G]⊕ · · · ⊕ C[G]︸ ︷︷ ︸

n−times

, as C[G] = 〈eg | g ∈ G〉.

So dimC V = n dimC C[G] = n|G|. Hence we can view A as the linear map

A : V → V

eig 7→
n∑
j=1

∑
h∈G

a(h,j)(g,i)e
j
h, 1 6 i 6 n, g ∈ G.

For an element g ∈ G, we define ρ̂reg(g) : V → V with

eih 7→ eigh, 1 6 i 6 n, h ∈ G.

Then g 7→ ρ̂reg(g) induces a representation ρ̂reg : G→ GL(V ).
In the following lemma, we find a relation between A and ρ̂reg.

Lemma 3. Let A be the adjacency matrix of the digraph Γ = Cay(G;Tij | 1 6 i, j 6 n).
For all 1 6 i 6 n and g ∈ G, we have Aeig =

∑n
j=1

∑
t∈Tij ρ̂reg(t)e

j
g (with the convention∑

t∈Tij ρ̂reg(t) = 0 if Tij = ∅).

Proof. We have a(h,j)(g,i) = 1 if and only if hg−1 ∈ Tij. So

Aeig =
n∑
j=1

∑
h∈G

a(h,j)(g,i)e
j
h

=
n∑
j=1

∑
h=tg
t∈Tij

ejh
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=
n∑
j=1

∑
t∈Tij

ejtg

=
n∑
j=1

∑
t∈Tij

ρ̂reg(t)e
j
g

as desired.

For i = 1, . . . , n, let Vi be a vector space with basis {eig | g ∈ G}. Then for all h ∈ G,
ρ̂reg(h)eig = eihg ∈ Vi. Thus Vi is a ρ̂reg-invariant subspace of V . Furthermore Vi, 1 6 i 6 n,
is isomorphic to C[G] as a C-vector space, V =

⊕n
i=1 Vi and ρ̂reg =

⊕n
i=1 ρ̂reg|Vi . Note

that we can identify Vi with C[G] and ρ̂reg|Vi with ρreg.
If we denote ρ̂reg|Vk by ρ̂reg,k, then by part (ii) of Lemma 1 we have the following result.

Lemma 4. Let ϕ1, . . . , ϕm be all inequivalent C-irreducible representations of G with
degrees d1, . . . , dm, respectively. Let %(l) be a unitary matrix representation of ϕl and

%̄
(l),k
ij :=

∑
g∈G %

(l)
ij (g)ekg , 1 6 k 6 n, 1 6 l 6 m and 1 6 i, j 6 dl. Then ρ̂reg,k(g)%̄

(l),k
ij =∑dl

r=1 %
(l)
ri (g)%̄

(l),k
rj .

Proof. First note that %̄
(l),k
ij =

∑
g∈G %

(l)
ij (g)ekg =

(∑
g∈G %

(l)
ij (g)eg

)k
=
(
%̄
(l)
ij

)k
, where %̄

(l)
ij is

defined in Lemma 1. Now we have

ρ̂reg,k(g)%̄
(l),k
ij = ρ̂reg,k(g)

(
%̄
(l)
ij

)k
=

(
ρreg(g)%̄

(l)
ij

)k
=

(
dl∑
r=1

%
(l)
ri (g)%̄

(l)
rj

)k

=

dl∑
r=1

%
(l)
ri (g)%̄

(l),k
rj (by Lemma 1(ii))

as desired.

For the rest of this section we keep the notations of Lemma 4. Using the notations of
this lemma we have the following corollary.

Corollary 5. Let A be the adjacency matrix of digraph Γ = Cay(G;Tij | 1 6 i, j 6 n).

Then A%̄
(l),k
ij =

∑n
s=1

∑
t∈Tks

∑dl
r=1 %

(l)
ri (t)%̄

(l),s
rj .

Proof. We have

A%̄
(l),k
ij = A

(∑
g∈G

%
(l)
ij (g)ekg

)
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=
∑
g∈G

%
(l)
ij (g)Aekg

=
∑
g∈G

%
(l)
ij (g)

n∑
s=1

∑
t∈Tks

ρ̂reg(t)e
s
g (by Lemma 3)

=
n∑
s=1

∑
t∈Tks

∑
g∈G

%
(l)
ij (g)ρ̂reg(t)e

s
g

=
n∑
s=1

∑
t∈Tks

∑
g∈G

ρ̂reg(t)
(
%
(l)
ij (g)esg

)
=

n∑
s=1

∑
t∈Tks

∑
g∈G

ρ̂reg,s(t)
(
%
(l)
ij (g)esg

)
=

n∑
s=1

∑
t∈Tks

ρ̂reg,s(t)

(∑
g∈G

%
(l)
ij (g)esg

)

=
n∑
s=1

∑
t∈Tks

ρ̂reg,s(t)%̄
(l),s
ij

=
n∑
s=1

∑
t∈Tks

dl∑
r=1

%
(l)
ri (t)%̄

(l),s
rj (by Lemma 4)

as desired.

Now we are ready to prove the main result of the paper.

Theorem 6. Let Γ = Cay(G;Tij | 1 6 i, j 6 n) be an n-Cayley digraph over a finite

group G. For each l ∈ {1, . . . ,m}, we define ndl × ndl block matrix Al :=
[
A

(l)
ij

]
, where

A
(l)
ij =

∑
t∈Tji %

(l)(t). Let χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A,

respectively. Then χA(λ) = Πm
l=1χAl

(λ)dl.

Proof. By the notations of Lemma 4 and using Lemma 1, if we put

B(l),k
j =

{
%̄
(l),k
ij | 1 6 i 6 dl

}
and V

(l),k
j =

〈
B(l),k
j

〉
,

then Bk =
⋃m
l=1

⋃dl
j=1 B(l),k

j is a basis for Vk =
⊕m

l=1

⊕dl
j=1 V

(l),k
j . So

V =
n⊕
k=1

m⊕
l=1

dl⊕
j=1

V
(l),k
j =

m⊕
l=1

dl⊕
j=1

n⊕
k=1

V
(l),k
j

and B ={Bk | 1 6 k 6 n} is a basis for V . Now put C (l)
j =

{
%̄
(l),k
ij | 1 6 k 6 n, 1 6 i 6 dl

}
and V

(l)
j =

〈
C (l)
j

〉
. Then V

(l)
j =

⊕n
k=1 V

(l),k
j . Hence V =

⊕m
l=1

⊕dl
j=1 V

(l)
j .
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On the other hand, by Corollary 5, V
(l)
j is A-invariant subspace of V and

[
A|

V
(l)
j

]
C

(l)
j

=[
A|

V
(l)

j′

]
C

(l)

j′

for all 1 6 j, j′ 6 dl, where [T ]B is the matrix of a linear transformation

T with respect to the basis B. So by the primary decomposition Theorem, [A]B =

diag(Id1 ⊗ A1, Id2 ⊗ A2, . . . , Idm ⊗ Am), where Al =
[
A|

V
(l)
1

]
C

(l)
1

, 1 6 l 6 m. We consider

the ordering

%
(l),1
1j , %

(l),1
2j , . . . , %

(l),1
dlj

, %
(l),2
1j , . . . , %

(l),2
dlj

, . . . , %
(l),n
1j , . . . , %

(l),n
dlj

for the elements of C (l)
j . Now by Corollary 5, Al =

[
A

(l)
ij

]
is ndl × ndl block matrix with

dl × dl blocks A
(l)
ij , 1 6 i, j 6 n, where A

(l)
ij =

∑
t∈Tji %

(l)(t). Now the result is clear.

Let Kr,r,...,r be the n-partite complete graph. The complement of this graph consists
n components isomorphic with the complete graph Kr. By [2, p. 20], we have

χKr,r,...,r(λ) = λn(r−1)(λ+ r(1− n))(λ+ r)n−1.

Now we derive the latter formula using Theorem 6: To see this, suppose that G is a finite
group of order r and Γ = Cay(G;Tij | 1 6 i, j 6 n) where Tii = ∅ and Tij = G, for
i 6= j. Let %(1), %(2), . . . , %(m) be all inequivalent unitary irreducible representations of G.
Let di and ηi be the degree and character of %(i), 1 6 i 6 m, respectively. Also let η1 be
the trivial character. By Theorem 6, χA(λ) = Πm

l=1χAl
(λ)dl , where Al = [A

(l)
ij ]16i,j6n and

A
(l)
ij =

∑
t∈Tji %

(l)(t). By our convention A
(l)
ii = 0 (since Tii = ∅). Now let i 6= j. Then for

every g ∈ G, we have

%(l)(g)A
(l)
ij %

(l)(g)−1 =
∑
t∈G

%(l)(g)%(l)(t)%(l)(g−1) =
∑
t∈G

%(l)(gtg−1) =
∑
t∈G

%(l)(t) = A
(l)
ij .

Thus by Schur’s Lemma, we have A
(l)
ij =

∑
g∈G ηl(g)

dl
Idl . Put xl =

∑
g∈G ηl(g)

dl
. Then Al =

Bl⊗Idl , where Bl is a circulant n×n matrix with first row [0, xl, xl, . . . , xl]. So by [2, p. 16],
χBl

(λ) = (λ− (n− 1)xl)(λ+xl)
n−1 and therefore χAl

(λ) = (λ− (n− 1)xl)
dl(λ+xl)

(n−1)dl .
On the other hand, x1 = |G| and xl = 0 for l 6= 1. So

χA(λ) = Πm
l=1

(
(λ− (n− 1)xl)

d2l (λ+ xl)
(n−1)d2l

)
= (λ− (n− 1)|G|)(λ+ |G|)n−1Πm

l=2(λ
d2l λ(n−1)d

2
l )

= (λ+ (1− n)|G|)(λ+ |G|)n−1λn
∑m

l=2 d
2
l

= (λ+ (1− n)|G|)(λ+ |G|)n−1λn(|G|−1).

Replacing |G| = r, we get Γ ∼= Kr,r,...,r and now the result is clear.
In what follows we present some applications of Theorem 6. It is well-known that

the diameter of any connected graph is less than the number of distinct eigenvalues of
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its adjacency matrix (See [2], Corollary 2.7). Thus by Theorem 6, if Γ is a connected
n-Cayley graph over a finite group G, then the diameter of Γ is less than n

∑m
i=1 di, where

d1, . . . , dm are character degrees of G. In particular the diameter of any Cayley graph
over G is less than sum of character degrees of G.

Since an n-Cayley (di)graph over a group G is Cayley (di)graph over G if and only if
n = 1, the following corollary is a direct consequence of Theorem 6.

Corollary 7. (See [4, Corollary 5.3]) Let Γ = Cay(G,S) be a Cayley digraph over a
finite group G with irreducible unitary matrix representations %(1), . . . , %(m) . Let dl be the

degree of %(l). For each l ∈ {1, . . . ,m}, define a dl × dl block matrix Al :=
[
A

(l)
S

]
, where

A
(l)
S =

∑
s∈S %

(l)(s). Let χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A,

the adjacency matrix of Γ, respectively. Then χA(λ) = Πm
l=1χAl

(λ)dl.

Since all irreducible characters of an abelian group have degree 1, Theorem 6 can be
applied easily to compute the spectrum of n-Cayley (di)graphs over abelian groups. Let
Γ = Cay(G, Tij | 1 6 i, j 6 n), be an n-Cayley (di)graph over a finite abelian group G
of order m with irreducible characters η1, . . . , ηm. By Theorem 6, χA(λ) = Πm

l=1χAl
(λ),

where Al =
[∑

t∈Tji ηl(t)
]
16i,j6n

, which generalizes Corollary 3.3 of [5]. In particular if

n = 2, then χA(λ) = Πm
l=1(λ− λ

(l)
+ )(λ− λ(l)− ), where

λ
(l)
± =

c
(l)
11 + c

(l)
22 ±

√
(c

(l)
11 − c

(l)
22)2 + 4c

(l)
12c

(l)
21

2

and c
(l)
ij =

∑
t∈Tji ηl(t), which generalizes the main result of [3].

A Cayley digraph over a group with a subgroup of index n is an n-Cayley digraph, as
the following result shows.

Lemma 8. Let Γ = Cay(G,S) be a Cayley (di)graph. Suppose that there exists a subgroup
H of G with index n. If {t1, . . . , tn} is a left transversal to H in G, then Γ ∼= Cay(H,Tij |
1 6 i, j 6 n), where Tij = {h ∈ H | t−1j hti ∈ S} = H ∩ tjSt−1i .

Proof. Let Σ = Cay(H,Tij | 1 6 i, j 6 n). Since {t1, . . . , tn} is a left transversal to H in
G, every element of G is uniquely expressible in the form tih with h ∈ H and 1 6 i 6 n.
Define ψ : G→ H×{1, . . . , n} where (tih)ψ = (h, i). Clearly ψ is a bijection from V (Γ) to
V (Σ). Now (tih1, tjh2) ∈ E(Γ)⇐⇒ tjh2h

−1
1 ti ∈ S ⇐⇒ h2h

−1
1 ∈ Tij ⇐⇒ ((h1, i), (h2, j)) ∈

E(Σ). Hence ψ is a (di)graph isomorphism from Γ to Σ.

Corollary 9. Let Γ = Cay(G,S) be a Cayley digraph, H = 〈a〉 a cyclic subgroup of G of
order n and of index 2 with left transversal {t1, t2} . Then the characteristic polynomial
of the adjacency matrix of Γ is χA(λ) = Πn−1

k=0(λ− λ+k )(λ− λ−k ), where

λ+k =
λ11k + λ22k +

√
(λ11k − λ22k )2 + 4λ12k λ

21
k

2
, λ−k =

λ11k + λ22k −
√

(λ11k − λ22k )2 + 4λ12k λ
21
k

2
,

λijk =
∑

t∈Tji ω
kt
n and Tij = {t | 0 6 t 6 n− 1, at ∈ tjSt−1i }.
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Proof. It is a direct consequence of Lemma 8 and Theorem 6.

Let Γ be a k-regular graph with n vertices and adjacency matrix A. Let Ac be the
adjacency matrix of the complement of Γ. Then (λ + k + 1)χAc(λ) = (−1)n(λ − n +
k + 1)χA(−λ − 1), see [2, p. 20]. Clearly Cayley graphs are regular. If n > 2, n-
Cayley graphs are not necessarily regular, but we have a similar relation between the
characteristic polynomials of any n-Cayley graph and its complement which is given in
the next theorem.

Theorem 10. Let Γ = Cay(G, Tij | 1 6 i, j 6 n) be an n-Cayley graph over a finite group
G. Let Γc be the complement of Γ with adjacency matrix Ac. Then the characteristic
polynomials of Γ and Γc are related with the following equation:

χB1(λ)χA(−λ− 1) = (−1)|G|−1χA1(−λ− 1)χAc(λ),

where B1 = |G|J − In − A1, J is the all ones matrix of degree n, and A1 = [|Tji|]16i,j6n.

Proof. Since Aut(Γ) = Aut(Γc), Γc is an n-Cayley graph over G. Furthermore Γc =
Cay(G,Sij | 1 6 i, j 6 n), where Sii = G \ (Tii ∪ {1}) and Sij = G \ Tij, where i 6= j.

By Theorem 6, χAc(λ) =
∏m

l=1 χBl
(λ)dl , where Bl = [B

(l)
ij ] is an ndl × ndl matrix and

B
(l)
ij =

∑
s∈Sji

%(l)(s) and χA(λ) =
∏m

l=1 χAl
(λ)dl as Al defined in Theorem 6.

For i 6= j we have

B
(l)
ij =

∑
s∈Sji

%(l)(s) =
∑
x∈G

%(l)(x)−
∑
t∈Tji

%(l)(t)

and for i = j we have

B
(l)
ii =

∑
x∈G

%(l)(x)−
∑
t∈Tii

%(l)(t)− Idl .

Put Xl =
∑

x∈G %
(l)(x). Then for every g ∈ G, we have

%(l)(g)Xl%
(l)(g)−1 =

∑
x∈G

%(l)(g)%(l)(x)%(l)(g−1) =
∑
x∈G

%(l)(gxg−1) =
∑
x∈G

%(l)(x) = Xl.

Therefore by Schur’s Lemma, we have Xl =
∑

g∈G ηl(g)

dl
Idl . Hence X1 = |G| and Xl = 0dl

for l 6= 1, where 0dl is the dl × dl zero matrix. Therefore for all l 6= 1,

Bl = −Al − diag(Idl , Idl , . . . , Idl),

and B1 = |G|J − In−A1, where J is the all ones matrix of degree n. Furthermore if l 6= 1
then χBl

(λ) =
∏

µ∈Spec(Al)
(λ+ µ+ 1). So

χAc(λ) = χB1(λ)
m∏
l=2

∏
µ∈Spec(Al)

(λ+ µ+ 1)dl .
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Also we have

χA(−λ− 1) = χA1(−λ− 1)
m∏
l=2

χAl
(−λ− 1)dl

= χA1(−λ− 1)
m∏
l=2

∏
µ∈Spec(Al)

(−λ− 1− µ)dl

= (−1)d
2
2+d

2
3+···+d2mχA1(−λ− 1)

m∏
l=2

∏
µ∈Spec(Al)

(λ+ 1 + µ)dl

= (−1)|G|−1χA1(−λ− 1)
m∏
l=2

∏
µ∈Spec(Al)

(λ+ 1 + µ)dl

which implies that χB1(λ)χA(−λ− 1) = (−1)|G|−1χA1(−λ− 1)χAc(λ) as desired.

3 Eigenvectors of n-Cayley (di)graphs

In this section we determine the corresponding eigenspace of each eigenvalue of n-Cayley
digraph Γ. We use the notations of Theorem 6.

Lemma 11. Let v(k) = (v1, . . . , vn) be an eigenvector of Ak, 1 6 k 6 m, associated with
λ. Then the following vectors are distinct linearly independent dk eigenvectors of digraph
Γ associated with λ:

vj(k) :=
n∑
s=1

∑
g∈G

[
vs · %̄(k)j (g)

]
esg, 1 6 j 6 dk

where · is the usual inner product and %̄
(k)
j (g) is a vector whose coordinates are the complex

conjugate of the coordinates of jth column of %(k)(g).

Proof. By Corollary 5, we haveA%̄
(l),k
ij =

∑n
s=1

∑
t∈Tks

∑dl
r=1 %

(l)
ri (t)%̄

(l),s
rj . For i = 1, 2, . . . , n,

let vi = (vi1, vi2, . . . , vidk). Then

vj(k) =
n∑
s=1

∑
g∈G

[
vs · %̄(k)j (g)

]
esg

=
n∑
s=1

dk∑
t=1

vst
∑
g∈G

%
(k)
tj (g)esg

=
n∑
s=1

dk∑
t=1

vst%̄
(k),s
tj .
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Now we have

Avj(k) =
n∑
s=1

dk∑
t=1

vstA%̄
(k),s
tj

=
n∑
s=1

dk∑
t=1

vst

n∑
s′=1

∑
t′∈Tss′

dk∑
r=1

%
(k)
rt (t′)%̄

(k),s
rj (by Corollary 5)

=
n∑
s=1

dk∑
r=1

 dk∑
t=1

n∑
s′=1

∑
t′∈Tss′

vst%
(k)
rt (t′)

 %̄(k),srj

=
n∑
s=1

dk∑
r=1

λvsr%̄
(k),s
rj

= λ
n∑
s=1

dk∑
r=1

vsr%̄
(k),s
rj

= λvj(k)

as desired. Since
{
%̄
(k),s
ij | 1 6 k 6 m, 1 6 s 6 n, 1 6 i, j 6 dk

}
is an orthogonal basis of V

(the corresponding vector space of the adjacency matrix A), vj(k)’s are distinct and linearly
independent.

An eigenvector of the adjacency matrix of a graph Γ is said to be main eigenvector if
it is not orthogonal to the all ones vector j. An eigenvalue of a graph Γ is said to be a
main eigenvalue if it has a main eigenvector. By Perron-Frobenius Theorem, the largest
eigenvalue of a graph is a main eigenvalue. It is also well known that a graph is regular if
and only if it has exactly one main eigenvalue. So for every Cayley graph Γ = Cay(G,S),
|S| is the only main eigenvalue of Γ. Since n-Cayley graphs, for n > 2 are not necessarily
regular, determining the main eigenvalues of these graphs seems to be important. In the
following corollary we determine the main eigenvalues of n-Cayley graphs.

Corollary 12. Let Γ = Cay(G, Tij | 1 6 i, j 6 n) be an n-Cayley graph over a finite
group G and n > 2. The main eigenvalues of Γ is equal to main eigenvalues of the matrix
A1 = [|Tji|]16i,j6n.

Proof. Using the notations of Lemma 11, we have

vj(k) · j =

(
n∑
s=1

∑
g∈G

[
vs · %̄(k)j (g)

]
esg

)
· j

=
n∑
s=1

∑
g∈G

[
vs · %̄(k)j (g)

]
esg · j

=
n∑
s=1

∑
g∈G

[
vs · %̄(k)j (g)

]
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=
n∑
s=1

vs ·

[∑
g∈G

%̄
(k)
j (g)

]
.

Also
∑

g∈G %̄
(k)
j (g) is the complex conjugate of jth column of

∑
g∈G %

(k)(g). On the other

hand, by Schur’s Lemma
∑

g∈G %
(1)(g) = |G| and for all k 6= 1,

∑
g∈G %

(k)(g) = 0dk , where
0dk is the all zeros matrix of order dk. This implies that

vj(k) · j =

{
0 k 6= 1
|G|
∑n

s=1 vs k = 1.

Since vj(1) · j = |G|
∑n

s=1 vs = |G|(v(1) · j′), where j′ is the all ones vector 1× n, the result
is clear.

Corollary 13. Let Γ = Cay(G, Tij | 1 6 i, j 6 2) be a 2-Cayley graph over a group G.
Then Γ has exactly two main eigenvalues if and only if |T11| 6= |T22|.

Proof. Let Γ has exactly two main eigenvalues. If |T11| = |T22|, then Γ is regular and by
[6, Proposition 1.4], Γ must have exactly one main eigenvalue which is a contradiction.
Conversely, let |T11| 6= |T22|. Then Γ is not regular. Also by Corollary 12, Γ has at most
two main eigenvalues and by Perron-Frobenius Theorem, the largest eigenvalue of Γ is a
main eigenvalue. So by [6, Proposition 1.4], Γ has exactly two main eigenvalues.

Corollary 14. Let Γ = Cay(G, Tij | 1 6 i, j 6 2) be a 2-Cayley graph over a group G. If
|T11| 6= |T22| then Γ has exactly two orbits on V (Γ) which are the same orbits of RG.

Proof. Let |T11| 6= |T22|. By Corollary 13, Γ has exactly two main eigenvalues. On the
other hand, A := Aut(Γ) has at least two orbits on V (Γ), say αA and βA. Let O1 = αRG

and O2 = βRG be two orbits of RG then O1 ⊆ αA and O2 ⊆ βA. Hence O1 ∩ O2 = ∅ and
so O1 ∪ O2 = V = αA ∪ βA. This shows that Γ has exactly two distinct orbits which are
the same orbits of RG.

Note that the converse of the above corollary is not true. To see this, consider the
generalized Peterson graph Γ = P (h, t), where t2 6= 1 (mod h). Then P (h, t) is not
vertex-transitive (see [2, pp. 104, 105]), and so as we proved in the above corollary, Γ
has two orbits on V (Γ) and is a 2-Cayley graph over a cyclic group 〈a〉 of order h, where
T11 = {a, a−1}, T22 = {at, a−t} and T12 = T21 = {1}.
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