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Abstract

In this paper, we obtain several new classes of Wilf-equivalent patterns for al-
ternating permutations. In particular, we prove that for any nonempty pattern τ ,
the patterns 12 . . . k ⊕ τ and k . . . 21 ⊕ τ are Wilf-equivalent for alternating per-
mutations, paralleling a result of Backelin, West, and Xin for Wilf-equivalence for
permutations.
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1 Introduction

A permutation π = π1π2 . . . πn of length n on [n] = {1, 2, . . . , n} is said to be an alternating
permutation if π1 < π2 > π3 < π4 > · · · . Similarly, π is said to be a reverse alternating
permutation if π1 > π2 < π3 > π4 < · · · . We denote by An and A′n the set of alternating
and reverse alternating permutations of length n, respectively.

Denote by Sn the set of all permutations on [n]. Given a permutation π = π1π2 . . . πn ∈
Sn and a permutation τ = τ1τ2 . . . τk ∈ Sk, we say that π contains the pattern τ if there
exists a subsequence πi1πi2 . . . πik of π that is order-isomorphic to τ . Otherwise, π is said
to avoid the pattern τ or be τ -avoiding.

Pattern avoiding permutations have been extensively studied over last decade. For
a thorough summary of the current status of research, see Bóna’s book [4] and Kitaev’s
book [8]. Analogous to the ordinary permutations, Mansour [11] initiated the study of
alternating permutations avoiding a given pattern. For any pattern of length 3, the
number of alternating permutations of a given length avoiding that pattern is given by
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Catalan numbers, see [11, 13]. Recently, Lewis [9] considered the enumeration of al-
ternating permutations avoiding a given pattern of length 4. Let An(τ) and A′n(τ) be
the set of τ -avoiding alternating and reverse alternating permutations of length n, re-
spectively. Lewis [9] showed that there is a bijection between A2n(1234) and the set of
standard Young tableaux of shape (n, n, n), and between the set A2n+1(1234) and the
set of standard Young tableaux of shape (n + 1, n, n − 1). Using the hook length for-

mula for standard Young tableaux [12], he deduced that |A2n(1234)| = 2(3n)!
n!(n+1)!(n+2)!

and

|A2n+1(1234)| = 16(3n)!
(n−1)!(n+1)!(n+3)!

. Later, Lewis [10] showed that the generating trees for
2143-avoiding alternating permutations of even length and odd length are isomorphic to
the generating trees for standard Young tableaux of shape (n, n, n) and shifted standard
Young tableaux of shape (n+ 2, n+ 1, n), respectively. In his paper [10], Lewis posed sev-
eral conjectures on the enumeration of alternating permutations avoiding a given pattern
of length 4 and 5. Some of these conjectures were proved by Bóna [5], Chen et al. [6] and
Xu et al. [14].

The reverse of a permutation π = π1π2 . . . πn is given by πr = πnπn−1 . . . π1 and the
complement by πc = (n + 1 − π1)(n + 1 − π2) . . . (n + 1 − πn). Recall that two patterns
α and β are said to be Wilf-equivalent if |Sn(α)| = |Sn(β)| for all natural numbers
n. We denote this by α ∼ β. It is clear that σ ∼ σc ∼ σr ∼ σrc. It is easily seen
that the reverse and complement operation of an alternating permutation of even length
gives another alternating permutations, and the reverse of an alternating permutation
of odd length gives another alternating permutation. Thus, given a pattern σ, we have
|A2n(σ)| = |A2n(σrc)| and |A2n+1(σ)| = |A2n+1(σ

r)| for all n > 0. In this context, σ and
σrc are said to be trivially Wilf-equivalent for alternating permutations of even length.
Similarly, σ and σr are said to be trivially Wilf-equivalent for alternating permutations
of odd length.

Definition 1.1. The direct sum of two permutations α = α1α2 . . . αk ∈ Sk and β =
β1β2 . . . βl ∈ Sl, denoted by α⊕β, is the permutation α1α2 . . . αk(β1+k)(β2+k) . . . (βl+k).

Definition 1.2. The skew sum of two permutations α = α1α2 . . . αk ∈ Sk and β =
β1β2 . . . βl ∈ Sl, denoted by α	β, is the permutation (α1 + l)(α2 + l) . . . (αk + l)β1β2 . . . βl.

In this paper, we are mainly concerned with the Wilf-equivalent classes of patterns for
alternating permutations, which are the analogue of a result for permutations proved by
Backelin, West, Xin [2] and for involutions proved by Bousquet-Mélou and Steingŕımsson
[3]. We obtain the following non-trivial Wilf equivalence for alternating permutations.

Theorem 1.3. Let n > 1 and k > 2. The equality |An(12 . . . k ⊕ τ)| = |An(k . . . 21⊕ τ)|
holds for any nonempty pattern τ .

Theorem 1.4. Let n > 1 and k > 2. The equality |An(k−1 . . . 21k⊕τ)| = |An(k . . . 21⊕
τ)| holds for any nonempty pattern τ .

Theorem 1.5. Let n > 1 and k > 3. The equality |A2n+1(23 . . . k1 	 τ)| =
|A2n+1(12 . . . k 	 τ)| holds for any nonempty pattern τ .
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Theorem 1.6. Let n > 1 and k > 3. The equality |A2n(23 . . . k1	τ)| = |A2n(12 . . . k	τ)|
holds for any (possibly empty) pattern τ .

Note that Theorems 1.3 through 1.6 were proved by Gowravaram and Jagadeesan [7]
for k = 2, 3.

2 Alternating-shape-Wilf-equivalence for alternating

Young diagrams

In this section, we follow the approach given in [1], [2], [3] and [7]. We study pattern avoid-
ance for slightly more general objects than alternating permutation, namely, transversals
of alternating Young diagrams. Let us begin with some necessary definitions and nota-
tions. We draw Young diagrams in English notation and use matrix coordinates, and for
example (1, 2) is the second square in the first row of a Young diagram.

Definition 2.1. Let λ be a Young diagram with k columns and D be a subset of noncon-
secutive positive integers of [k]. If for any i ∈ D column i and column i+1 have the same
length, then we call the pair (λ,D) an alternating Young diagram. An alternating Young
diagram (λ,D) is said to be a strict alternating Young diagram if D ⊆ [k − 1].

A transversal of a Young diagram λ is a filling of the squares of λ with 1′s and 0′s
such that every row and column contains exactly one 1. Denote by T = {(ti, i)}ki=1 the
transversal in which the square (ti, i) is filled with a 1 for all i 6 k. For example the
transversal T = {(1, 5), (2, 4), (3, 2), (4, 3), (5, 1)} are illustrated as Figure 1.

1

0 0 1

0 1 0

0 0 0 1

0 0 0 0 1

Figure 1: The transversal T = {(1, 5), (2, 4), (3, 2), (4, 3), (5, 1)}.

The notion of pattern avoidance is extended to transversals of a Young diagram in [1]
and [2]. In this section, we will consider permutations as permutation matrices. Given
a permutation π = π1π2 . . . πn ∈ Sn, its corresponding permutation matrix is a n by n
matrix M in which the entry on column i and row πi is 1 and all the other entries are
zero.

Given a permutation α of [m], let M be its permutation matrix. A transversal L
of a Young diagram λ will be said to contain α if there exists two subsets of the index
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set [n], R = {r1 < r2 < . . . < rm} and C = {c1 < c2 < . . . < cm}, such that the
matrix on R and C is a copy of M and each of the squares (rj, cj) falls within the Young
diagram. In this context, the permutation α is called a pattern. Denote by Sλ(α) the
set of all transversals of Young diagram λ that avoid α. Two patterns α and β are said
to be shape-Wilf-equivalent, denoted by α ∼s β, if for all Young diagram λ, we have
|Sλ(α)| = |Sλ(β)|.

Definition 2.2. Let λ be a Young diagram with k columns. Given a transversal T =
{(ti, i)}ki=1 of an alternating Young diagram (λ,D), let Peak(T ) = {i|ti−1 < ti > ti+1}
with the assumption t0 = tk+1 = 0. Then T is said to be a valid transversal of (λ,D) if
we have D ⊆ Peak(T ).

Denote by T Dλ the set of all valid transversals of alternating Young diagram (λ,D).
Similarly, denote by T Dλ (α) the set of all transversals of alternating Young diagram (λ,D)
that avoid α.

Definition 2.3. Two patterns α and β are called alternating-shape-Wilf-equivalent if
|T Dλ (α)| = |T Dλ (β)| for all alternating Young diagrams (λ,D). We denote this by α ∼as
β. Similarly, two patterns α and β are called strict-alternating-shape-Wilf-equivalent if
|T Dλ (α)| = |T Dλ (β)| for all strict alternating Young diagrams (λ,D). We denote this by
α ∼sas β.

Backelin, West, Xin [2] proved the following shape-Wilf equivalences for transversals
of Young diagrams. Let Ik = 12 . . . k , Jk = k . . . 21 and Fk = (k − 1) . . . 21k.

Theorem 2.4. ([2], Proposition 2.3 ) For any patterns α, β and σ, if α ∼s β, then
α⊕ σ ∼s β ⊕ σ.

Theorem 2.5. ([2], Proposition 3.1) For all k > 2, Fk ∼s Jk.

Theorem 2.6. ([2], Proposition 2.2) For all k > 2, Ik ∼s Jk.

In this section, we will adapt their proof of Theorem 2.4 to obtain the following
theorem.

Theorem 2.7. For any nonempty patterns α, β and σ, if α ∼sas β, then α⊕σ ∼as β⊕σ.

Proof. For any Young diagram λ with k columns and a subset D of non-consecutive
integers of [k − 1], let fDλ : T Dλ (α) → T Dλ (β) implied by the hypothesis. Now fix Young
diagram λ and a subset D of non-consecutive integers of [k− 1]. We proceed to construct
a bijection gDλ : T Dλ (α ⊕ σ)→ T Dλ (β ⊕ σ). Given a transversal T ∈ T Dλ (α ⊕ σ), we color
the cell (r, c) of λ by white if the board of λ lying above and to the right of it contains σ,
or gray otherwise. Then find the 1′s coloured by gray, and colour the corresponding rows
and columns gray. Denote the white board by λ′.

The white board λ′ is a Young diagram since if a cell is colored white, then each cell to
the left and above it. Suppose that c ∈ D. It is easily seen that if c ∈ D and the cell (r, c)
is filled with a 1 in T , then if the cell (r, c) is coloured by white, then all the cell (r′, c+ 1)
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is also colored by white for all r′ 6 r. This implies that the white board form a strict
alternating Young diagram. Denote this by (λ′, D′). Denote by T ′ the the transversal T
restricted to the strict alternating Young diagram (λ′, D′). Next we aim to show that T ′

is a valid transversal of (λ′, D′). Suppose that c ∈ D, the squares (r1, c − 1), (r2, c) and
(r3, c + 1) are filled with 1′s in T , and the square (r2, c) is coloured by white. Then the
squares (r1, c−1) and (r3, c+1) are also coloured by white. This implies that T ′ is a valid
transversal of (λ′, D′). Since T avoids α ⊕ σ, we have T ′ ∈ T D′

λ′ (α). Applying the map
fD

′

λ′ to T ′, we get a valid transversal in T D′

λ′ (β). Restoring the gray cells of λ and their
contents, we obtain a transversal L of the alternating Young diagram (λ,D) avoiding the
pattern β ⊕ σ. It is easy to check that L is a valid transversal of the alternating Young
diagram (λ,D).

In order to show that the map gDλ is a bijection, we show that the above procedure
is invertible. It is obvious that the map gDλ only changes the white cells and leaves the
gray cells fixed. Hence when applying the inverse map (gDλ )−1, the coloring of L will
result in the same semi-standard Young diagram (λ′, D′) on which to apply the inverse
transformation (fD

′

λ′ )−1. This completes the proof.

In the next section, we will give a bijective proof of the following analogous result of
Theorem 2.5 given in [2].

Theorem 2.8. For all k > 3, Fk ∼sas Jk.

In order to prove Theorem 1.4, we also need the following Wilf equivalence for alter-
nating permutations, which was proved by Gowravaram and Jagadeesan [7].

Theorem 2.9. ([7], Theorem 4.4 ) Fix n > 1. For any nonempty patterns σ, we have
|An(12⊕ σ)| = |An(21⊕ σ)|.

Note that Theorem 2.9 can also be proved by similar reasoning as in the proof of
Theorem 2.7.

The proofs of Theorems 1.3 through 1.6. Combining Theorems 2.7 and 2.8, we
deduce that Fk ⊕ σ ∼as Jk ⊕ σ for any nonempty pattern σ and k > 3. Note that the
permutation matrix of an alternating (resp. reverse alternating) permutation of length n
is a valid transversal of an alternating Young diagram (λ,D), where λ is a n by n square
diagram and D = {2, 4, . . . , bn

2
c} (resp. D = {1, 3, . . . , dn

2
e}). Hence for n > 0 and k > 3,

the equalities
|An(k − 1 . . . 21k ⊕ τ)| = |An(k . . . 21⊕ τ)| (2.1)

and
|A′n(k − 1 . . . 21k ⊕ τ)| = |A′n(k . . . 21⊕ τ)| (2.2)

hold for any for any nonempty pattern τ .
When λ is a 2n by 2n square diagram and D = {1, 3, . . . , 2n− 1}, a valid transversal

of (λ,D) is the permutation matrix of an reverse alternating permutations of even length.
Therefore for n > 1 and k > 3, Theorem 2.8 leads to the equality

|A′2n(k − 1 . . . 21k)| = |A′2n(k . . . 21)|. (2.3)
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Since the complement map is a bijection between the set An and the set A′n, we
obtain Theorems 1.5 and 1.6 by combining Formulae (2.1), (2.2) and (2.3). Combining
Theorem 2.9 and Formula 2.1, we get Theorem 1.4. From Theorem 1.4, we immediately
get Theorem 1.3. This completes the proof.

3 The bijection

In this section, we will prove Theorem 2.8 by establishing a bijection between T Dλ (Fk)
and T Dλ (Jk) for every strict alternating Young diagram (λ,D). Let us first describe two
transformations defined by Backelin, West and Xin [2]
The transformation φ Given a transversal L of a Young diagram λ, if L contains no
Jk, we simply define φ(L) = L. Otherwise, find the highest square (a1, b1) containing a
1, such that there is a Jk in L in which (a1, b1) is the leftmost 1. Then, find the leftmost
(a2, b2) containing a 1, such that there is a Jk in L in which (a1, b1) and (a2, b2) are the
leftmost two 1’s. Finally, find (a3, b3), (a4, b4), . . . , (ak, bk) one by one as (a2, b2). Let φ(L)
be a transversal of λ such that the squares (a2, b1), (a3, b2), . . . , (ak, bk−1), (a1, bk) are filled
with 1′s and the other rows and columns are the same as L.
The transformation ψ Given a transversal L of a Young diagram λ, if L contains no
Fk, we simply define ψ(L) = L. Otherwise, find the lowest square (a1, b1) containing a
1, such that there is a Fk in L in which (a1, b1) is the rightmost 1. Then, find the lowest
(a2, b2) containing a 1, such that there is a Fk in L in which (a1, b1) and (a2, b2) are the
rightmost two 1’s. Finally, find (a3, b3), (a4, b4), . . . , (ak, bk) one by one as (a2, b2). Let
ψ(L) be a transversal of λ such that the squares (a1, bk), (ak, bk−1), . . . , (a2, b1) are filled
with 1′s and the other rows and columns are the same as L.

Example 3.1. Let k = 3. Given a transversal L = {(1, 2), (2, 4), (3, 3), (4, 1)} of 4
by 4 square diagram λ, by applying the transformation φ, we get a transversal L′ =
{(1, 2), (2, 3), (3, 1), (4, 4)} as shown in Figure 2, where the selected Jk is illustrated in
bold. Conversely, given a transversal L′ = {(1, 2), (2, 3), (3, 1), (4, 4)} of a square diagram
λ we can recover the transversal L by applying the transformation ψ as shown in figure
2, where the selected Fk is illustrated in bold.

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

−→
φ

←−
ψ

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

Figure 2: An example of the transformations φ and ψ.

Backelin, West and Xin [2] proved the following properties of φ and ψ, which were
essential in the construction of their bijection between Sλ(Fk) and Sλ(Jk). In the following
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lemmas, for all 1 6 i 6 k, let (ai, bi) be the square selected in the application of the
transformations φ and ψ.

Lemma 3.2. ([2], Lemma 4.1) There is no Jk strictly above row a1 in φ(L).

Lemma 3.3. ([2], Lemma 4.2) If L contains no Fk with at least one square below row
a1, then φ(L) contains no such Fk.

Lemma 3.4. ([2], Lemma 4.3) There is no Jt above a1, below row at+1 and to the left of
column bt+1 in φ(L).

Lemma 3.5. ([2], Lemma 4.4) If L contains no Fk with at least one square below row
a1, then ψ(L) contains no such Fk.

Lemma 3.6. ([2], Lemma 4.5) If L contains no Jk that is above row a1, then ψ(L)
contains no such Jk.

Lemma 3.7. ([2], Lemma 4.6) If L contains no Jk that is above row a1, the board that
is above and to the right of (at, bt−1) cannot contain a Jk−t in ψ(L) such that the lowest
1 of this Jk−t is to the left of (at+1, bt), and this Jt−k , combining with the 1′s positioned
at squares (a1, b1), (a2, b2), . . ., (at, bt−1) forms a Jk in ψ(L).

Combining Lemmas 3.3 and 3.4 yields the following result.

Lemma 3.8. If L is a transversal containing no Fk with at least one square below row
a1, then we have ψ(φ(L)) = L.

Lemmas 3.6 and 3.7 imply the following result.

Lemma 3.9. If L is a transversal containing no Jk above row a1, then we have φ(ψ(L)) =
L.

It is obvious that the transformation φ (resp. ψ) changes every occurrence of Jk (resp.
Fk) to an occurrence of Fk(resp. Jk). Lemmas 3.2 and 3.5 imply that after finitely many
iterations of φ (resp. ψ), there will be no occurrence of Jk (resp. Fk) in L. Denote by φ∗

(resp. ψ∗) the iterated transformation, that recursively transforms every occurrence of Jk
(resp. Fk) into Fk (resp. Jk). Backelin, West and Xin [2] proved the following theorem.

Theorem 3.10. ([2], Proposition 3.1) For every Young diagram λ, the transformations
φ∗ and ψ∗ induce a bijection between Sλ(Fk) and Sλ(Jk).

In Example 3.1, it is easily seen that L is a valid transversal of the strict alternating
Young diagram (λ,D) with D = {1, 3}, while the transversal L′ is not a valid transversal
of (λ,D). Hence, in order to establish a bijection between T Dλ (Fk) and T Dλ (Jk) for any
strict alternating Young diagram (λ,D), we need to define two transformations Φ and Ψ
on valid transversals of the strict alternating Young diagram (λ,D) by slightly modifying
the transformations φ and ψ.
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The transformation Φ Given a valid transversal L of a strict alternating Young diagram
(λ,D), if L contains no Jk, we simply define Φ(L) = L. Otherwise, applying the map φ to
L, we get a transversal φ(L). Suppose that when we apply the map φ to L, the selected
1′s are positioned at (a1, b1), (a2, b2), . . . , (ak, bk), where b1 < b2 < . . . < bk. Suppose that
the squares (a′, bk − 1) and (a′′, bk + 1) are filled with 1′s in φ(L). Define Φ(L) as follows:

(i) if bk − 1, bk + 1 /∈ D, then let Φ(L) = φ(L);

(ii) if bk − 1 ∈ D and bk + 1 /∈ D, then let Φ(L) be a transversal in which (a1, bk − 1)
and (a′, bk) are filled with 1′s, and all other rows and columns are the same as φ(L);

(iii) if bk − 1 ∈ D and bk + 1 ∈ D, then let Φ(L) be a transversal in which (a1, bk − 1)
and (a′, bk) are filled with 1′s, and all other rows and columns are the same as φ(L)
when a′ < a′′, and let Φ(L) be a transversal in which (a1, bk + 1) and (a′′, bk) are
filled with 1′s, and all other rows and columns are the same as φ(L) when a′ > a′′;

(iv) if bk−1 /∈ D and bk +1 ∈ D, then let Φ(L) be a transversal in which (a1, bk +1) and
(a′′, bk) are filled with 1′s, and all other rows and columns are the same as φ(L);

The transformation Ψ Given a valid transversal L of a strict alternating Young diagram
(λ,D), if L contains no Fk, we simply define Ψ(L) = L. Otherwise, find the lowest square
(a1, b1) containing a 1, such that there is a Fk in L in which (a1, b1) is the rightmost 1.
Then, find the lowest (a2, b2) containing a 1, such that there is a Fk in L in which (a1, b1)
and (a2, b2) are the rightmost two 1’s. Finally, find (a3, b3), (a4, b4), . . . , (ak, bk) one by one
as (a2, b2). We define L′ as follows:

(i′) if b1 /∈ D, then let L′ = L;

(ii′) if b1 ∈ D, then suppose that the squares (a′, b1 − 1) and (a′′, b1 + 1) are filled with
1′s in L. If a′ > a′′, then let L′ be a transversal in which the squares (a1, b1 − 1)
and (a′, b1) are filled with 1′s, and all other rows and columns are the same as L; If
a′ < a′′, then let L′ be a transversal in which the squares (a1, b1 + 1) and (a′′, b1)are
filled with 1′s, and all other rows and columns are the same as L;

Set Ψ(L) = ψ(L′).
Now we proceed to verify that Φ and Ψ have the following analogous properties of φ

and ψ.

Lemma 3.11. Fix k > 3. There is no Jk strictly above row a1 in Φ(L). Moreover, if
Φ(L) contains a Jk whose leftmost 1 is positioned at the square (a1, b

′
1), then we have

b′1 > b1.

Proof. By Lemma 3.2, there is no Jk above row a1 in φ(L). From the definition of Φ, it
is easily seen that there is no Jk above row a1 in Φ(L). Also, it is easy to check that for
k > 3, if Φ(L) contains a Jk whose leftmost 1 is positioned at the square (a1, b

′
1), then we

have b′1 > b1. This completes the proof.
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Lemma 3.12. Fix k > 3. If L contains no Fk with at least one square below row a1, then
Φ(L) contains no such Fk.

Proof. Suppose that H is a copy of Fk with at least one square below row a1 in Φ(L).
By Lemma 3.3, there is no Fk with at least one square below row a1 in φ(L). Hence
the 1 positioned at (a′, bk) or (a′′, bk) must fall in H. Moreover, we have a′ < a1 and
a′′ < a1. Thus, neither (a′, bk) nor (a′′, bk) is the rightmost square of H. Suppose that
the rightmost 1 of H is positioned at (r, c) in Φ(L). Then the 1′s positioned at squares
(a1, b1), (a2, , b2), . . . , (ak−1, bk−1), (r, c) will form a Fk in L. This contradicts the fact that
L contains no Fk with at least one square below a1. Thus Φ(L) contains no Fk with at
least one row below a1. This completes the proof.

Lemma 3.13. Fix k > 3. If L contains no Fk with at least one square below row a1
and no Jk strictly above the row a1 , then Ψ(L) contains no such Fk. Moreover, if Ψ(L)
contains a copy of Fk whose rightmost 1 is positioned at (a1, b

′
1), then we have b′1 < b1.

Proof. First we need to show that there is no Fk with at least one square below row a1
in L′. If b1 /∈ D, then we have L′ = L. Thus it is obvious that L′ contains no Fk with
at least one square below row a1 and contains a Fk whose rightmost 1 is positioned at
the square (a1, b1). If b1 ∈ D, then we have the following two cases: a′ < a′′ or a′ > a′′

since the squares (a′, b1 − 1) and (a′′, b1 + 1) are filled with 1′s in L. According to the
construction of L′, it is easily seen that in L′ the squares (a1, b1 + 1) and (a′′, b1) are filled
with 1′s in the former case, while the squares (a1, b1− 1) and (a′, b1) are filled with 1′s in
the latter case, and the other rows and columns are the same as L.

We claim that there is no Fk with at least one row below a1 in L′. If not, suppose
that G is such a Fk. Then at least one of the squares (a′′, b1) and (a1, b1 + 1) must fall
in G when a′ < a′′ and at least one of the squares (a1, b1 − 1) and (a′, b1) must fall in G
when a′ > a′′. Since b1 ∈ D and L is valid, we have a′ < a1 and a′′ < a1. Thus the 1′s
positioned at rows b1− 1, b1 and b1 + 1 cannot be the rightmost 1 of G. Suppose that the
rightmost 1 of G is positioned at the square (r, c). Then we have c > b1 + 2. Then the
1′s positioned at the squares (r, c), (a2, b2), . . . , (ak, bk) will form a Fk in L and the square
(r, c) is below row a1. This contradicts the fact that L contains no Fk with at least one
square below row a1. Thus we conclude that L′ contains no Fk with at least one square
below row a1.

Next we aim to show that when b1 ∈ D the transversal L′ contains a Fk whose
rightmost 1 is at row a1. Clearly, the statement is true for the case when a′ < a′′ and
b1 /∈ D. It remains to consider the case when a′ > a′′. Since L contains no Jk above
row a1, we have b2 6= b1 − 1. Thus the 1′s positioned at squares (a1, b1 − 1), (a2, b2), · · · ,
(ak, bk) form a Fk in L′. Recall that we have shown that there is no Fk whose rightmost
1 is strictly above row a1. Therefore, we select a copy of Fk whose rightmost 1 is at row
a1 in the application of ψ to L′. From Lemma 3.5, it follows that Ψ(L) contains no Fk
with at least one square below row a1.

Suppose that Ψ(L) contains a Fk whose rightmost 1 is positioned at the square (a1, b
′
1).

Recall that when we apply the map ψ to the transversal L′, the rightmost 1 of the selected
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Fk is positioned at the square (a1, b1) when b1 /∈ D. Moreover, when b1 ∈ D, the rightmost
1 of the selected Fk is positioned at the (a1, b1 + 1) (resp. (a1, b1 − 1)) if a′ < a′′ (resp.
a′ > a′′). Since we move the 1 positioned at row a1 to the left in the application of ψ to
L′, we conclude that b′1 < b1. This completes the proof.

Lemma 3.14. Fix k > 3. If L contains no Jk above row a1, then Ψ(L) contains no such
Jk.

Proof. It is easy to check that L′ contains no Jk above row a1. Recall that in the proof
of Lemma 3.13, we have shown that when we apply ψ to L′, we select a copy of Fk whose
rightmost 1 is at row a1. By Lemma 3.6, we deduce that Ψ(L) contains no Jk above row
a1. This completes the proof.

Lemma 3.11 states that the square (a1, b1) we find in the transformation Φ can only
go down or slide right. Similarly, Lemmas 3.13 and 3.14 tells us that the square (a1, b1)
selected in the application of the transformation Ψ can only go up or slide left. Hence,
there will no Jk (resp. Fk) in the resulting transversal after finitely many iterations of Φ
(resp. Ψ). Denote by Φ∗(L) (resp. Ψ∗(L)) the resulting transversal.

The key to our paper is the following theorem.

Theorem 3.15. Fix k > 3. For any strict alternating Young diagram (λ,D), the trans-
formations Φ∗ and Ψ∗ induce a bijection between T Dλ (Fk) and T Dλ (Jk).

4 The proof

In this section, we will give a proof of Theorem 3.15. First we need to show that the
transformations Φ and Ψ transform a valid transversal into a valid transversal. Denote
by Φ0(L) = L and Ψ0(L) = L for any transversal L.

Theorem 4.1. Fix n > 0 and k > 3. For any strict alternating Young diagram (λ,D)
and any transversal L ∈ T Dλ (Fk), the transversal Φn(L) is a valid transversal of (λ,D).

Proof. We proceed by induction on n. Clearly, the theorem holds for n = 0. For n > 1,
assume that Φn−1(L) is a valid transversal of (λ,D). Now we aim to show that Φn(L)
is also a valid transversal of (λ,D). Let c ∈ D. Suppose that the squares (r1, c − 1),
(r2, c) and (r3, c + 1) are filled with 1′s in Φn(L). In order to show that Φn(L) is a valid
transversal, it suffices to show that r1 < r2 > r3.

Suppose that when we apply Φ to Φn−1(L), we select a copy of Jk whose 1′s are
positioned at squares (a1, b1), (a2, b2), . . ., (ak, bk). First we need to show that bk /∈ D. If
not, then suppose that bk ∈ D and the square (r, bk+1) is filled with a 1 in Φn−1(L). Since
Φn−1(L) is valid, we have ak > r. Thus the 1′s positioned at squares (a2, b2), (a3, b3), . . .,
(ak, bk) and (r, bk+1) will form a Jk in Φn−1(L), which contradicts the selection of (a1, b1).
Thus we conclude that bk /∈ D.

Next we proceed to prove r1 < r2 > r3 by considering the following cases.
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Case 1. The square (a1, bk) is filled with a 1 in Φn(L): According to the definition of
Φ, we have bk − 1, bk + 1 /∈ D. Moreover, the squares (a2, b1), (a3, b2), . . ., (ak, bk−1) and
(a1, bk) are filled with 1′s in Φn(L) and all the other rows and columns are the same as
Φn−1(L). In order to show that r1 < r2 > r3, it suffices to consider the case when at least
one of c− 1, c, c+ 1 belongs to the set {b1, b2, . . . , bk}.

Subcase 1.1. c = bt for some integer t 6 k − 1: According to the definition of Φ, we
have r2 = at+1. Suppose that the square (r′1, c − 1) is filled with a 1 in Φn−1(L). Since
Φn−1(L) is valid and bt ∈ D, we have r′1 < at. This implies that c−1 6= bt−1. Thus r1 = r′1.
We claim that r1 < at+1 = r2. If not, suppose that r1 > at+1. Then the 1′s positioned at
squares (a1, b1), (a2, b2), . . ., (at−1, bt−1), (r1, bt− 1), (at+1, bt+1), . . . , (ak, bk) will form a Jk
in Φn−1(L), which contradicts the selection of (at, bt). It remains to show that at+1 > r3.
We have two cases. If c+ 1 = bt+1, then we have r3 = at+2 according to the definition of
Φ. In this case, we have r2 = at+1 > at+2 = r3. If c+ 1 6= bt+1, then the square (r3, c+ 1)
is also filled with a 1 in Φn−1(L). Since Φn−1(L) is valid, we have at > r3. We claim that
r2 = at+1 > r3. If not, then suppose that at+1 < r3. Then the 1′s positioned at squares
(a2, b2), (a3, b3), . . ., (at, bt) (r3, bt + 1), (at+1, bt+1), . . ., (ak, bk) will form a Jk in L, which
contradicts the selection of (a1, b1). Thus we conclude that r1 < r2 > r3.

Subcase 1.2. c + 1 = bt and c 6= bt−1 for some integer t 6 k − 1: According to the
definition of Φ, we have r3 = at+1 and the square (r2, c) is also filled with a 1 in Φn−1(L).
Since Φn−1(L) is valid, we have r2 > at. If c− 1 6= bt−1, then the square (r1, c− 1) is also
filled with a 1 in Φn−1(L). Thus we have r1 < r2 > at > at+1 = r3. If c − 1 = bt−1, then
we have r1 = at. Since r2 > at, we have r1 < r2 > at > at+1 = r3.

Subcase 1.3. c − 1 = bt and c + 1 6= bt+1 for some integer t 6 k − 1: According to
the definition of Φ, we have r1 = at+1. Moreover, the squares (r2, c) and (r3, c + 1) are
also filled with 1′s in Φn−1(L). Thus we have r2 > r3 and r2 > at. This implies that
r1 = at+1 < at < r2 > r3.

Case 2. The square (a1, bk−1) is filled with a 1 in Φn(L) and bk−1 = bk−1: According
to the definition of Φ, we have bk−1 ∈ D. Moreover, the squares (a2, b1), . . ., (ak−1, bk−2),
(a1, bk−1) are filled with 1′s in Φn(L) and all the other rows and columns are the same as
Φn−1(L). In order to show that r1 < r2 > r3, it suffices to consider the case when at least
one of c − 1, c, c + 1 belongs to the set {b1, b2, . . . , bk−1}. Here we only consider the case
when c = bk−1. The other cases can be verified by similar arguments as in the proofs of
Case 1. It is obvious that when c = bk−1 the squares (r1, c − 1) and (r3, c + 1) are also
filled with 1′s in Φn−1(L). By the induction hypothesis, we have r1 < ak−1 > ak = r3.
Since r2 = a1 and a1 > ak−1 > ak, we have r1 < r2 > r3.

Case 3. The square (a1, bk−1) is filled with a 1 in Φn(L) and bk−1 6= bk−1: Recall that
φ(Φn−1(L)) is a transversal in which squares (a2, b1), (a3, b2), . . ., (ak, bk−1), (a1, bk) are
filled with 1′s and all the other rows and columns are the same as Φn−1(L). Suppose that
the squares (a′, bk−1) and (a′′, bk+1) are filled with 1′s in φ(Φn−1(L)). Since bk−1 6= bk−1,
the squares (a′, bk − 1) and (a′′, bk + 1) are also filled with 1′s in Φn−1(L). According to
the definition of Φ, we have bk − 1 ∈ D. Moreover, the squares (a2, b1), . . ., (ak, bk−1)
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(a1, bk− 1) and (a′, bk) are filled with 1′s in Φn(L) and all the other rows and columns are
the same as Φn−1(L). In order to show that r1 < r2 > r3, it suffices to consider the case
when at least one of c− 1, c, c+ 1 belongs to the set {b1, b2, . . . , bk−1, bk − 1, bk}. Here we
only consider the case when c = bk − 1 or c − 1 = bk. The other cases can be treated in
the same manner as Case 1.

Subcase 3.1. c = bk − 1” According to the definition of Φ, we have r2 = a1 and
r3 = a′. By Lemma 3.12, there is no Fk with at least one square below row a1 in Φn−1(L).
This implies that a′ < a1. Thus we have r2 > r3 = a′. It remains to show that r1 < r2.
We consider two cases. If c − 1 = bk−1, then r1 = ak. Thus r1 = ak < a1 = r2. If
c − 1 6= bk−1, then the square (r1, c − 1) is also filled with a 1 in Φn−1(L). Recall that
the squares (r1, c− 1) and (a′, c) are filled with 1′s in L. By the induction hypothesis, it
follows that r1 < a′. Thus we have r1 < a′ < a1 = r2.

Subcase 3.2. c − 1 = bk: According to the definition of Φ, we have a′ < a′′, r1 = a′

and r2 = a′′. Moreover, the squares (r3, c+1) and (r2, c) are also filled with 1′s in Φn−1(L).
By the induction hypothesis, it follows that r2 > r3. Thus we have r1 < r2 > r3.

Case 4. The square (a1, bk + 1) is filled with a 1 in Φn(L): Recall that φ(Φn−1(L))
is a transversal in which squares (a2, b1), (a3, b2), . . ., (ak, bk−1), (a1, bk) are filled with 1′s
and all the other rows and columns are the same as Φn−1(L). Suppose that the squares
(a′, bk−1) and (a′′, bk+1) are filled with 1′s in φ(Φn−1(L)). Since the map φ only changes
columns b1, b2, . . . , bk, the square (a′′, bk + 1) is also filled with a 1 in Φn−1(L). According
to the definition of Φ, we have bk + 1 ∈ D. Moreover, the squares (a2, b1), . . ., (ak, bk−1)
(a1, bk + 1) and (a′′, bk) are filled with 1′s in Φn(L) and all the other rows and columns
are the same as Φn−1(L).

We claim that bk − 1 6= bk−1. If not, suppose that bk − 1 = bk−1. Then we have
a′ = ak. Recall that the squares (ak, bk) and (a′′, bk + 1) are filled with 1′s in Φn−1(L).
By the induction hypothesis, since bk + 1 ∈ D, we have ak > a′′. Thus the 1′s positioned
at squares (a2, b2), (a3, b3), . . ., (ak, bk), (a′′, bk + 1) will form a Jk in Φn−1(L), which
contradicts the selection of (a1, b1). Thus the square (a′, bk − 1) is also filled with a 1 in
Φn(L) and Φn−1(L).

In order to show that r1 < r2 > r3, it suffices to consider the case when at least one
of c− 1, c, c+ 1 belongs to the set {b1, b2, . . . , bk, bk + 1}. Here we only consider the case
when c = bk + 1 or c + 1 = bk. The other cases can be treated in the same manner as
Case 1.

Subcase 4.1. c = bk + 1: Thus we have r1 = a′′ and r2 = a1. By Lemma 3.12,
there is no Fk with at least one square below row a1 in Φn−1(L). Recall that the square
(a′′, bk + 1) is filled with a 1 in Φn−1(L). Thus we have a′′ < a1. This implies that r1 < r2.
It remains to show that r2 > r3. According to the definition of Φ, the squares (r3, bk + 2)
and (a′′, bk + 1) are also filled with 1′s in Φn−1(L). Since bk + 1 ∈ D, by the induction
hypothesis we have a′′ > r3. Thus we have r3 < a′′ < a1 = r2.

Subcase 4.2. c + 1 = bk: In this case, we have r3 = a′′. Recall that the square
(r2, bk − 1) is also filled with a 1 in Φn−1(L) and φ(Φn−1(L)). Thus we have r2 = a′.
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Note that bk − 1, bk + 1 ∈ D and the squares (a′, bk − 1) and (a′′, bk + 1) are filled with
1′s in φ(Φn−1(L)). According to the definition of Φ, we have a′ > a′′. Thus we have
r2 = a′ > a′′ = r3. Now it remains to show that r1 < r2. If c− 1 6= bk−1, then the square
(r1, c − 1) is also filled with 1 in Φn−1(L). By the induction hypothesis, it follows that
r1 < r2. If c − 1 = bk−1, then we have r1 = ak. Recall that the squares (a′, bk − 1) and
(ak, bk) are filled with 1′s in Φn−1(L) and bk − 1 ∈ D. By the induction hypothesis, we
have a′ > ak. Thus we deduce that r1 < r2.

This completes the proof.

Theorem 4.2. Fix n > 0 and k > 3. For any strict alternating Young diagram (λ,D)
and any transversal L ∈ T Dλ (Fk), the transversal Ψn(L) is a valid transversal of (λ,D).

Proof. We proceed by induction on n. Clearly, the theorem holds for n = 0. For n > 1,
assume that Ψn−1(L) is a valid transversal of (λ,D). Now we aim to show that Ψn(L)
is also a valid transversal of (λ,D). Suppose that when we apply Ψ to Ψn−1(L), we
select a copy of Fk whose 1′s are positioned at squares (a1, b1), (a2, b2), . . ., (ak, bk), where
b1 > b2 > . . . > bk. Assume that the squares (a′, b1− 1) and (a′′, b1 + 1) are filled with 1′s
in Ψn−1(L).

Let c ∈ D. Suppose that the squares (r1, c − 1), (r2, c) and (r3, c + 1) are filled with
1′s in Ψn(L). In order to show that Ψn(L) is a valid transversal, it suffices to show that
r1 < r2 > r3. We consider the following cases.

Case 1. b1 /∈ D: According to the selection of (a1, b1), we have b1 − 1, b1 + 1 /∈ D.
Otherwise, either the 1′s positioned at squares (a′, b1 − 1), (a2, b2), · · · , (ak, bk) or those
positioned at squares (a′, b1 − 1), (a2, b2), · · · , (ak, bk) will form a Fk in Ψn−1(L), hence
contradicting the selection of (a1, b1). From the definition of Ψ, it follows that Ψn(L) is
a transversal in which squares (a1, bk), (ak, bk−1), . . ., (a2, b1) are filled with 1′s in and all
the other rows and columns are the same as Ψn−1(L). In order to show that r1 < r2 > r3,
it suffices to consider the case when at least one of c − 1, c, c + 1 belongs to the set
{b1, b2, . . . , bk}.

Subcase 1.1. c = bt for some integer 1 < t 6 k: It is easily seen that the square
(r1, c − 1) is also filled with a 1 in Ψn−1(L). Moreover, we have r2 = at+1 for t < 1 and
r2 = a1 otherwise. Recall that the square (at, bt) is filled with a 1 in Ψn−1(L). Since
bt ∈ D, by the induction hypothesis we have r1 < at. Thus we have r1 < at < at+1 < a1.
Thus we deduce that r1 < r2. It remains to show that r2 > r3. We have two cases. If
c + 1 = bt−1, then we have r3 = at, which implies that r3 < r2. If c + 1 6= bt−1, then
the square (r3, c + 1) is also filled with a 1 in Ψn−1(L). Since bt ∈ D, by the induction
hypothesis we have at > r3. Thus we have r2 = at+1 > at > r3.

Subcase 1.2. c + 1 = bt and c 6= bt+1 for some integer 1 < t < k: It is easily seen
that r3 = at+1 and the square (r2, c) is also filled with a 1 in Ψn−1(L). Since c ∈ D, by
the induction hypothesis we have r2 > at. We claim that r2 > at+1. If not, then suppose
that r2 < at+1. Then the 1′s positioned at squares (a1, b1), . . . , (at−1, bt−1), (r2, bt − 1),
(at+1,bt+1), . . . , (ak, bk) will form a Fk in Ψn−1(L), which contradicts the selection of (at, bt).
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Thus we have r2 > r3. It remains to show that r1 < r2. We have three cases. (i) If
c − 1 6= bt+1, then the square (r1, c − 1) is also filled with a 1 in Ψn−1(L). Since c ∈ D,
by the induction hypothesis we have r1 < r2. (ii) If c − 1 = bt+1 and t < k − 1, then
r1 = at+2. We claim that r1 < r2. If not, suppose that at+2 > r2. Since r2 > at+1, we
will get a contradiction with the selection of (at+1, bt+1). (iii) If c− 1 = bk, then r1 = a1.
We claim that a1 < r2. If not, suppose that a1 > r2. Recall that the squares (r2, c) and
(ak, c−1) are filled with 1′s in Ψn−1(L). Since c ∈ D, by the induction hypothesis we have
r2 > ak. Thus the 1′s positioned at squares (a1, b1), (a3, b3), . . . , (ak, bk)(r2, c) will form a
Fk in ψn−1(L), which contradicts the selection of (a2, b2). Thus we have r1 = a1 < r2.

Subcase 1.3. c + 1 = bk: It is easy to check that r3 = a1 and the squares (r1, c− 1)
and (r2, c) are also filled with 1′s in Ψn−1(L). Since c ∈ D, by the induction hypothesis
we have r1 < r2 and r2 > ak. We claim that r2 > r3. If not, then suppose that r2 < a1.
Then the 1′s positioned at squares (a1, b1), (a3, b3), . . . , (ak, bk)(r2, bk − 1) will form a Fk
in L, which contradicts the selection of (a2, b2). Thus we have r2 > a1 = r3.

Subcase 1.4. c − 1 = bt and c + 1 6= bt−1 for some integer 1 < t 6 k: It is easy to
check that the squares (r2, c) and (r3, c+ 1) are also filled with 1′s in ψn−1(L). Moreover,
we have r1 = at+1 when t < k and r1 = a1 otherwise. Since c ∈ D, by the induction
hypothesis, we have at < r2 > r3. We claim that r2 > r1. If not, then suppose that
r2 < at+1 = r1 when t < k and r2 < a1 otherwise. Then the 1′s positioned at squares
(a1, b1), (a2, b2), . . . , (at−1, bt−1), (r2, bt + 1), (at+1, bt+1), . . . , (ak, bk) form a Fk in Ψn−1(L)
in the former case, while those positioned at squares (a1, b1), (a2, b2), . . . , (ak−1, bk−1)(r2, c)
form a Fk in Ψn−1(L) in the latter case. Both of them contradict the selection of (at, bt).
Thus we conclude that r1 < r2.

Case 2. b1 ∈ D and a′ < a′′: Let us first recall the procedure of constructing Ψn(L)
from Ψn−1(L). First we get a transversal L′ in which (a′′, b1) and (a1, b1 + 1) are filled
with 1′s and all the other rows and columns are the same as Ψn−1(L). Then, we apply ψ
to L′ to get Ψn(L). By Lemma 3.14, there is no Jk above the row a1 in Ψn−1(L). Thus
we have a′′ > a′ > a2.

Subcase 2.1. a′′ < a3: We claim that when we apply ψ to L′ the 1′s selected are
positioned at squares (a1, b1 + 1), (a′′, b1), (a3, b3), . . ., (ak, bk). If not, suppose that G is
a copy of Fk selected in the application of ψ to L′ such that at least one of the squares
(a1, b1 + 1), (a′′, b1), (a2, b2), (a3, b3), . . ., (ak, bk) does not fall in G. We label the 1′s of
G from right to left by g1, g2, . . . , gk. Obviously, g1 and g2 are positioned at the squares
(a1, b1 + 1) and (a′′, b1), respectively. When a′ = a2, let p be the least integer such that gp
is not positioned at (ap, bp) for p > 3. Clearly, gp is below row ap. Then the 1′s positioned
at the squares (a1, b1), (a2, b2) , . . ., (ap−1, bp−1) combining with gp, . . . , gk, form a Fk in
Ψn−1(L). This contradicts the selection of (ap, bp). When a′ > a2, then the 1′s positioned
at the squares (a1, b1) and (a′, b1 − 1), combining g3, . . . , gk, form a Fk in Ψn−1(L), hence
contradicting the selection of (a2, b2).

By the definition of Ψ, the transversal Ψn(L) is a transversal in which squares (a1, bk),
(ak, bk−1), . . ., (a4, b3), (a3, b1) are filled with 1′s in Ψn(L) and all the other rows and
columns are the same as Ψn−1(L). In order to show that r1 < r2 > r3, it suffices to
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consider the case when at least one of c − 1, c, c + 1 belongs to the set {b1, b3, . . . , bk}.
Here we only consider the case when c = b1. The other cases can be treated similarly as
Case 1. Let c = b1. It is easy to check that the square (a′, b1− 1) is also filled with a 1 in
Ψ(L). Thus we have r1 = a′. Note that r2 = a3 and r3 = a′′. Since a′ < a′′ > a3, we have
r1 < r2 > r3.

Subcase 2.2. a′′ > a3: Recall that the squares (a′′, b1) and (a1, b1 + 1) are filled with
1′s in L′ and all the other rows and columns are the same as ψn−1(L).

We claim that the selected 1′s of a copy of Fk are positioned at squares (a1, b1 + 1),
(a2, b2), (a3, b3), . . ., (ak, bk) in the procedure of applying ψ to L′. If not, suppose that
G is a copy of Fk when we apply the map ψ to L′ such that at least one of the squares
(a1, b1 + 1), (a2, b2), (a3, b3), . . ., (ak, bk) does not fall in G. We label the 1′s of G from
right to left by g1, g2, . . . , gk. Thus g1 and g2 must be positioned at the squares (a1, b1 +1)
and (a′′, b1). Since a′′ > a3, thus g3 must be below row a3. Since there is no Jk above row
a1 in Ψn−1(L), we have a′ > a2. When a′ = a2, then the 1′s positioned at the squares
(a1, b1) and (a2, b2), combining with g3, . . . , gk, form a Fk in Ψn−1(L). This contradicts
the selection of (a3, b3). When a′ > a2, then the 1′s positioned at the squares (a1, b1) and
(a′, b1−1), combining g3, . . . , gk, form a Fk in Ψn−1(L). This also contradicts the selection
of (a2, b2).

By the definition of Ψ, the squares (a1, bk), (ak, bk−1), . . ., (a2, b1 +1), (a′′, b1) are filled
with 1′s in Ψn(L) and all the other rows and columns are the same as Ψn−1(L). In order
to show that r1 < r2 > r3, it suffices to consider the case when at least one of c−1, c, c+1
belongs to the set {b1 + 1, b1, b2, . . . , bk}. Here we only consider the case when c = b1 or
c− 1 = b1 + 1. The discussion for other cases is the same as Case 1.

Suppose that c = b1. It is easy to check that r2 = a′′ and r3 = a2. Since a′′ > a3 > a2,
we have r2 > r3. Next we aim to show that r1 < r2. We have two cases. (i) If b1− 1 = b2,
then we have r1 = a3, which implies that r1 < r2. (ii) If b1 − 1 6= b2, then the square
(r1, c − 1) is also filled with a 1 in Ψn−1(L). Thus we have r1 = a′. Since a′ < a′′, we
deduce that r1 < r2.

Suppose that c−1 = b1 + 1. Obviously, the squares (r2, c) and (r3, c+ 1) are also filled
with 1′s in ψn−1(L). Since c ∈ D, by the induction hypothesis we have r2 > r3. We claim
that a2 < r2. Otherwise, the squares (ak, bk), (ak−1, bk−1), . . . , (a2, b2), (r2, c) will form a
Jk above row a1. This contradicts the fact that there is no Jk above row a1 in Ψn−1(L).
Thus we have r1 = a2 < r2.

Case 3. b1 ∈ D and a′ > a′′: Let us first recall the procedure of constructing Ψn(L)
from Ψn−1(L). First we get a transversal L′ in which (a1, b1 − 1) and (a′, b1) are filled
with 1′s and all the other rows and columns are the same as Ψn−1(L). Then, we apply ψ
to L′ to get Ψn(L). By Lemma 3.14, there is no Jk above the row a1 in Ψn−1(L). Thus
we have a′ 6= a2.

We claim that when we apply ψ to L′, the selected 1′s are positioned at squares
(a1, b1 − 1), (a2, b2), (a3, b3), . . ., (ak, bk). If not, suppose that G is a copy of Fk when we
apply the map ψ to L′ such that at least one of the squares (a1, b1 − 1), (a2, b2), (a3, b3),
. . ., (ak, bk) does not fall in G. We label the 1′s of G from right to left by g1, g2, . . . , gk.
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According to the choice of (a1, b1), we have that g1 must be positioned at (a1, b1− 1). Let
p be the least integer such that gp is not positioned at (ap, bp). It follows that gp is below
row ap. Thus the 1′s positioned at the squares (a1, b1), (a2, b2), . . ., (ap−1, bp−1), combining
gp, . . . , gk will form a Fk in Ψn−1(L), hence contradicting the selection of (ap, bp).

By the definition of Ψ, the squares (a1, bk), (ak, bk−1), . . ., (a2, b1− 1), (a′, b1) are filled
with 1′s in Ψn(L) and all the other rows and columns are the same as Ψn−1(L). In order
to show that r1 < r2 > r3, it suffices to consider the case when at least one of c−1, c, c+1
belongs to the set {b1, b1 − 1, b2, . . . , bk}. Here we only consider the case when c = b1 or
c+ 1 = b1 − 1. The other cases can be treated similarly as Case 1.

Suppose that c = b1. It is easy to check that r2 = a′ and r3 = a′′ and r1 = a2. Since
a′ > a′′, we have r2 > r3. By Lemma 3.14, there is no no Jk above row a1 in Ψn−1(L).
Thus we have a′ > a2. This implies that r1 < r2.

Suppose that c + 1 = b1 − 1. It is easy to check that r3 = a2. By Lemma 3.14, there
is no Jk above row a1 in Ψn−1(L). Thus we have b2 /∈ D and a2 < a′. Thus, the square
(r2, c) is also filled with a 1 in ψn−1(L). Since c ∈ D, by the induction hypothesis we have
r2 > a′. Thus we have r2 > a′ > a2 = r3. Next we proceed to show that r1 < r2. We have
two cases. If c−1 6= b2, then the square (r1, c−1) is also filled with a 1 in Ψn−1(L). Since
c ∈ D, by the induction hypothesis we have r1 < r2. If c− 1 = b2, then we have r1 = a3.
Recall that the squares (a2, c− 1) and (r2, c) are filled with 1′s in Ψn−1(L). Since c ∈ D,
by the induction hypothesis we have a2 < r2. We claim that r1 < r2. If not, then the 1′s
positioned at squares (a1, b1), (r2, c), (a3, b3), . . . , (ak, bk) will form a Fk in Ψn−1(L), which
contradicts the selection of (a2, b2). Thus we conclude that r1 < r2.

This completes the proof.

Proof of Theorem 3.15. By Theorems 4.1 and 4.2, it suffices to show that Φ∗ and Ψ∗ are
inverses of each other. First, we aim to show Ψ(Φn(L)) = Φn−1(L) for any L ∈ T Dλ (Fk).
Assume that Φn(L) 6= Φn−1(L).

Suppose that at the nth application of Φ to Φn−1(L) we select a copy of Jt in Φn−1(L).
Assume that the selected 1′s are positioned at the squares (a1, b1), (a2, b2), . . . , (ak, bk),
where b1 < b2 < . . . < bk.

By Lemmas 3.8 and 3.12, we have ψ(φ(Φn−1(L))) = Φn−1(L). In order to show that
Ψ(Φn(L)) = Φn−1(L), it suffices to show that Ψ(Φn(L)) = ψ(φ(Φn−1(L))). There are four
cases to consider.

Case 1. The square (a1, bk) is filled with a 1 in Φn(L): In this case, we have
Φ(Φn−1(L)) = φ(Φn−1(L)). This implies that the squares (a1, bk), (a2, b1), . . . , (ak, bk−1)
are filled with 1′s in Φn(L) and the other rows and columns are the same as Φn−1(L).
By Lemma 3.12, there is no Fk with at least one square below row a1 in Φn−1(L). Thus,
Lemmas 3.3 and 3.4 guarantee that when we apply Ψ to Φn(L), the selected 1′s of a copy
of Fk are positioned at the squares (a1, bk), (a2, b1), . . . , (ak, bk−1). We claim that bk /∈ D.
If not, suppose that bk ∈ D and the square (r, bk+1) is filled with a 1 in Φn−1(L). By The-
orem 4.1, the transversal Φn−1(L) is valid. This implies that ak > r. Then the squares
(a2, b2), . . . (ak, bk), (r, bk + 1) will form a Jk in Φn−1(L). This contradicts the selection
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of (a1, b1). Thus we conclude that bk /∈ D. According to the definition of Ψ, we have
Ψ(Φn(L)) = ψ(Φn(L)) = ψ(φ(Φn−1(L))).

Case 2. The square (a1, bk − 1) is filled with a 1 in Φn(L) and bk−1 = bk − 1: From
the definition of Φ, we have bk − 1 ∈ D. Moreover, the squares (a2, b1), . . ., (ak−1, bk−2),
(a1, bk − 1) are filled with 1′s in Φn(L) and all the other rows and columns are the same
as Φn−1(L). Note that the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk − 1), (a1, bk) are filled
with 1′s in φ(Φn−1(L)) and all the other rows and columns are the same as Φn−1(L).
Suppose that the square (a′, bk − 2) is filled with a 1 in Φn(L). Since bk − 1 ∈ D, we
have bk − 2 6= bk−2. This implies that the square (a′, bk − 2) is also filled with a 1 in
both Φn−1(L) and φ(Φn−1(L)). By Theorem 4.1, the transversal Φn−1(L) is valid. Thus
we have a′ < ak−1. Lemmas 3.3, 3.4, 3.11 and 3.12 ensure that when we apply the map
Ψ to Φn(L), the selected 1′s of a copy of Fk are positioned at the squares (a2, b1), . . .,
(ak−1, bk−2), (a

′, bk−2), (a1, bk−1). By Lemma 3.11, there is no Jk above row a1 in Φn(L).
This implies that a′ < ak. Recall that the squares (ak, bk) and (a′, bk − 2) are filled with
a 1′s in Φn(L), we have Ψ(Φn(L)) = ψ(φ(Φn−1(L))).

Case 3. The square (a1, bk− 1) is filled with a 1 in Φn(L) and bk−1 6= bk− 1: Suppose
that (a′, bk−1) is filled with a 1 in Φn−1(L). From the definition of Φ, we have bk−1 ∈ D.
Moreover, the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk−1) and (a′, bk) are filled
with 1′s in Φn(L) and all the other rows and columns are the same as Φn−1(L). Note that
the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk) are filled with 1′s in φ(Φn−1(L))
and all the other rows and columns are the same as Φn−1(L). Lemmas 3.3, 3.4 and 3.12
guarantee that when we apply the map Ψ to Φn(L), the selected 1′s of a copy of Fk are
positioned at the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk − 1).

Next we aim to show that Ψ(Φn(L)) = ψ(φ(Φn−1(L))). We have two cases. If bk−1 =
bk−2, then we have ak < a′ since bk−1 ∈ D. Recall that the squares (a′, bk) and (ak, bk−2)
are filled with 1′s in Φn(L). By the definition of Ψ, we have Ψ(Φn(L)) = ψ(φ(Φn−1(L))).
If bk−1 6= bk−2, then suppose that (a′′, bk−2) is filled with a 1 in Φn(L). Then the square
(a′′, bk − 2) is also filled with a 1 in Φn−1(L). By Theorem 4.1, the transversal Φn−1(L) is
valid. Since bk−1 ∈ D, we have a′′ < a′. Recall that the squares (a′′, bk−2) and (a′, bk) are
filled with 1′s in Φn(L). Thus, by the definition of Ψ, we have Ψ(Φn(L)) = ψ(φ(Φn−1(L))).

Case 4. The square (a1, bk+1) is filled with a 1 in Φn(L): Suppose that (a′, bk+1) and
(a′′, bk + 2) are filled with 1′s in Φn−1(L). From the definition of Φ, we have bk + 1 ∈ D.
Moreover, the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk +1) and (a′, bk) are filled
with 1′s in Φn(L) and all the other rows and columns are the same as Φn−1(L). Note that
the squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk) are filled with 1′s in φ(Φn−1(L))
and all the other rows and columns are the same as Φn−1(L). Lemmas 3.3, 3.4 and 3.12
guarantee that when we apply the map Ψ to Φn(L), the selected 1′s of a copy of Fk are
positioned at squares (a2, b1), . . ., (ak−1, bk−2), (ak, bk−1), (a1, bk + 1). By Theorem 4.1,
the transversal Φn−1(L) is valid. Since bk + 1 ∈ D, we have a′ > a′′. Recall that the
squares (a′, bk) and (a′′, bk + 2) are filled with 1′s in Φn(L). Thus, by the definition of Ψ,
we have Ψ(Φn(L)) = ψ(φ(Φn−1(L))).

Our next goal is to show that Φ(Ψn(L)) = Ψn−1(L) for any L ∈ T Dλ (Jk). Assume
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that Ψn(L) 6= Ψn−1(L). Suppose that at the nth application of Ψ to Ψn−1(L), we select a
copy of Fk in Ψn−1(L). Assume that the selected 1′s of this Fk are positioned at squares
(a1, b1), (a2, b2), . . . , (ak, bk), where b1 > b2 . . . > bk. Suppose that the squares (a′, b1 − 1)
and (a′′, b1 + 1) are filled with 1′s in Ψn−1(L). We consider the following cases.

Case 1. b1 /∈ D: According to the selection of (a1, b1), we have a′, a′′ < a1. This
implies that b1− 1, b1 + 1 /∈ D. Since b1 /∈ D, we have Ψn(L) = ψ(Ψn−1(L)). This implies
that the squares (a1, bk), (ak, bk−1), . . ., (a2, b1) are filled with 1′s in Ψn(L) and all the other
rows and columns are the same as Ψn−1(L). Lemmas 3.6, 3.7 and 3.14 guarantee that
when we apply Φ to Ψn(L), we will select a copy of Jk whose 1′s are positioned at squares
(a1, bk), (ak, bk−1), . . ., (a2, b1). Since b1− 1, b1 + 1 /∈ D, we have Φ(Ψn(L)) = φ(Ψn(L)) =
φ(ψ(Ψn−1(L))). By Lemmas 3.9 and 3.14, we have φ(ψ(Ψn−1(L))) = Ψn−1(L).

Case 2. b1 ∈ D and a′ < a′′: Let us first recall the procedure of constructing Ψn(L)
from Ψn−1(L). First we get a transversal L′ in which (a′′, b1) and (a1, b1 + 1) are filled
with 1′s and all the other rows and columns are the same as Ψn−1(L). Then, we apply ψ
to L′ to get Ψn(L). Lemma 3.14 ensure there is no Jk above row a1 in Ψn−1(L), which
implies that a′′ > a′ > a2. Recall that in the proof of Theorem 4.2 we have proved that if
a′′ < a3, the 1′s selected are positioned at squares (a1, b1 +1), (a′′, b1), (a3, b3), . . ., (ak, bk)
in the application of ψ to L′. Moreover, if a′′ > a3, the selected 1′s are positioned at
squares (a1, b1 + 1), (a2, b2), (a3, b3), . . ., (ak, bk) in the procedure of applying ψ to L′ .

By the definition of Ψ, we have Ψn(L) = ψ(L′). Thus, when a′′ < a3, Ψn(L) is
a transversal in which the squares (a′′, b1 + 1), (a3, b2), (a4, b3), . . ., (a1, bk) are filled
with 1′s and all the rows and columns are the same as L′. when a′′ > a3, Ψn(L) is a
transversal in which the squares (a2, b1 + 1), (a3, b2), (a4, b3), . . ., (a1, bk) are filled with
1′s and all the rows and columns are the same as L′. Since there is no Jk above row
a1 in L′ and Ψn(L) = ψ(L′) , by Lemmas 3.6 and 3.7, when we apply Φ to Ψn(L) we
select a copy of Jk which is just created by the application of ψ to L′. Thus we have
φ(Ψn(L)) = φ(ψ(L′)) = L′. By the definition of Φ, we have Φ(Ψn(L)) = Ψn−1(L).

Case 3. b1 ∈ D and a′ > a′′: Since there is no Jk above row a1 in Ψn−1(L) according
to Lemma 3.14, we have b1− 1 6= b2. Let us describe the procedure of constructing Ψn(L)
from Ψn−1(L). First we get a transversal L′ in which the squares (a1, b1 − 1) and (a′, b1)
are filled with 1′s and all the other rows and columns are the same as Ψn−1(L). Recall
that we have shown that the 1′s selected in the application of ψ to L′ are positioned at
squares (a1, b1 − 1), (a2, b2), (a3, b3), . . ., (ak, bk) in the proof of Theorem 4.2. Since there
is no Jk above row a1 in L′ and Ψn(L) = ψ(L′), by Lemmas 3.6 and 3.7, when we apply Φ
to Ψn(L) we select a copy of Jk which is just created by the application of ψ to L′. That
is, these 1′s are positioned at squares (a2, b1 − 1), (a3, b2), (a4, b3), . . ., (a1, bk). Thus we
have φ(Ψn(L)) = φ(ψ(L′)) = L′. Hence we have Φ(Ψn(L)) = Ψn−1(L).

This completes the proof.
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