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Abstract

Consider the symmetric group Sn with the Hamming metric. A permutation
code on n symbols is a subset C ⊆ Sn. If C has minimum distance > n − 1, then
|C| 6 n2 − n. Equality can be reached if and only if a projective plane of order n
exists. Call C embeddable if it is contained in a permutation code of minimum
distance n−1 and cardinality n2−n. Let δ = δ(C) = n2−n−|C| be the deficiency
of the permutation code C ⊆ Sn of minimum distance > n− 1.

We prove that C is embeddable if either δ 6 2 or if (δ2−1)(δ+1)2 < 27(n+2)/16.
The main part of the proof is an adaptation of the method used to obtain the famous
Bruck completion theorem for mutually orthogonal latin squares.

1 Introduction

Definition 1. Consider the symmetric group Sn equipped with the Hamming distance.
A permutation code is a subset C ⊆ Sn and the minimum distance d = d(C) is the
minimum distance between two members of C.

Permutation codes are also known as permutation arrays and as permutation sets.
There is a vast literature on the subject. Motivation comes from data transmission over
power lines, see [7, 15, 6, 5], and the design of block ciphers [14]. A related and in some
sense dual notion are uniformly t-homogeneous sets of permutations where the defining
property is that there is a constant µ > 0 such that for any two not necessarily different
unordered t-subsets A and B of letters the number of permutations π ∈ C mapping
π : A 7→ B equals µ. Those sets have been studied in the framework of perpendicular
arrays, see for example [1, 2, 11].

Clearly a permutation code C ⊆ Sn of distance n has at most n codewords, with
equality if and only if C is a Latin square of order n. The case of minimum distance n− 1
leads to the following notion:
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Definition 2. A permutation code C ⊆ Sn is sharply 2-transitive if for any two pairs
(a, b), (c, d) of symbols such that a 6= b, c 6= d there is precisely one π ∈ C such that
π(a) = b and π(c) = d.

Proposition 3. A permutation code C ⊆ Sn of minimum distance > n − 1 has size at
most n(n− 1), with equality if and only if C is sharply 2-transitive. A 2-transitive set of
permutations on n letters exists if and only if a projective plane of order n exists. This is
the case if n is a prime-power.

Proof. Most of the claims are well-known and easy to see. For the sake of completeness
we sketch the proof of equivalence between projective planes and sharply 2-transitive
permutation sets. Given a projective plane of order n, choose a point ∞ and two lines
l1, l2 on ∞. Label the points 6=∞ on l1, l2 as P1, . . . , Pn and Q1, . . . , Qn, respectively. To
each point R /∈ l1 ∪ l2 associate a permutation πR such that πR(i) = j if R,Pi, Qj are
collinear. The axioms of a projective plane show that this defines a sharply 2-transitive
set of permutations. This proves one of the claims.

Let C be a permutation code of distance > n−1. Associate to C a geometry Π(C) with
1 + 2n+ |C| points and n2 + 2 lines where l1 = {∞, P1, . . . , Pn} and l2 = {∞, Q1, . . . , Qn}
are two of the lines, each π ∈ C defines a point and for each pair (i, j) where 1 6 i, j 6 n
the line Lij contains Pi, Qj and those π ∈ C which map π : i 7→ j. If C is sharply 2-
transitive, then Π(C) has n2 + n + 1 points and n2 + 2 lines and it is easy to see that it
can be completed to a projective plane of order n.

In the sequel we will restrict attention to permutation codes C ⊂ Sn of minimum
distance > n− 1.

Definition 4. A permutation code C ⊆ Sn of minimum distance > n−1 is embeddable
if it is contained in a sharply 2-transitive set. Let Mn be the largest size of a permutation
code C ⊆ Sn of distance > n− 1, and mn the largest size of a non-embeddable such code.

Observe that Mq = q2 − q if q is a prime-power, and Mn = mn < n2 − n provided n
is not the order of a projective plane. In those cases mn can be seen as a measure for the
best possible approximation to the non-existing plane. The values of mn are known only
for n 6 6.

Result 5. m4 = 7,m5 = 15,m6 = 18.

In fact in cases n = 2 and n = 3 the symmetric group is sharply 2-transitive itself,
so mn is not defined in those cases. For n = 4 it is easy to see that m4 = 7. One such
maximal non-embeddable code consists of the identity permutation and the elements of
order 4. The value of m5 is found in Bogaerts [3], the determination of m6 is due to
Kløve [9, 10].

Assume a set of t mutually orthogonal Latin squares of order n exists. The represen-
tation as a dual net shows immediately that this allows the construction of a permutation
code C ⊆ Sn of minimum distance > n − 1 and size tn. This generalizes a statement
from Proposition 3 which corresponds to case t = n − 1. In particular the existence of 5
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mutually orthogonal Latin squares of order 12 shows M12 > 60. It is a recent result by I.
Janiszczak and R. Staszewski (personal communication) that M12 > 112.

Our main results are the following:

Theorem 6. Let C ⊆ Sn be a permutation code of minimum distance > n − 1, where
|C| = n2 − n− δ.

• If δ 6 2, then C is embeddable.

• If (δ2 − 1)(δ + 1)2 < 27(n+ 2)/16, then C is embeddable.

The embeddability of a permutation code of size n2−n− 1 (case δ = 1 of Theorem 6)
had been shown by Quistorff [13]. Of particular interest is case n = 10, the smallest
integer n > 6 for which no projective plane of order n exists. The lower bound M10 > 49
has been shown in [8]. Theorem 6 shows M10 6 87.

Our proof is an adaptation of the celebrated Bruck embedding theorem for mutually
orthogonal Latin squares, see [4, 12]. In Section 2 we define a geometric representation of
permutation sets. Some basic properties are proved in Section 3. The last two sections
contain the proofs of the embeddability theorems.

2 A geometric setting

Definition 7. A permutation incidence structure of order n consists of points and
lines such that

• There are n2 points.

• Each line has precisely n points.

• Each point is on at least 2 lines.

• Two different lines meet in at most one point.

Definition 8. Let the total number of lines of a permutation incidence structure be
n2 + n− δ. Then δ is the deficiency and we write P (n, δ).

Observe that as a consequence of the last axiom, each point of a P (n, δ) is on at most
n+ 1 lines. Permutation incidence structures are essentially geometric representations of
permutation codes C ⊆ Sn. This geometry is obtained by dualizing the geometry Π(C)
used in the proof of Proposition 3. More precisely the following holds:

Proposition 9. The following are equivalent:

A permutation code C ⊆ Sn of minimum distance> n− 1, where |C| = n(n− 1)− δ.
A P (n, δ) which possesses two parallel classes of lines each of which partitions the points.
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Proof. Let C be a permutation code of distance > n − 1 and size n(n − 1) − δ. The
corresponding P (n, δ) is obtained from Π(C) by omitting the point ∞ and dualization:
the points of the P (n, δ) are the lines Lij, the lines of the P (n, δ) are the permutations
and the 2n points Pi, Qj on the lines l1, l2.

Conversely let a P (n, δ) be given. The dual structure has n2 lines. Each point is on
n lines, each line has at least 2 points and two different points are on at most one line.
The additional property shows that this dual structure possesses two sets {P1, . . . , Pn}
and {Q1, . . . , Qn} of points with the property that each line contains exactly one of the Pi
and one of the Qj. It follows that the lines are precisely the lines Lij through Pi and Qj.
Let X be one of the n2 − n− δ remaining points. Then X determines a permutation on
n objects in the obvious way (the permutation maps i 7→ j if and only if X ∈ Lij), The
resulting permutation code C has n2−n−δ elements and minimum distance > n−1.

To sum up: each permutation code C of minimum distance > n−1 and size n2−n−δ
defines a P (n, δ). On the other hand it is obvious that a P (n, δ) results if we remove
some δ lines from an affine plane of order n. We want to prove that for small values of δ
each P (n, δ) is embeddable in an affine plane. We are going to prove this if either δ 6 2
(Corollary 15 and Theorem 23) or (δ2 − 1)(δ + 1)2 < 27(n + 2)/16 (Theorem 26). This
will complete the proof of Theorem 6.

3 Basic properties of permutation incidence struc-

tures

In the sequel let (P ,L) be a P (n, δ).

Definition 10. Let rP (the degree of P ) be the number of lines on the point P and
δP = n+ 1− rP > 0 the deficiency of P. For a line l define δl =

∑
P∈l δP , the deficiency

of l. A point P is exceptional if δP > 0. Let E be the set of exceptional points. Lines
l, g are parallel if either l = g or l ∩ g = ∅. Let i(l1, l2, . . . ) be the number of lines which
are parallel to l1, l2, . . . and different from l1, l2, . . . .

Lemma 11. Let P be a point and l a line. The following hold:

• We have rP 6 n+ 1 with equality if and only if P is joined to all remaining points.

• If P /∈ l and P non-exceptional, then P is on precisely one line which is parallel to
l.

• δl > 0 with equality if and only if each P ∈ l is non-exceptional.

• i(l) = n− δ − 1 + δl for each line l.

Proof. The first statement is obvious (as 1+(n+1)(n−1) = n2). For the second statement
observe that by the first P is on precisely n lines that are not parallel to l. It follows that
precisely one line through P must be parallel to l. The third claim follows from the first.
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As for the last claim, it is easier to count the lines which are not parallel to l. This number
is 1 +

∑
P∈l(rP − 1) = 1 +

∑
P∈l(n − δP ) = 1 + n2 − δl. Subtracting this from the total

number n2 + n− δ of lines yields the result.

Lemma 12. We have |E| 6
∑

P∈P δP = δn, with equality on the left if and only if all
points have deficiency 6 1.

Proof. Double counting of point-line incidences shows

n(n2 + n− δ) = n|L| =
∑
P∈P

rP =
∑
P∈P

(n+ 1− δP ) = n2(n+ 1)−
∑
P∈P

δP .

The equality follows by comparison, the inequality is an obvious consequence.

In particular δ > 0 and P (n, 0) is an affine plane. We can assume δ > 0 in the sequel.
Here is a refinement of the preceding lemma:

Lemma 13. For each line l the following hold:

• |E ∩ l| 6 δl, with equality if all points on l have deficiency 6 1.

• |E \ l| 6
∑

Q∈E\l δQ = δn− δl with equality if all points off l have deficiency 6 1.

Proof. Let el = |E ∩ l|. The number of lines meeting l in a point equals
∑

P∈l(n− δP ) =
n2 − δl. On the other hand this number is 6 (n − el)n + el(n − 1) = n2 − el. It follows
el 6 δl with equality if every exceptional point of l has deficiency one. The remaining
statements are implied by Lemma 12.

Lemma 14. We have δP 6 δ for all P. Equality holds if and only if all points collinear
with P are non-exceptional and all remaining points except P have deficiency 1.

Proof. Let P be an exceptional point. It is not collinear with δP (n− 1) points and those
points are exceptional. Let l be a line on P. By Lemma 13 we have

δP (n− 1) 6 |E \ l| 6 δn− δl 6 δn− δP .

Comparison shows δP 6 δ. Equality holds if and only if all three inequalities above are
met with equality.

Corollary 15. Each P (n, 1) can be embedded in an affine plane.

Proof. There is an exceptional point P. By Lemma 14 there are precisely 1 + n − 1 = n
exceptional points and those are pairwise not collinear. Their union can be used as an
additional line which completes the P (n, 1) to an affine plane.

In the sequel we may assume δ > 2.

Lemma 16. Let lines l, h meet in an exceptional point. Then i(l, h) 6 δl + δh − (1 + δ).
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Proof. We know i(l). As h contains at least n − δh non-exceptional points and each of
those is on a line parallel to l, the number in question is bounded by the difference
i(l)− (n− δh) = δl + δh − 1− δ.

Lemma 17. Let lines l 6= h be parallel, δl, δh > 0. Then i(l, h) > n−1−δ−(δl−1)(δh−1).

Proof. Start from the i(l) lines parallel to l and different from l. How many of those
intersect h? Each of the > n − δh non-exceptional points on h contributes only h itself,
and each of the 6 δh exceptional points, being collinear with the non-exceptional points
on l, contributes at most δl such lines one of which is h. It follows that the number in
question is > i(l)− 1− δh(δl − 1).

Lemma 18. If h and h′ meet, are both parallel to l and δl, δh, δh′ > 0, then n + 1 6
δl(δh + δh′ − 1).

Proof. h ∩ h′ is an exceptional point as it is on two lines parallel to l. We have

i(l) > 2 + i(l, h) + i(l, h′)− i(l, h, h′).

We know i(l), have lower bounds on i(l, h), i(l, h′) and an upper bound on i(l, h, h′) 6
i(h, h′)− 1. Comparing the extremes of these inequalities yields the claim.

Definition 19. For each line l, let Π(l) the set of lines parallel to l.

We know from Lemma 11 that Π(l) is a family of n+ δl − δ lines.

Lemma 20. Suppose l is a line with at least n − 1 non-exceptional points. Then Π(l)
consists of mutually parallel lines, and δg > δl for all g ∈ Π(l).

Proof. Let l 6= g ∈ Π(l). We know that each non-exceptional point of g is on precisely
one line which is parallel to l. The presence of n − 1 non-exceptional points on l shows
that the same is true for each exceptional point of g. It follows that the lines in Π(l) are
mutually parallel and therefore Π(l) ⊆ Π(g). This implies δl 6 δg.

4 Special cases

Proposition 21. Each P (n, δ) containing a line of deficiency 0 and such that n > δ(2δ−
1) is embeddable.

Proof. Let δl = 0. Then |Π(l)| = n − δ. Each point covered by a line from Π(l) is on
n + 1 lines and therefore non-exceptional. It follows that those points are precisely the
non-exceptional points. Each point outside is exceptional. Lemma 12 implies that the
points not covered by Π(l) form the set E of exceptional points, each of deficiency δQ = 1.
This implies that every line l′ ∈ Π(l) satisfies δl′ = 0 and hence Π(l′) = Π(l). Let g /∈ Π(l).
Then g has precisely n− δ non-exceptional points, and therefore δg = δ. Hence, every line
has deficiency 0 or δ.
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Let Q ∈ E and U ⊂ E the n-set consisting of Q and all points not collinear with Q.
Assume some two points of U are collinear on a line h. Then Q is on some two different
lines both of which are parallel to h. As all lines involved have deficiency δ, then Lemma 18
yields a contradiction. This shows that U can be added to the list of lines resulting in a
P (n, δ − 1) which still contains a line of deficiency 0. We are done by induction.

Proposition 22. If δ > 0 and n > (δ − 1)(2δ − 3), then each P (n, δ) containing a point
of deficiency δ is embeddable.

Proof. Let δP0 = δ. We are in the situation of Lemma 14 when equality holds. The bundle
of lines l1, . . . , ln+1−δ on P0 covers P0 and the (n + 1− δ)(n− 1) non-exceptional points.
The complement is the set N of δ(n− 1) points of deficiency 1. We have E = {P0} ∪N.

As |Π(li)| = n it follows from Lemma 20 that the lines of Π(li) partition the point set
into n lines. As each g ∈ Π(li) satisfies δg > δ (Lemma 20) and

∑
g∈Π(li)

δg =
∑

P∈P δP =

δn it follows that δg = δ and therefore Π(g) = Π(li). Each of the remaining lines meets
each of the li, each line parallel to li and has deficiency δ − 1.

Let X ∈ N and U the set consisting of X and the points not collinear with X. Clearly
P0 ∈ U. As δX = 1 we have |U | = n. Assume a line h contains two points from U. As X
has degree n, it is on at least two lines parallel to h. The first part of the proof shows
that h and the two lines on X parallel to h have deficiency δ − 1. Lemma 18 yields a
contradiction. It follows that U can be added as a line to produce a P (n, δ− 1), in which
P0 is a point of deficiency δ − 1. We are done by induction.

Theorem 23. Each P (n, 2) is embeddable.

Proof. For n 6 6 this is known. Assume therefore n > 6. Because of Proposition 21
and Proposition 22 it can be assumed that all lines have positive deficiency (equivalently:
contain at least one exceptional point) and δP 6 1 for all P. The latter implies |E| =∑

P∈P δP = 2n. As the removal of two lines from an affine plane of order n produces a
P (n, 2) which either has a line of deficiency 0 or has a point of deficiency 2, we expect a
contradiction.

Considering the distribution of the 2n exceptional points on the bundle of lines on a
non-exceptional point P, we see that P is on a line l of deficiency 1. We have |Π(l)| = n−1.
Lemma 20 shows that the lines of Π(l) are parallel. They cover n(n − 1) points. As the
n exceptional points covered by Π(l) distribute on the n− 1 lines of this partial parallel
class, there is precisely one line g ∈ Π(l) of deficiency 2. We have Π(l′) = Π(l) for each line
l′ parallel to l which is different from g. As |Π(g)| = n, it follows that there is precisely
one line h parallel to g which is not in Π(l). Let l′ ∈ Π(l), l′ 6= g, l. Then h meets l′ and
Q = h ∩ l′ is exceptional as Q is on two different parallels to g. It follows that Q is the
unique exceptional point on l′. Similarly h ∩ l is the unique exceptional point of l. This
is impossible as it implies that Q is on n+ 1 lines, namely the line h and l′ and the n− 1
lines that join Q to the non-exceptional points of l.
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5 Continuing with the general case

In this final section we complete the proof of Theorem 6. It follows from Theorem 23 and
Propositions 21,22 that the following assumptions can be made: δ > 3, δl > 0 for each
line l and δP < δ for each point P. We start from the following:

Theorem 24. Assume l is a line such that δl 6 δ and (δ2 − 1)(δ + 1)2 < 27(n + 2)/16.
Then the following hold:

• The lines of Π(l) are pairwise parallel. They all have the same deficiency ε = δl and
Π(l) = Π(h) for all h ∈ Π(l).

Proof. Observe |Π(l)| = n− (δ − ε) 6 n. Use induction on ε = δl > 0. Case ε = 0 follows
from Proposition 21 and its proof. Assume ε > 0 in the sequel. Consider the partition
Π(l) = Π1 ∪ Π2 where Π1 consists of l and the lines h 6= l parallel to l which satisfy
δh < (n + 1 + ε)/(2ε). Lemma 18 implies that the lines of Π1 are pairwise parallel. The
induction hypothesis implies δh > δl for all h ∈ Π1. The next major claim is that Π2 is
empty.

In order to prove this, let M be the set of points covered by lines of Π(l) and N
the complement of M. Then |N | > n(δ − ε) and Lemma 11 shows that N consists of
exceptional points. Let D ⊂ M be the set of points which are on more than one line of
Π(l). Clearly points of D are exceptional. For X ∈ D, let dX > 2 be the number of lines
of Π(l) on X, and d =

∑
h∈Π2
|h ∩D|. We have

n|Π(l)| − |M | =
∑
X∈D

(dX − 1) >
1

2

∑
X∈D

dX =
1

2

∑
h∈Π

|h ∩D| > d/2 (1)

and

∑
h∈Π2

∑
P∈h\D

δP =
∑
h∈Π2

(δh −
∑

P∈h∩D

δP )

>
∑
h∈Π2

(δh − |h ∩D|(δ − 1)) (2)

> |Π2|(n+ 1 + ε)/(2ε)− d(δ − 1).

We want to lower bound
∑

X∈P δX . As points of N are exceptional and therefore have
deficiency > 1 and because of Equation (1) we have∑

X∈N

δX > n2 − |M | > (n(n− |Π|) + d/2 = n(δ − ε) + d/2.

Together with the points covered by Π1 this yields the a priori lower bound

δn =
∑
X∈P

δX > |Π1|ε+ n(δ − ε) + d/2.
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which we use to obtain a weak upper bound on d :

d/2 6 ε(n− |Π1|) = ε(δ − ε+ |Π2|) (3)

Collect now the three contributions to
∑
δX that we have to obtain a lower bound:

δn =
∑
X∈P

δX > ε|Π1|+ (n(δ − ε) + d/2)︸ ︷︷ ︸
contribution of N

+ |Π2|(n+ 1 + ε)/(2ε)− d(δ − 1)︸ ︷︷ ︸
from (2)

.

Equivalently

δn > |Π2|((n+ 1 + ε)/(2ε)− ε) + ε(n− δ + ε) + n(δ − ε)− (d/2)(2δ − 3).

Substitute inequality (3) for d/2. After simplification this yields

δn > |Π2|((n+ 1 + ε)/(2ε)− 2ε(δ − 1)) + δn− 2ε(δ − 1)(δ − ε).

Because of the hypothesis in Theorem 24 the coefficient of |Π2| is positive. Assume
|Π2| > 1. Then

n+ 1 + ε 6 4(δ − 1)ε2(δ − ε+ 1).

The left is > n+ 2, the right side is maximized by ε = 2(δ + 1)/3 as a function of ε. This
yields n+ 2 6 (16/27)(δ2 − 1)(δ + 1)2 contradicting the hypothesis.

Now Π = Π1 consists of n− δ + ε parallel lines, each of deficiency > ε.
Finally we prove that Π(l) = Π(h) for all h ∈ Π(l), equivalently: each line in Π(l) has

deficiency ε. The situation is: Π(l) has n − δ + ε lines. They are pairwise parallel, have
deficiency > ε. Since the n(δ − ε) points not covered by the lines of Π(l) have positive
deficiency, then global counting shows

δn =
∑
P∈P

δP > ε(n− δ + ε) + n(δ − ε)

which shows that at most z = ε(δ − ε) 6 δ2/4 lines of Π(l) have deficiency > ε. Clearly
Π(l) = Π(h) for all h ∈ Π(l) of deficiency ε.

Assume there is some g ∈ Π(l) of deficiency > ε. Then g is parallel to some line h
which is not in Π(l). Let l = l1, . . . , lc be the lines of Π(l) of deficiency ε. We saw above
that

c > |Π| − z = n− (δ − ε)(ε+ 1) > n− (δ + 1)2/4.

Then h meets each of the lj.
Each point of h is exceptional. Indeed, if point X of h lies on no line of Π(l) it is

exceptional for this reason, and if X is on a line of Π(l), then it lies on two parallels to g
and is therefore exceptional.

It follows in particular δh > n. Line h is parallel to n− 1− δ + δh > 2n− 1− δ other
lines. At most z of those are in Π(l). Let s = 2n − 1 − δ − z > 2n − (δ + 2)2/4 and
h1, . . . , hs lines parallel to h which are not in Π(l). Count the ordered pairs of different
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hi. There are s(s− 1) such ordered pairs. Consider the lines lj ∈ Π(l), j = 1, . . . c. Each lj
contains mj 6 ε− 1 6 δ − 1 exceptional points not on h and n− 1−mj non-exceptional
points. The non-exceptional points of lj lie on at most one line parallel to h and thus on
at most one line hi; thus at least s− (n− 1−mj) lines hi must meet lj in one of the mj

exceptional points not on h. The Cauchy-Schwartz inequality shows that the number of
pairs of different hi meeting in a point of lj is at least

mj
s− n+ 1 +mj

mj

(
s− n+ 1 +mj

mj

− 1) >
(s− n+ 1)2

δ − 1
.

We obtain the inequality

c(s− n+ 1)2 6 (δ − 1)s(s− 1).

Let us create a factor of s on the left side: as s 6 2(n−1) we obtain (n−1)2 > (n−1)s/2
and (s− (n− 1))2 = s2 − 2(n− 1)s+ (n− 1)2 > s(s− 2(n− 1) + (n− 1)/2). The major
inequality simplifies after factoring s :

c(s− 3(n− 1)/2) 6 (δ − 1)(s− 1) < (δ − 1)2n.

Using the lower bounds:

(δ − 1)2n > (n− (δ + 1)2/4)((n+ 3)/2− (δ + 2)2/4),

after multiplying out on the right, forgetting the terms not dependent on n and canceling
the factor n : 2(δ+2)2 +(δ+1)2 +16(δ−1) > 4n which clearly contradicts the hypothesis.

Theorem 25. Let (δ2 − 1)(δ + 1)2 < 27(n+ 2)/16. Then every line has deficiency 6 δ.

Proof. Pick a non-exceptional point P0 and its bundle of n+1 lines l1, . . . , ln+1. Let δi = δli
and εi = δ − δi. We want to show that εi > 0 for all i. As every line is parallel to one of
the lines li, the preceding theorem then implies the statement.

Assume therefore that some of the εi are negative. As
∑
εi = δ and at least one

negative εi is present, we can find some positive εi that sum to at least δ + 1. As εi 6 δ
for all i we can choose them such that the sum is at most 2δ. Choose therefore the lines
l1, . . . , ls such that εi > 0 for i 6 s and z =

∑s
i=1 εi satisfies δ+ 1 6 z 6 2δ. Use the result

of the preceding theorem: let Πi = Π(li) for i 6 s and recall that Πi consists of n − εi
parallel lines each of which has deficiency δi. Let Mi be the set of points covered by the
lines of Πi and Ni its complement. We have |Mi| = n(n − εi) and |Ni| = nεi. Also, let
N = ∪si=1Ni. Observe that N consists of exceptional points. Recall also from Theorem
24 that lines l ∈ Πi, g ∈ Πj for i < j 6 s must meet. This has the following evident
consequences: if l ∈ Πi and i 6= j, then |l ∩Mj| = n − εj and |l ∩ Nj| = εj. It follows
|Ni ∩Nj| = εiεj.

Here is a first lower bound on |N | : observe at first that |N | >
∑s

i=1 |Ni|−
∑

i<j6s |Ni∩
Nj|. In fact, the right side does count elements of N. If P ∈ N occurs in precisely t > 1 of

the electronic journal of combinatorics 20(3) (2013), #P6 10



the Ni, then the contribution of P to the right side is t−
(
t
2

)
6 1. The inequality follows.

Continuing on the right side we obtain

|N | >
s∑
i=1

εin−
1

2

s∑
i,j=1

εiεj = zn− (1/2)z2 (4)

Consider again a point X ∈ N. It is exceptional and therefore on at most n lines. Let X
be in Ni for i 6 t and in Mi for t < i 6 s. The number of points of N which are collinear
with X is bounded by

t∑
i=1

n(εi − 1) +
s∑

i=t+1

nεi = nz − nt.

Together with Equation (4) this shows that the number of points of N which are not
collinear with X is > |N | − 1 − nz + nt > nt − 1 − z2/2. As z 6 2δ it follows that the
number of points in N not collinear with X is > tn − 1 − 2δ2 and therefore > (t − 1)n.
We conclude δX > t. Finally

∑
X∈N δX is lower bounded by the number of pairs (i,X)

where i 6 s and X ∈ Ni. This number is
∑s

i=1 |Ni| =
∑
εin > δn. As

∑
X∈N δX 6 δn by

Lemma 12, this is a contradiction.

We are ready for the final step.

Theorem 26. Each P (n, δ) is embeddable provided (δ2 − 1)(δ + 1)2 < 27(n+ 2)/16.

Proof. Assume (δ2 − 1)(δ + 1)2 < 27(n + 2)/16. We need to show that P (n, δ) can be
embedded in a P (n, δ−1). As before start from a non-exceptional point P and its bundle
of lines. As

∑
δi = δn it follows that there is some line l1 on P whose deficiency is d < δ.

Let Π = Π(l1), a parallel class of n− δ+ d lines, each of deficiency d. Let M be the set of
points covered by Π, and N the complement of M. Assume all X ∈ N satisfy δX > 2. An
obvious count yields the contradiction δn =

∑
Q δQ > d(n−δ+d)+2n(δ−d), equivalently

(n− d)(δ − d) 6 0. It follows that there is some X ∈ N such that δX = 1. Let U be the
union of X and the n − 1 points not collinear with X. Assume some line l contains at
least two points of U. Let t = |l ∩ U | > 2. Then there are some two lines on X which
are both parallel to l. We are in the situation of Lemma 18 which, in conjunction with
Theorem 25, implies n+ 1 6 δ(2δ− 1). This contradiction shows that U can be used as a
new line which together with the lines of the P (n, δ) forms a P (n, δ − 1). This completes
the proof.
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