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Béla Bollobás∗

Department of Pure Mathematics and Mathematical Statistics
Wilberforce Road, Cambridge, CB3 0WA, UK

Department of Mathematical Sciences
University of Memphis, Memphis, TN 38152, USA

London Institute for Mathematical Sciences
35a South Street, London, W1K 2XF, UK

B.Bollobas@dpmms.cam.ac.uk

Dieter Mitsche
Laboratoire J.A. Dieudonné
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Abstract

The metric dimension of a graph G is the minimum number of vertices in a
subset S of the vertex set of G such that all other vertices are uniquely determined
by their distances to the vertices in S. In this paper we investigate the metric
dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).

1 Introduction

Let G = (V,E) be a finite, simple, connected graph with |V | = n vertices. For a subset
R ⊆ V with |R| = r, and a vertex v ∈ V , define dR(v) to be the r-dimensional vector
whose i-th coordinate (dR(v))i is the length of the shortest path between v and the i-th
vertex of R. We call a set R ⊆ V a resolving set if for any pair of vertices v, w ∈ V ,
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dR(v) 6= dR(w). Clearly, the entire vertex set V is always a resolving set, and so is
R = V \ {z} for every vertex z. The metric dimension β(G) (or simply β, if the graph
we consider is clear from the context) is then the smallest cardinality of a resolving set.
We have the trivial inequalities 1 6 β(G) 6 n − 1, with the lower bound attained for a
path, and the upper bound for the complete graph.

The problem of studying the metric dimension was proposed in the mid-1970s by
Slater [21], and Harary and Melter [13]. As a start, Slater [21] determined the metric
dimension of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [19] gave
a linear-time algorithm for computing the metric dimension of a tree, and characterized
the graphs with metric dimensions 1 and 2. Later on, Chartrand, Eroh, Johnson and
Oellermann [8] gave necessary and sufficient conditions for a graph G to satisfy β(G) =
n− 1 or β(G) = n− 2.

Denoting by D = D(G) the diameter of a graph G, it was observed in [19] that
n 6 Dβ−1 + β. Recently, Hernando, Mora, Pelayo, Seara and Wood [16] proved that

n 6 (⌊2D
3
⌋ + 1)β + β

∑⌈D/3⌉
i=1 (2i − 1)β−1, and gave extremal constructions that show that

this bound was sharp. Moreover, in [16] graphs of metric dimension β and diameter D
were characterized.

The metric dimension of the cartesian product of graphs was investigated by Cáceres,
Hernando et al. [7], and the relationship between β(G) and the determination number of
G (the smallest size of a set S such that every automorphism of G is uniquely determined
by its action on S) was studied by Cáceres, Garijo et al. [6]. Also, Bailey and Cameron [2]
studied the metric dimension of groups, and the relationship of the problem of determining
β(G) to the graph isomorphism problem.

Concerning algorithms, the problem of finding the metric dimension is known to be
NP-complete for general graphs (see [12, 19]). Recently, Dı́az et al. [9] showed that
determining β(G) is NP-complete for planar graphs, and gave a polynomial-time algorithm
for determining the metric dimension of an outerplanar graph. Furthermore, in [19] a
polynomial-time algorithm approximating β(G) within a factor 2 log n was given. On
the other hand, Beerliova et al. [3] showed that the problem is inapproximable within
o(log n) unless P=NP. Hauptmann et al. [15] then strengthened the result and showed
that unless NP ⊆ DTIME(nlog logn), for any ε > 0, there is no (1− ε) log n-approximation
for determining β(G), and finally Hartung et al. [14] extended the result by proving that
the metric dimension problem is still inapproximable within a factor of o(log n) on graphs
with maximum degree three.

In this paper, we consider the metric dimension of the classical binomial random
graph G(n, p). As usual (see, for example, [4, 18]), the space G(n, p) of random graphs
is the probability triple (Ω,F ,P) where Ω is the set of all graphs with vertex set [n] =
{1, 2, . . . , n}, F is the family of all subsets of Ω, and P is the probability measure on
(Ω,F) defined by

P(G) = p|E(G)|(1 − p)(
n

2)−|E(G)| .

A random graph G(n, p) is simply a random point of this space. Clearly, G(n, p) can
be obtained by

(

n
2

)

independent coin flips, one for each unordered pair of vertices, with
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probability of ‘success’ p: if the flip corresponding to a pair (x, y) is ‘success’, then we
join x to y, otherwise we do not join them. We shall take p = p(n) to be a function of
n; in particular, p may tend to zero as n tends to infinity. All asymptotics throughout
are as n → ∞. We say that an assertion concerning G(n, p) holds asymptotically almost
surely (a.a.s.) if the probability that it holds tends to 1 as n goes to infinity.

As far as we know, not much is known about the metric dimension of G(n, p). Babai
et al. [1] showed that in G(n, 1/2) a.a.s. the set of ⌈(3 log n)/ log 2⌉ vertices with the
highest degrees can be used to test whether two random graphs are isomorphic (in fact,
they provided an O(n2) algorithm to do it), and hence they obtained an upper bound of
⌈(3 log n)/ log 2⌉ for the metric dimension of G(n, 1/2) that holds a.a.s. Frieze et al. [11]
studied sets resembling resolving sets, namely identifying codes : a set C ⊆ V is an
identifying code of G, if C is a dominating set (every vertex v ∈ V \ C has at least one
neighbour in C) and C is also a separating set (for all pairs u, v ∈ V , one must have
N [u] ∩ C 6= N [v] ∩ C, where N [u] denotes the closed neighbourhood of u). Observe that
a graph might not have an identifying code, but note also that for random graphs with
diameter 2 the concepts are very similar. The existence of identifying codes and bounds on
their sizes in G(n, p) were established in [11]. The same problem in the model of random
geometric graphs was analyzed by Müller and Sereni [20], and Foucaud and Perarnau [10]
studied the same problem in random d-regular graphs.

Let us collect our results into a single theorem covering all random graphs with ex-
pected average degree d = pn(1 + o(1)) ≫ log5 n and expected average degree in the
complement of the graph (n− 1 − d) = (1 − p)n(1 + o(1)) > (3n log log n)/ log n. In later
sections we shall prove slightly stronger results for specific ranges of p. For a visualization
of the behaviour of logn β(G(n, nx−1)) see also Figure 1(a) and the description right after
the statement of the theorem.

The intuition behind the theorem is the following: if a random graph is sufficiently
dense, then the graph locally (that is, “observed” from a given vertex) “looks” the same.
In other words, the cardinality of the set of vertices at a certain graph distance from a
given vertex v does not differ much for various v. After grouping the vertices according to
their graph distances from v, it turns out that for the metric dimension the ratio between
the sizes of the two largest groups of vertices is of crucial importance. If these two groups
are roughly of the same size, then a typical vertex added to the resolving set distinguishes
a lot of pairs of vertices, and hence the metric dimension is small. If, on the other hand,
these two groups are very different in size, a typical vertex distinguishes those few vertices
belonging to the second largest group from the rest. The number of other pairs that are
distinguished is negligible and hence the metric dimension is large.

It is clear that this parameter is non-monotonic. Let us start with a random graph
with constant edge probability p. For each vertex v in the graph, a constant fraction of all
vertices are neighbours of v and a constant fraction of vertices are non-neighbours. When
decreasing p, the number of neighbours decreases, and some vertices will appear at graph
distance 3. As a result, the metric dimension increases. Continuing this process, the
number of vertices at graph distance 3 increases more and more, and at some point this
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number is comparable to the number of vertices at graph distance 2. Then, the metric
dimension is small again, and the same phenomenon appears in the next iterations.

The precise statement is the following.

Theorem 1.1. Suppose that

log5 n ≪ d = p(n− 1) 6 n

(

1 − 3 log log n

log n

)

.

Let i > 0 be the largest integer such that di = o(n), let c = c(n) = di+1/n, and let

q =

{

(e−c)2 + (1 − e−c)2 if p = o(1)

p2 + (1 − p)2 if p = Θ(1).

For i > 1, let η = logn d
i. Finally, let G = (V,E) ∈ G(n, p). Then, the following

assertions hold a.a.s.

(i) If c = Θ(1), then

β(G) = (1 + o(1))
2 log n

log(1/q)
= Θ(log n).

(ii) If c → ∞ and ec 6 (log n)/(3 log log n), then

β(G) = (1 + o(1))
2 log n

log(1/q)
= (1 + o(1))ec log n ≫ log n.

(iii) If ec > (log n)/(3 log log n), then

(η + o(1))

(

di

n
+ e−c

)−1

(log n) 6 β(G) 6 (1 + o(1))

(

di

n
+ e−c

)−1

(log n).

In particular,

β(G) =

{

Θ(ec log n) = Θ( log n
log(1/q)

) if e−c = Ω(di/n)

Θ(n logn
di

) if e−c ≪ di/n,

and hence in all cases we have β(G) ≫ log n.

Remark 1.2. Note that here and in the following results, it follows from the definition
of i that c = di+1/n = Ω(1). Furthermore,

η = logn d
i
>

i

i + 1
+ o(1) >

1

2
+ o(1),

where the first inequality follows from the fact that

logn d
i =

log di

log n
=

log di

log(di+1/c)
=

i log d

(i + 1) log d− log c
>

i

i + 1
+ o(1).
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Observe that Theorem 1.1 shows that β(G) undergoes a “zigzag” behaviour as a
function of p. It follows that a.a.s. logn β(G(n, nx−1)) is asymptotic to the function f(x) =
1 − x⌊1/x⌋ shown in Figure 1(a). Indeed, for cases (i) and (ii) we have c = no(1) (that is,
d = n(1+o(1))/i for some i ∈ N) and a.a.s. β(G) = no(1). This corresponds to a collection of
points (1/i, 0), i ∈ N in the figure. For ranges of p considered in case (iii), we have that

a.a.s. β(G) is of order (di/n + e−c)
−1

. For d = nx+o(1), where 1/(i+ 1) < x < 1/i for some
i ∈ N, it follows that a.a.s. β(G) = Θ(n/di) = n1−ix+o(1), which corresponds to linear
parts of the function f(x) of slope 1 − ix. The function f(x) is hence not continuous at
x = i, i ∈ N \ {1}.

The result is asymptotically tight for sparse graphs (that is, for d = no(1)). The ratio
between our upper and lower bound is at most 2 + o(1) and follows another “zigzag”
function f(x) = (x⌊1/x⌋)−1 shown in Figure 1(b). Indeed, for cases (i) and (ii) we
obtained an asymptotic behaviour of β(G). This corresponds to a collection of points
(1/i, 0), i ∈ N in the figure. In case (iii) the ratio is asymptotic to η−1. For d = nx+o(1),
where 1/(i + 1) < x < 1/i for some i ∈ N, η−1 = η−1(x) ∼ 1/(ix) 6 (i + 1)/i. Hence,
η−1 ∼ (x⌊1/x⌋)−1.

(a) the ‘zigzag’ function (b) the upper/lower bound ratio
f(x) = 1 − x⌊1/x⌋ η−1(x) = (x⌊1/x⌋)−1

Figure 1: The functions f(x) and η−1(x)

2 Expansion properties

Let us start with the following expansion-type properties of random graphs. For a vertex
v ∈ V , let S(v, i) and N(v, i) denote the set of vertices at distance i from v and the set
of vertices at distance at most i from v, respectively. For any V ′ ⊆ V , let S(V ′, i) =
⋃

v∈V ′ S(v, i) and N(V ′, i) =
⋃

v∈V ′ N(v, i).

Lemma 2.1. Let ω = ω(n) be a function tending to infinity with n such that ω 6

(log n)4(log log n)2. Then the following properties hold a.a.s. for G(n, p).
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(i) Suppose that ω log n 6 d = p(n− 1) = o(n). Let V ′ ⊆ V with |V ′| 6 2 and let i ∈ N

such that di = o(n). Then,

|S(V ′, i)| =

(

1 + O

(

1√
ω

)

+ O

(

di

n

))

di|V ′|.

In particular, for every x, y ∈ V (x 6= y) we have

|S(x, i) \ S(y, i)| =

(

1 + O

(

1√
ω

)

+ O

(

di

n

))

di.

(ii) Suppose that (ω log2 n)/(log log n) 6 d = p(n − 1) = o((n log log n)/(log n)2). Let
R ⊆ V with r = |R| 6 (log n)2/(log log n), x ∈ V \ R, and let i ∈ N such that
rdi = o(n). Then,

|S(x, i) \N(R, i)| =

(

1 + O

(
√

log log n

ω log n

)

+ O

(

1

ω

)

+ O

(

rdi

n

)

)

di.

Proof. For (i), we will show that a.a.s. for every V ′ ⊆ V with |V ′| 6 2 and i ∈ N we have
the desired concentration for |S(V ′, i)|, provided that di = o(n). The statement for any
pair of vertices x, y will follow immediately (deterministically) from this.

In order to investigate the expansion property of neighbourhoods, let Z ⊆ V , z = |Z|,
and consider the random variable X = X(Z) = |N(Z, 1)|. We will bound X in a stochastic
sense. There are two things that need to be estimated: the expected value of X, and the
concentration of X around its expectation.

Since for x = o(1) we have (1 − x)z = e−xz(1+O(x)) and also e−x = 1 − x + O(x2), it is
clear that

E[X] = n−
(

1 − d

n− 1

)z

(n− z)

= n− exp

(

−dz

n
(1 + O(d/n))

)

(n− z)

= dz(1 + O(dz/n)), (1)

provided dz = o(n). We next use a consequence of Chernoff’s bound (see e.g. [18, p. 27,
Corollary 2.3]), that

P(|X − E[X]| > εE[X])) 6 2 exp

(

−ε2E[X]

3

)

(2)

for 0 < ε < 3/2.
This implies that, for ε = 2/

√
ω, the expected number of sets V ′ satisfying

∣

∣|N(V ′, 1)| − E[|N(V ′, 1)|]
∣

∣ > εd|V ′|
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and |V ′| 6 2 is at most

∑

z∈{1,2}

2nz exp

(

− ε2zd

3 + o(1)

)

6
∑

z∈{1,2}

2nz exp

(

−ε2zω log n

3 + o(1)

)

= o(1),

since d > ω log n. Hence the statement holds for i = 1 a.a.s. Now, we will estimate the
cardinalities of N(V ′, i) up to the i’th iterated neighbourhood, provided di = o(n) and
thus i = O(log n/ log log n). It follows from (1) and (2) (with ε = 4(ω|Z|)−1/2) that in the
case ω log n/2 6 |Z| = o(n/d) with probability at least 1 − n−3

|N(Z, 1)| = d|Z|
(

1 + O (d|Z|/n) + O
(

(ω|Z|)−1/2
))

,

where the bounds in O() are uniform. As we want a result that holds a.a.s., we may
assume this statement holds deterministically, since there are only O(n2 log n) choices for
V ′ and i. Given this assumption, we have good bounds on the ratios of the cardinalities
of N(V ′, 1), N(N(V ′, 1), 1) = N(V ′, 2), and so on. Since i = O(log n/ log log n) and√
ω 6 (log n)2(log log n), the cumulative multiplicative error term is

(1+O(d/n) + O(1/
√
ω))

i
∏

j=2

(

1 + O
(

dj/n
)

+ O
(

ω−1/2d−(j−1)/2
))

= (1 + O(1/
√
ω) + O(di/n))

i−3
∏

j=7

(

1 + O
(

log−3 n
))

= (1 + O(1/
√
ω) + O(di/n)),

and the proof of part (i) is complete.

Now, let us move to part (ii). Exactly the same strategy as for part (i) is used here
and so we only outline the proof by pointing out the differences. Every time the i’th
neighbourhood of x is about to be estimated, we first expose the neighbourhood of R.
Since for each vertex v, a.a.s. |N(v)| = d(1 + o(1)), during this process, only |N(R, i)| =
O(rdi) vertices are discovered. Now, the neighbourhood N(x, i− 1) is expanded, but this
time the vertices of N(R, i) need to be excluded from the consideration. However, the
expected size of S(x, i) \ N(R, i) is affected by a factor of (1 + O(rdi/n)) only, and so
this causes no problem (since the very same error term comes from (1)). As before, the
largest error term for the expectation appears for the largest possible value of i. The
concentration follows from (2), and thus (again, exactly as before) the error term in the
concentration result is the largest for i = 1. Using that r 6 (log2 n)/(log log n), the
expected number of pairs (x,R) for which the statement fails for i = 1 is, by applying (2)
with ε = 2/

√
ω′, at most

n
log2 n

log logn
+1 exp

(

− ε2d

3 + o(1)

)

6 exp

(

(1 + o(1) log3 n

log log n
− ε2d

3 + o(1)

)

= o(1), (3)

provided d > (ω′ log3 n)/(log log n) for some function ω′ tending to infinity with n.
(Note that the condition for d here is slightly stronger than the one we want to have.)
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Hence, by Markov’s inequality, a.a.s. we are guaranteed to have an error term of (1 +
O(1/

√
ω′) + O(rdi/n)) for any pair (x,R). Therefore, it follows from the fact that ω 6

(log n)4(log log n)2 that the error term O(
√

log log n/(ω log n)) is of order at least 1/
√
ω′

if ω′ > (log n)10(log log n)2. The proof of part (ii) is finished for d > (log13 n)(log log n).
Next, we shall concentrate on (ω log2 n)/(log log n) 6 d = no(1) and shall obtain a

slightly better error term for the case i = 1. It is well known (and can be easily shown
using Markov’s inequality) that a.a.s. there is no K2,3 in G. Conditioning on this we get
from part (i) that

|S(x, 1) \N(R, 1)| =

(

1 + O

(
√

log log n

ω log n

)

+ O

( |R|
d

)

)

d,

and the result holds for i = 1, since |R|/d 6 ω−1. As before, the error term is maximal
for i = 1: indeed, for i > 2 we already showed that the expectation of |S(x, i) \N(R, i)|
can be estimated in the same way as the expectation of |S(x, i)|, since its size is not
affected by disregarding N(R, i). In particular, for i = 2 we have the expected size of
S(x, 2) \N(R, 2) to be equal to

(

1 + O

(

rd2

n

))

d |S(x, 1) \N(R, 1)| = (1 + o(1))d2.

The expected number of pairs (x,R) for which the statement fails for i = 2 is, by apply-
ing (2) with ε = 1/ω, at most

n
log2 n

log logn
+1 exp

(

− ε2d2

3 + o(1)

)

6 exp

(

(1 + o(1)) log3 n

log log n
− log4 n

(3 + o(1))(log log n)2

)

= o(1), (4)

and by Markov’s inequality we are guaranteed an error term of (1 + O(1/ω) + O(rd2/n))
for any pair (x,R) and i = 2. By the same argument as in part (i), the cumulative
multiplicative error term is a product of the error term for i = 1 (from the concentration)
and the last i (from the expectation), and the proof of part (ii) is complete.

3 Upper bound

In this section, we shall prove an upper bound for the metric dimension, coming from an
application of the probabilistic method.

Theorem 3.1. Suppose that d = p(n− 1) ≫ log3 n and n− d ≫ log n. Let i > 0 be the
largest integer such that di = o(n), let c = c(n) = di+1/n, and let

q =

{

(e−c)2 + (1 − e−c)2 if p = o(1)

p2 + (1 − p)2 if p = Θ(1).

Finally, let G = (V,E) ∈ G(n, p). Then, the following assertions hold a.a.s.
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(i) If c = Θ(1), then

β(G) 6 (1 + o(1))
2 log n

log(1/q)
= Θ(log n).

(ii) If c → ∞, then

β(G) 6 (1 + o(1))

(

di

n
+ e−c

)−1

(log n) ≫ log n.

In particular,

β(G) 6

{

(1 + o(1))ec log n = (1 + o(1)) 2 logn
log(1/q)

if e−c ≫ di/n

(1 + o(1))n logn
di

if e−c ≪ di/n.

Proof. Let us start with the following useful observation.
Claim: Suppose that a (deterministic) graph G = (V,E) on n vertices satisfies the

following property: for a given pair of vertices x, y ∈ V , the probability that a random
set W of cardinality w does not distinguish x and y is at most 1/n2. Then, the metric
dimension is at most w.

Proof of the Claim: The claim clearly holds by the probabilistic method. Indeed, since
the expected number of pairs that are not distinguished by a random set W is at most
1/2, there is at least one set W that distinguishes all pairs.

Now, we are going to show that a.a.s. a random graph satisfies some expansion prop-
erty, and then we will show that any (deterministic) graph G with this property must
also satisfy the assumption of the claim (for some w to be determined soon), and so must
have β(G) 6 w. The conclusion will be then that a.a.s. β(G) 6 w for G ∈ G(n, p).

Let ε > 0 be any constant (at the end, we will let ε → 0 slowly), and fix a pair of
vertices x, y ∈ V of G = (V,E) ∈ G(n, p). Suppose first that i = 0; that is, p = Θ(1).
Note that any vertex that is adjacent to x but not to y (or vice versa) distinguishes this
pair. We expect 2p(1 − p)(n − 2) > (2 + o(1))(ω log n) of such vertices and so a.a.s. for
every pair of two vertices we have

X :=
∣

∣

∣

(

S(x, 1) \N(y, 1)
)

∪
(

S(y, 1) \N(x, 1)
)∣

∣

∣ = (2 + o(1))p(1 − p)n

by (2) (applied with ε = 3/
√
ω).

Finally, consider any deterministic graph for which this property holds for all pairs x
and y. Let pw be the probability that a random set W of cardinality w does not distinguish
the pair under consideration. We get that

pw 6

(

n−X

n

)(

n− 1 −X

n− 1

)

· · ·
(

n− w + 1 −X

n− w + 1

)

6

(

1 − X

n

)w

= qw(1+o(1)),

which is at most 1/n2 for w = (2+ε)(log n)/(log(1/q)). The claim implies that β(G) 6 w,
and the result follows for i = 0.
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Suppose now that i > 1; that is, p = o(1). As before, we are going to use the claim
to show the desired bound. However, this time the expansion property will be different.
Clearly, if there exists z ∈ V such that z ∈ S(x, j) \ S(y, j) for some j ∈ N, then z
distinguishes the pair. It follows from Lemma 2.1(i) that a.a.s. for every pair x, y we have
|S(x, i) \ S(y, i)| = (1 + o(1))di, and so, by symmetry, there are (2 + o(1))di vertices in
the i’th neighbourhood of x or y that can distinguish this pair (this is the first type of
vertices which is able to distinguish x and y).

Now, let us focus on distinguishing vertices of the second type. Any vertex z at distance
i + 1 from x but at distance at least i + 2 from y, or vice versa, also distinguishes x and
y. Suppose first that c 6 0.51 log n which in turn implies that di/n = c/d = o(log−2 n).
By Lemma 2.1(i), since d ≫ log3 n and hence ω ≫ log2 n, and using as before that for
p = o(1), 1 − p = e−p+O(p2), we expect

2(1 − p)(1+o(log−1 n)+O(di/n))di
(

1 − (1 − p)(1+o(log−1 n)+O(di/n))di
)

n(1 + o(1))

= 2 exp
(

−(1 + o(log−1 n))c
) (

1 − exp
(

−(1 + o(log−1 n))c
))

n(1 + o(1))

= 2e−c+o(1)(1 − e−c+o(1))n

= (2 + o(1))e−c(1 − e−c)n

vertices of this type. (This is the place where we need to control error terms by concen-
trating on graphs that are dense enough.) Since the expectation is Ω(n0.49), it follows
from Chernoff’s bound (2) that with probability 1− o(n−2) the cardinality is well concen-
trated around its expectation. On the other hand, if c > 0.51 log n, then the contribution
from this second group is bounded by (2 + o(1))e−cn 6 3n0.49. This can be ignored since
the contribution from the first group is at least (2 + o(1))di = Ω(

√
n). We get that with

probability 1 − o(n−2) the number of vertices that can distinguish the pair x and y is
at least (2 + o(1)) (di + e−c(1 − e−c)n). Hence, a random graph a.a.s. has this expansion
property for all pairs x, y.

Now, as before, we consider any deterministic graph with the mentioned expansion
property, and show that for a given pair x, y, the probability pw that a random set of
cardinality w (w will be determined soon) does not distinguish this pair is at most 1/n2.
For c = Θ(1) we get that

pw 6

(

1 − (2 + o(1))

(

di

n
+ e−c(1 − e−c)

))w

=
(

1 − 2e−c(1 − e−c)
)w(1+o(1))

= qw(1+o(1)),

which is at most 1/n2 for w = (2 + ε) log n/ log(1/q). If c → ∞, then

pw 6 exp

(

−(2 + o(1))

(

di

n
+ e−c

)

w

)

6 n−2

for w = (1 + ε)(di/n + e−c)−1 log n. The desired bound is implied by the claim.
As we promised, we let ε to tend to zero (slowly) and the proof is complete.
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4 Lower bounds

In order to show lower bounds, we shall make use of the following well-known result proved
in [5, Theorem 6] for graphs with average degree d = p(n− 1) that tends to infinity faster
than log3 n. Moreover, in [4, Corollary 10.12] the condition was relaxed and it is now
required only that d ≫ log n. Recall that D = D(G) is the diameter of a graph G.

Lemma 4.1 ([4], Corollary 10.12). Suppose that d = p(n− 1) ≫ log n and

di/n− 2 log n → ∞ and di−1/n− 2 log n → −∞.

Then the diameter of G(n, p) is equal to i a.a.s.

Let i > 0 be the largest integer such that di = o(n), and let c = c(n) = di+1/n. Now,
we are ready to show that the upper bound for the metric dimension is asymptotically
tight if c 6 log log n− log log log n− log 3 (see Theorem 4.2); otherwise, there is at most
a constant factor difference (see Theorems 4.3 and 4.4).

Theorem 4.2. Let ε = ε(n) = (3 log log n)/(log n) = o(1). Suppose that log5 n ≪
d = p(n − 1) 6 n(1 − ε). Let i > 0 be the largest integer such that di = o(n), let
c = c(n) = di+1/n, and let

q =

{

(e−c)2 + (1 − e−c)2 if p = o(1)

p2 + (1 − p)2 if p = Θ(1).

Suppose that ec 6 ε−1 = (log n)/(3 log log n). Finally, let G = (V,E) ∈ G(n, p). Then,
a.a.s.

β(G) > (1 + o(1))
2 log n

log(1/q)
.

Proof. Our goal is to show that a.a.s. there is no resolving set R of cardinality

r :=
(2 − ε) log n

log(1/q)
6 (1 + o(1))

log n

ε
6

log2 n

log log n
.

The probability that a given set R of cardinality r forms a resolving set has to be estimated
from above. We will use Suen’s inequality that was introduced in [22] and revised in [17],
and then the result will follow after applying the union bound. First we consider the case
p = o(1) (that is, i > 1); the differences in the case p = Θ(1) (that is, i = 0) will be
carefully discussed afterwards.

By Lemma 2.1(i) applied with ω ≫ log4 n, a.a.s. for every v ∈ V , we have

|S(v, i)| = di(1 + o(log−2 n)).

Hence, by repeatedly applying Lemma 2.1(i) for all vertices of R, it follows that a.a.s. for
all R ⊆ V with |R| = r we have

|N(R, i)| = O(dir) = O(cnr/d) = O(n log2 n/d) = o(n).

the electronic journal of combinatorics 20(4) (2013), #P1 11



Moreover, by Lemma 2.1(ii), this time applied with ω ≫ (log n)3(log log n), it also follows
that a.a.s. for all R and all v ∈ R we have

|S(v, i) \N(R \ {v}, i)| = di(1 + o(log−2 n)).

Hence, a.a.s. there is no set R without these expansion properties and so we may assume
below that they all hold.

Fix any R ⊆ V with |R| = r. Expose N(R, i) and let S = V \ N(R, i) be the set
of vertices at distance at least i + 1 from R (note that no edge within S and no edge
between S and S(R, i) is exposed yet). From the previous observation we assume that
|S| = (1 + o(1))n.

Let I = {(x, y) : x, y ∈ S, x 6= y}, and for any (x, y) ∈ I, let Ax,y be the event (with the
corresponding indicator random variable Ix,y) that dR(x) = dR(y). Let X =

∑

(x,y)∈I Ix,y.
Clearly, the probability that R is a resolving set is at most the probability that X = 0.
The associated dependency graph has I as its vertex set, and (x1, y1) ∼ (x2, y2) if and
only if {x1, y1} ∩ {x2, y2} 6= ∅. It follows from Suen’s inequality that

P(X = 0) 6 exp
(

−µ + ∆e2δ
)

, (5)

where

µ =
∑

(x,y)∈I

P(Ax,y)

∆ =
∑

(x1,y1)∼(x2,y2)

E[Ix1,y1Ix2,y2 ]

δ = max
(x1,y1)∈I

∑

(x2,y2)∼(x1,y1)

P(Ax2,y2).

We will first estimate µ. For a given vector d ∈ {i+ 1, i+ 2}r, let Ri+1 = Ri+1(d) ⊆ R
be a set of vertices of R that we want to be at distance exactly i+ 1 from x and y (recall
that x, y /∈ N(R, i)); Ri+2 = Ri+2(d) := R \ Ri+1. Since we want to have a lower bound
on the probability that x and y yield the same vector d, in order to avoid additional
complications, for every vertex v ∈ Ri+1 we can ignore possible edges between x, y and
a vertex in S(v, i) ∩ S(R \ {v}, i) and consider only the possible edges between x, y and
S(v, i) \ S(R \ {v}, i). Let px,y(d) be the probability that the distance from both x and y
to Ri+1 is i + 1 and to Ri+2 is at least i + 2. We have that

px,y(d) >



(1 − p)|S(Ri+2,i)|
∏

v∈Ri+1

(

1 − (1 − p)|S(v,i)\S(R\{v},i)|
)





2

> (1 + o(1)) ×
(

exp
(

− c|Ri+2|(1 + o(log−2 n))
)

(

1 − exp
(

− c(1 + o(log−2 n))
)|Ri+1|

))2

= (1 + o(1))
(

e−c
)2|Ri+2| (1 − e−c

)2|Ri+1| ,
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since c|R| = O(log2 n). (This is the place where we need to control error terms by
concentrating on graphs that are dense enough.) Finally, it is straightforward to see that
a.a.s. both x and y are adjacent to at least one vertex of S(v, i + 1) for every v ∈ R.
(Recall that it follows from Lemma 4.1 that the diameter of G is i + 2 a.a.s., and so
that there are only two possible distances that occur in dR(x) for any x ∈ S.) Hence,
P(dR(x) = dR(y) = d) = (1 + o(1))px,y(d).

Since there are
(

r
k

)

vectors with exactly k entries equal to (i + 2),

µ =

(

n− o(n)

2

) r
∑

k=0

(

r

k

)

(1 + o(1))
(

e−c
)2k (

1 − e−c
)2(r−k)

= (1 + o(1))

(

n

2

)

(

(e−c)2 + (1 − e−c)2
)r

= (1 + o(1))

(

n

2

)

qr.

By the same calculations we have

∆ = (1 + o(1))3

(

n

3

)

(

(e−c)3 + (1 − e−c)3
)r

δ = (1 + o(1))2n
(

(e−c)2 + (1 − e−c)2
)r

= (2 + o(1))nqr.

Now we are ready to apply Suen’s inequality (5). Since qr = n−2+ε and using that
1 − x 6 e−x, we get

log (P(X = 0)) 6 −(1 + o(1))

(

n

2

)

qr
(

1 − n

(

(e−c)3 + (1 − e−c)3

(e−c)2 + (1 − e−c)2

)r

eO(nqr)

)

= −(1 + o(1))
nε

2

(

1 − n

(

1 − (e−c) − (e−c)2

(e−c)2 + (1 − e−c)2

)r

eO(nε−1)

)

6 −nε

3

(

1 − n

(

1 − 1 − q

2q

)r)

6 −nε

3

(

1 − n exp

(

−1 − q

2q
· (2 − ε) log n

log(1/q)

))

.

Note that the function f(q) := (q − 1)/(q log q) is decreasing in (0, 1) and tends to 1 as
q → 1. Since 1 − q = 2e−c(1 − e−c) > (1 + o(1))2ε, or equivalently, q 6 1 − (1 + o(1))2ε,
the minimum is attained at 1 − q0 such that q0 = (2 + o(1))ε. Therefore, using the fact
that for −1 6 x < 1, log(1 − x) = x + x2/2 + O(x3), we have

1 − q

2q
· 2 − ε

log(1/q)
>

q0
2(1 − q0)

· 2 − ε

q0(1 + q0/2 + O(q20))
= 1 +

(

1

2
+ o(1)

)

ε,

which in turn implies that, say, P(X = 0) 6 exp(−nε/4). Finally, the expected number
of resolving sets R of size r is at most

(

n

r

)

exp

(

−nε

4

)

6 exp

(

O

(

log3 n

log log n

)

− Ω
(

log3 n
)

)

= o(1),
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and the result follows by Markov’s inequality.
Now we point out the differences with the (slightly easier) case i = 0. In this case we

have

µ = (1 + o(1))

(

n

2

)

(

p2 + (1 − p)2
)r

= (1 + o(1))

(

n

2

)

qr.

and

∆ = (1 + o(1))3

(

n

3

)

(

p3 + (1 − p)3
)r

δ = (1 + o(1))2n
(

p2 + (1 − p)2
)r

= (2 + o(1))nqr.

Then, again using qr = n−2+ε,

log (P(X = 0)) 6 −(1 + o(1))

(

n

2

)

qr
(

1 − n

(

p3 + (1 − p)3

p2 + (1 − p)2

)r

eO(nqr)

)

= −(1 + o(1))
nε

2

(

1 − n

(

1 − p− p2

p2 + (1 − p)2

)r

eO(nε−1)

)

6 −nε

3

(

1 − n

(

1 − 1 − q

2q

)r)

6 −nε

3

(

1 − n exp

(

−1 − q

2q
· (2 − ε) log n

log(1/q)

))

.

Now, by assumption, p 6 (1 − ε), and therefore 1 − q = 2p(1 − p) > (1 + o(1))2ε. Hence,
the minimum of f(q) = (q − 1)/(q log q) is attained at 1 − q0 such that q0 = (2 + o(1))ε,
and the remaining calculations can be performed as before.

The next two theorems show that in all other cases we consider, the ratio between the
upper and the lower bounds is at most (2 + o(1)). We will assume until the end of this
section that d = o(n), as for d = Ω(n) Theorem 4.2 can be applied.

Theorem 4.3. Suppose that log n ≪ d = p(n−1) = o(n). Let i > 1 be the largest integer
such that di = o(n), let c = c(n) = di+1/n, and η = logn d

i. Suppose that c−2 log n → ∞.
Finally, let G = (V,E) ∈ G(n, p). Then, a.a.s.

β(G) > (η + o(1))
n log n

di
.

Proof. Put ω = ω(n) := d/(log n) → ∞, and let ε = ε(n) > 0 be any function tending
(slowly) to zero such that ω−1/2 = o(ε), d/n = o(ε), and ε ≫ (log log n)/(log n). We will
show that a.a.s. no R of cardinality r = (η − ε)(n log n)/di is a resolving set.

The general approach is similar to the previous proof. As before, we are going to test
all sets R ⊆ V with |R| = r and partition them into 4 bins.
– Bin 1 contains sets with |N(R, i− 1)| > (η − ε/2)n logn

d
;
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– Bin 2 contains sets with |N(R, i− 1)| 6 (η− ε/2)n logn
d

and there is at most one vertex
at distance at least i + 1 from R;
– Bin 3 contains sets with |N(R, i− 1)| 6 (η − ε/2)n logn

d
, there are at least two vertices

at distance at least i+ 1 from R, and there is at least one vertex at distance at least i+ 2
from R;
– Bin 4 contains all remaining sets.

The observation is that when all sets under consideration are in Bin 4, then there is
no resolving set of cardinality r. Indeed, if this property holds, then for every set R with
|R| = r there are at least two vertices at distance exactly i + 1 from every vertex from R
and hence they cannot be distinguished by R.

It follows from Lemma 2.1(i) (after applying it r times, for each vertex of R) that
a.a.s. for all R ⊆ V with |R| = r we have

|N(R, i− 1)| 6 rdi−1(1 + O(ω−1/2)) 6 (η − ε/2)
n log n

d
= O

(n

ω

)

.

Hence, a.a.s. Bin 1 is empty. Similarly, it follows from Lemma 4.1 that the diameter of G
is i + 1 a.a.s. so Bin 3 is empty a.a.s. It remains to show that a.a.s. Bin 2 is empty.

Fix any R ⊆ V with |R| = r and perform BFS until N(R, i − 1) is discovered. Since
here we count sets with good expansion properties, we may assume that |N(R, i− 1)| 6
(η − ε/2)n log n

d
. Now, we are going to estimate the probability that there are at least two

vertices in V \ N(R, i − 1) that are not adjacent to any vertex in N(R, i − 1). Noticing
that d/n = o(ε) and using 1 − x 6 e−x, we get that the probability that at most one
vertex is not adjacent to N(R, i−1) (we have at most n choices for this vertex) is at most

n
(

1 − (1 − p)|N(R,i−1)|
)n(1−O(1/ω))

6 n
(

1 − (1 − p)(η−ε/2)n logn

d

)n(1−O(1/ω))

= n
(

1 − exp
(

− (η − ε/2 + o(ε)) log n
))n(1−O(1/ω))

6 n
(

1 − exp
(

− (η − ε/3) log n
))n(1−O(1/ω))

= exp
(

log n− n1−η+ε/3(1 − o(1))
)

= exp
(

log n− n1−η+ε/4nε/12(1 − o(1))
)

6 exp
(

−n1−η+ε/4
)

.

(The last line follows since ε ≫ (log log n)/(log n) implies that

nε/12(1 − o(1)) > exp
(

(ε/12) log n− 1
)

> exp(2 log log n) = log2 n,

and so replacing ε/3 by ε/4 is enough to make the additive log n-term to be negligible.)
Hence, the probability that R belongs to Bin 2 is at most exp

(

−n1−η+ε/4
)

. On the
other hand, the number of possible choices for R is equal to

(

n

r

)

6 n(η−ε)n logn

di 6 exp

(

n(log n)2

di

)

6 exp
(

n1−η+(2 log logn)/(log n)
)

,
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and so Bin 2 is empty a.a.s. after applying the union bound. The result follows.

The next theorem deals with slightly smaller values of c. Since the diameter might
change from i + 1 to i + 2 in this situation, a more careful treatment is required.

Theorem 4.4. Suppose that log3 n ≪ d = p(n−1) = o(n). Let i > 1 be the largest integer
such that di = o(n), and let c = c(n) = di+1/n. Suppose that ec > (log n)/(3 log log n) (in
particular, c → ∞) and c 6 3 log n. Finally, let G = (V,E) ∈ G(n, p). Then, a.a.s.

β(G) >

(

i

i + 1
+ o(1)

)(

di

n
+ e−c

)−1

(log n).

Proof. The proof is similar to the one used to prove Theorem 4.3. This time the diameter
is a.a.s. at most i + 2 by Lemma 4.1 (in fact, it is a.a.s. equal to i + 2, provided that
c − 2 log n → −∞) so the proof has to be slightly adjusted. However, we will show that
a.a.s. for every set R of the desired cardinality there are at least two vertices at distance
i+ 1 from every vertex of R (it is clear that these vertices cannot be distinguished by R).

Let ω = ω(n) = min{(d/ log3 n)1/2, (log n)1/2} → ∞. We will consider two cases
independently.

Case 1 : Suppose first that e−cn = Adi for some A = A(n) = Ω(1) (A might tend to
infinity); in particular, c 6 log n. Fix η > 0 and take any R ⊆ V with

|R| = r :=
(

η − ω−1/2
)

ec(log n) = (1 + o(1))ηec(log n).

As before, (based on Lemma 2.1(i) applied independently r times, since d ≫ log3 n and
di−1/n = c/d2 = o(log−1 n)), we may assume that

|N(R, i− 1)| 6 (1 + o(log−1 n))rdi−1 =
(

η − (1 + o(1))ω−1/2
)

(n log n)/(Ad) = o(n),

since a.a.s. there is no R that violates this condition. Hence, after exposing edges from
S(R, i− 1) to S(R, i), we get that the probability that a vertex outside of N(R, i− 1) is
not adjacent to any vertex in S(R, i− 1) is

pℓ = (1 − p)|S(R,i−1)|

> exp
(

−
(

η − (1 + o(1))ω−1/2
)

A−1(log n)(1 + O(d/n))
)

= exp
(

−
(

η − (1 + o(1))ω−1/2
)

A−1(log n)
)

= exp
((

−η/A + (1 + o(1))ω−1/2/A
)

(log n)
)

,

where the third line follows from the fact that d/n = c/di 6 c/d ≪ log−2 n, and hence the
term exp(O((log n)d/n)) = exp(o(1)) = (1 + o(1)), and it is thus absorbed in the leading
factor (1 + o(1)).

Now, fix any v /∈ N(R, i). We will show that the probability of having all coordinates
equal to i + 1 is large enough and so with high probability there are at least two such
vertices, which implies that R is not a resolving set. For x ∈ R, let Ax = Ax(v) be
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the event that v ∈ S(x, i + 1). As before, it follows from Lemma 2.1(i) that we may
assume that |S(x, i)| = (1+O(ω−1 log−1 n))di (recall that ω 6 (d/ log3 n)1/2, and thus the
first and more important error term of Lemma 2.1(i) is bounded by O(1/

(

ω(log n)(3/2)
)

).
Since rdi = (1 + o(1))ηn log n/A could be of order at least n, it may happen that S(x, i)
overlaps with neighbourhoods of other vertices of R. However, this actually helps, since
the Ax’s (x ∈ R) are positively correlated (the fact that there is at least one edge from v
to S(x1, i) for some x1 ∈ R increases the chances that there is at least one edge from v to
S(x2, i) for some x2 ∈ R \ {x1}). Hence, the probability that v has all coordinates equal
to i + 1 is

pv = P

(

⋂

x∈R

Ax

)

>

(

1 − (1 − p)(1+O(ω−1 log−1 n))di
)r

=
(

1 − e−c+O(ω−1)
)r

=
(

1 − (1 + O(ω−1))e−c
)r

= exp
(

−(1 + O(ω−1))e−cr
)

= exp
(

−(η − (1 + o(1))ω−1/2)(log n)
)

,

where the second line follows, since e−c 6 (3 log log n)/(log n), and the second last equa-
tion follows since O((e−c)2r) = O(e−cr(log log n)/(log n)) = O(ω−1e−cr), and thus the
quadratic term O(x2r) coming from the approximation (1 − x)r = exp(−xr + O(x2r)) is
already absorbed in the given error term.

Note that pv is independent of pℓ, since for the bound on pv only previously unexposed
edges between vertices from S(R, i) and vertices not in N(R, i) are taken into account.
Hence, the expected number of vertices with all coordinates equal to i + 1 is

(1 + o(1))npℓpv > (1 + o(1)) exp
(

(1 − η(1 + 1/A) + (1 + o(1))ω−1/2(1 + 1/A))(log n)
)

> (1 + o(1))n1−ηA+1
A exp(log3/4 n)

> n1−ηA+1
A (log n)4,

where we used that ω 6 (log n)1/2 and (1 + o(1)) exp(log3/4 n) > log4 n. It follows from

Chernoff’s bound (2) that with probability at most exp(−n1−ηA+1
A (log n)3) there are less

than two such vertices, and hence this is also an upper bound for the probability that a
given R is a resolving set. Put η = ( i

i+1
)( A

A+1
). We get that a.a.s. there is no resolving

set of size r by the union bound, since the number of sets of cardinality r is at most

nr = exp(r log n) 6 exp(ηec(log n)2) = exp(O(n(log n)2/di)) = exp(O(n1−i/(i+1)(log n)2)),

where the last equality follows since di = Ω(n
i

i+1 ).
Case 2 : Using exactly the same argument, one can deal with the case e−cn ≪ di (but

still it is assumed that c 6 3 log n). We only point out the differences comparing to the
previous case. This time we take

r :=
(

η − ω−1/2
) n log n

di
= (1 + o(1))η

n log n

di
,
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and, using the same calculations as before, we may assume that

|N(R, i− 1)| 6
(

η − (1 + o(1))ω−1/2
)

(n log n)/d,

and hence we obtain

pℓ > exp
((

−η + (1 + o(1))ω−1/2
)

(log n)
)

.

Arguing as before, we obtain

pv >
(

1 − (1 + O(ω−1))e−c
)r

= exp

(

−O

(

e−cn

di

)

(log n)

)

> exp(−O(ω−1 log n)),

assuming additionally that ω−1 >
e−cn
di

, which we may, since e−cn
di

= o(1); that is, ω =
min{(d/ log3 n)1/2, (log n)1/2, diec/n} → ∞. As before, we conclude that

(1 + o(1))npℓpv > n1−η(log n)4,

and so the assertion holds for η = i
i+1

, completing the proof of our theorem.
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