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Abstract

We study a family of equivalence relations on Sn, the group of permutations
on n letters, created in a manner similar to that of the Knuth relation and the
forgotten relation. For our purposes, two permutations are in the same equivalence
class if one can be reached from the other through a series of pattern-replacements
using patterns whose order permutations are in the same part of a predetermined
partition of Sc.

When the partition is of S3 and has one nontrivial part and that part is of size
greater than two, we provide formulas for the number of classes created in each
previously unsolved case. When the partition is of S3 and has two nontrivial parts,
each of size two (as do the Knuth and forgotten relations), we enumerate the classes
for 13 of the 14 unresolved cases. In two of these cases, enumerations arise which
are the same as those yielded by the Knuth and forgotten relations. The reasons
for this phenomenon are still largely a mystery.

Keywords: pattern-replacement; permutations; equivalence classes

1 Introduction

In 1970, Donald Knuth discovered the so-called Knuth relation, using it as a tool for
studying the RSK (Robinson-Schensted-Knuth) correspondence [4]. The RSK correspon-
dence is a bijection between permutations in Sn (for fixed n) and pairs of standard Young
tableaux of the same shape with n cells. The Knuth relation, also known as the plactic
equivalence, was designed to connect two permutations exactly when the first tableau
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that each one is mapped to under the RSK correspondence is the same for both. How-
ever, over time, it would find applications not only to combinatorics, but also to abstract
algebra. The Knuth relation is particularly well-known for its aid in the proof of the
Littlewood-Richardson rule, an identity which can be interpreted as a multiplication rule
for Schur polynomials (among many other things). This proof was historically one of the
first proofs to be found for the rule.

In 2008, Novelli and Schilling brought to light the so-called forgotten relation [6],
originally discovered by Lascoux and Schützenberger in 1981, but heretofore ignored in
most existing literature (whence the name). The forgotten relation and the Knuth relation
share a common structure: Each of them is an equivalence relation on Sn (or, more
generally, on some set of words) which connects two permutations obtained from each
other by a rearrangement of three consecutive letters according to certain rules. The
forgotten relation also shares a common application with its fore-father. When either
of the forgotten or Knuth relations is forced on the free associative algebra, we get a
structure in which the elementary symmetric functions (appropriately defined) commute.
The similar structure and uses of these two relations inspired two research groups to
systematically analyze relations in the same family in [2] and [1].

There are several ways to set the rules that allow rearranging letters in a permutation.
The ones we are going to deal with allow the rearranging of more than three consecutive
letters, but the number of letters rearranged is fixed, and the rules which determine when
rearrangements are allowed to depend only on the relative order of the letters we are
rearranging and on the order in which we want to rearrange them. This is what [2] and
[1] call the ”only indices adjacent” case (or the P | | case). We formalize the rules into
the notion of a replacement partition (see the definitions below). Both [2] and [1] studied
only replacement partitions with one non-trivial part using patterns of size three. They
considered two problems: First, how many equivalence classes does a given such relation
subdivide Sn into? Second, how big is the class containing the identity? Along with
solving the second problem, they were able to solve all but seven cases of the first, as
long as the nontrivial part of the replacement partition is required to be of size greater
than two. We extend their work by solving the remaining seven cases (Section 2). We
furthermore study a family of relations more closely related to the Knuth and forgotten
relations, by considering replacement partitions of S3 having two non-trivial parts, each
of size two. We enumerate the classes in all but one of the unresolved cases (Section
3). Finally, in Section 4, we study several general results concerning things such as a
connection between pattern-avoidance and the enumeration of equivalence classes. These
results are sometimes cited in proofs from previous sections. We conclude with comments
on methodology and future work (Section 5).

Before we present our results, we establish some conventions. Most of these formalize
conventions made in [2].

Definition 1.1. A word is a finite, possibly empty sequence of positive integers. The
elements of a word are called letters. We denote the i-th letter of word w as wi, with w1

as the first letter.
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Definition 1.2. We regard any permutation of {1, 2, . . . , n} as a word (by writing it in
one-line notation). Conversely, given a word w with no two letters equal, we define the
order permutation of w as the unique permutation π ∈ Sn (where n is the length of w)
such that for any i and j, we have πi < πj if and only if wi < wj. This permutation π is
also known as the standardization of w.

For example, the order permutation of 425 is 213. The notion of an order permutation
is more generally defined for any words (possibly with equal letters), which requires a
subtler definition, but we are never going to need it in this generality.

Definition 1.3. If a word w has order permutation w′, then we may simply say that w
forms the permutation w′.

Definition 1.4. A factor of a permutation is a subsequence of adjacent letters in the
permutation.

Note that we may treat a factor either as a word or as its order permutation.

Definition 1.5. The position parity of a letter in a permutation is the parity of the
position of the letter.

For example, the first letter in a permutation has odd position parity.
Throughout the paper, we may sometimes use notation like “f(n < 3) = n+ 2” which

is just shorthand for “when n < 3, f(n) = n+ 2”.

Definition 1.6. If a and b are two words, then the concatenation of a with b is defined
as the word obtained by attaching b to the end of a. It is denoted by ab or a.b. (Note:
If π is a permutation of size n, then πn denotes the concatenation π.n, not the number
π (n).)

For example, the concatenation of 21 with 72 is 2172.

Definition 1.7. Let π ∈ Sn. Let w be a word with no two letters equal. If we can write
w in the form aub for some three (possibly empty) words a, u and b such that u has order
permutation π, then we say that u is a π in w (or a π pattern in w). We say that w
avoids π if there is no π in w.

For example, 574 is a 231 in 2657431 because the order permutation of 574 is 231.
However, 3124 avoids 231.

We now will define the equivalence relations that we are going to study.

Definition 1.8. Let k ∈ N. A replacement partition of Sk is a set partition of the
symmetric group Sk.

Definition 1.9. Given a replacement partition K of Sk and a positive integer n, the K-
equivalence on Sn is defined as the equivalence relation on Sn generated by the following
requirement: If φ ∈ Sn and ψ ∈ Sn are such that φ = aub and ψ = avb for some words a,
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b, u and v, where u and v have length k, and the order permutation of u lies in the same
part of K as the order permutation of v, then we say that φ is equivalent to ψ.

Moreover, in this case, we say that ψ results from φ by a K-transformation, or more
precisely, ψ results from φ by a transformation p → q, where p is the order permutation
of u and q is the order permutation of v.

When K is clear from the context, we abbreviate “K-equivalence” as “equivalence”,
and “K-transformation” as “transformation”.

We also write φ ≡ ψ for “φ is equivalent to ψ”.

Note that if two permutations are equivalent, we may say that they are reachable from
each other. This tends to be used when we are providing the manner through which we
can reach one from the other.

What we call “K-equivalence” is denoted as “K | |-equivalence” in [2].

Example: Let n = 5, k = 3, and K = {{123, 321} , {132, 231} , {213} , {312}}. We
will later abbreviate this by K = {123, 321} {132, 231}, leaving out the outer brackets
and the one-element parts of the partition. Then, the permutation 15324 ∈ S5 is K-
equivalent to 12354 ∈ S5 (because 15324 = aub and 12354 = avb with a = 1, u = 532,
v = 235 and b = 4, and the order permutation of 532 lies in the same part of K as the
order permutation of 235). More precisely, 12354 results from 15324 by a transformation
321 → 123. Similarly, 12354 is equivalent to 12453 (here, a = 12, and b is the empty
word), and 12453 results from 12354 by a transformation 132 → 231. Combining these,
we see that 15324 is equivalent to 12453, although 12453 does not directly result from
15324 by any transformation.

Definition 1.10. Given a replacement partition K and a positive integer n, the K-
equivalence on Sn partitions Sn into equivalence classes. We will briefly refer to these
equivalence classes as classes. A class is called trivial if it consists of one element only.

Definition 1.11. Let K be a replacement partition. If w is a word with no two letters
equal, then a hit (or more precisely, a K-hit) in w is a word u such that w = aub for some
words a and b, and such that the order permutation of u lies in a nontrivial part of K.
A word with no two letters equal is said to avoid K if it contains no hit, i.e., if it avoids
every permutation in every nontrivial part of K. Otherwise it is said to be non-avoiding,
or, equivalently, a non-avoider (with respect to K).

Observe that each permutation that avoids K forms a trivial class (with respect to
the K-equivalence), whereas non-avoiders lie in nontrivial classes.

We will occasionally refer to the elements of K as patterns, hoping that no confusion
with the notation of “π pattern in w” can arise.

If two permutations are connected by a transformation, then we say the letters in the
hit used in the transformation are involved in the transformation, even if they are static
in the transformation.

Figure 1 shows the number of classes created in Sn by the replacement partitions
considered in this paper. Each of these results are proven in the following two sections.
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replacement partition number of classes in Sn

{213, 231, 132} 2n−2 + 2n− 4
{123, 132, 231} 2n−1

{123, 132, 321} (n− 1)!! + (n− 2)!! + n− 2
{123, 132, 312} f(n > 5) = f(n− 1) + (n− 2) · f(n− 2) + 1
{123, 132, 213, 231} n
{123, 132, 231, 321} 2 for n > 3
{213, 132, 231, 312} 3
{123, 132}{312, 321} 2n−1

{123, 132}{213, 231} 2n−1

{123, 231}{132, 321} 2n−1

{132, 312}{321, 213} (n2 + n)/2− 2
{123, 231}{213, 132} n2 − 3n+ 4
{123, 321}{213, 231} 3 for n > 5
{123, 132}{231, 312} 3 · 2n−3 + n− 2 for n > 5
{123, 132}{213, 321} Sum of the first n− 1 Motzkin numbers
{123, 132}{213, 312} f(n > 3) = f(n− 1) + (n− 1) · f(n− 2)

{123, 321}{132, 213}
(

n
bn/2c

)
+
(

n−2
b(n−2)/2c

)
+ 3 for n > 4

{123, 231}{321, 213} f(n > 5) =

{
3n, if n is even

3n− 1, if n is odd

{123, 321}{132, 231}
l∑

x=1

x! ·
(
n−x−1
h−1

)
+

h∑
x=1

x! ·
(
n−x−1
l−1

)
,

where l = bn/2c, h = dn/2e.

{123, 231}{213, 312} g(n, k) =



1
if n = 1 or

n− 2k + 1 = 0,
b(n+1)/2c∑

j=1

g(n− 1, j) if k = 1,

n−k∑
x=k−1

n−k−x∑
j=1

(
x−1
k−2

)
· g(n− 2k + 1, j) otherwise.

f(n) =
bn/2+1c∑

k=1

g(n+ 1, k) + n− 2

Figure 1: The number of classes created in Sn by various replacement partitions of S3.
Unless otherwise specified, n > 3. In the table, f(n) equals the number of classes created
and is used for recursive formulas.
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2 Single Replacements

In this section, we consider the number of classes created in Sn by replacement partitions
of S3 with exactly one nontrivial part. This problem was previously addressed in some
cases by [2] and [1]. We provide formulas for the number of classes in all cases where the
nontrivial part of the replacement partition is of size greater than two, apart from those
that have been previously solved.

When considering replacement partitions, it is important to note that some relations
are equivalent to others. In fact, let w be the permutation k(k − 1) . . . 1 ∈ Sk (where k
is the size of the permutations in the replacement partition, and needs not be 3 in this
argument). Without changing the structure of the classes, one can either replace each
pattern π in the replacement partition by π ◦w = πkπk−1 . . . π1, or replace each pattern π
in the replacement partition by w ◦ π = (k− π1 + 1)(k− π2 + 1) . . . (k− πk + 1). By these
two operations (which generate a Klein four-group if k > 3), the set of all replacement
partitions of Sk is subdivided into orbits (mostly of size 4, but occasionally smaller), and
if we can count the number of classes which are generated in Sn by one partition in each
orbit, we automatically obtain the same number for all the other partitions in all of the
orbits. Noting this, we will only provide results for one replacement partition per orbit.

The following subsections are concerned with one replacement partition each. In each
subsection, the replacement partition K is to be understood to be the partition mentioned
in the title of the subsection.

2.1 {123,132,321}-Equivalence

Note that in this section, we use several results and definitions which we state in Subsection
4.3.

Let k ∈ {1, 2, . . .}. We say that a word w satisfies property Ak if there exists a strictly
increasing sequence (i1, i2, . . . , ik) of integers of equal parity satisfying

wi1 = k, wi2 = k − 1, wi3 = k − 2, . . . , wik = 1

(i.e., satisfying wij = k − j + 1 for every j ∈ {1, 2, . . . , k}).

Lemma 2.1. Property Ak is invariant under the {123, 132, 321}-equivalence. The position
parity of the letter 1 is also invariant.

Proof. The second statement is trivial to see.
Hence, we need to show that if a permutation in Sn satisfies property Ak for some k,

then every permutation equivalent to it also satisfies Ak for the same k. Indeed, whenever
we perform one of the transformations 123 ↔ 132, 132 ↔ 321, and 321 ↔ 123, the
position parity of a letter i does not change as long as every letter smaller than i lies to
the right of i and has the same position parity as i. But as long as property Ak holds,
this is guaranteed for any of the letters k, k − 1, . . ., 1. So, the position parity of letters
6 k cannot change under any of these transformations as long as Ak holds. Moreover, as
long as Ak is satisfied, for every j ∈ {1, 2, . . . , k − 1}, the letter j is at least two positions
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to the right of the letter j + 1 in our permutation (since i1, i2, . . . , ik are of equal parity
and increase), and thus it cannot ”jump” over j + 1 in a single application of one of the
transformations 123 ↔ 132, 132 ↔ 321, 321 ↔ 123 1, i.e., it stays to the right of j + 1.
Thus the order of the letters k, k − 1, . . ., 1 in our permutation does not change. Hence,
after we apply a transformation, the permutation still satisfies property Ak for the same
k.

Before continuing, we will first define a set Bn, Cn ⊂ Sn.

Definition 2.2. The permutation bn ∈ Sn is (1, 2, . . . , n−2)◦(1, 2, . . . , n−4)◦(1, 2, . . . , n−
6) ◦ · · · , where the product ends with (1) if n is odd and with (1, 2) if n is even.

For example, b3 = 123, b4 = 2134, b5 = 23145, and b6 = 324156.

Definition 2.3. We say that B2 = {}. Then, Bn>2 is the set containing the following:

1. wn for each w ∈ Bn−1;

2. bn.

For example, B4 = {1234, 2134}, B5 = {12345, 21345, 23145},
and B6 = {123456, 213456, 231456, 324156}. Note that Bn has n− 2 elements.

Definition 2.4. We define Cn>2 = Bn \ {bn} along with the permutation

(1, 2, . . . , n) ◦ (1, 2, . . . , n− 4) ◦ (1, 2, . . . , n− 6) ◦ · · ·

in Sn, where the product ends with (1) if n is odd and with (1, 2) if n is even.

For example, C6 = {123456, 213456, 231456, 324561}.

Lemma 2.5. Let w, w′ be non-avoiding permutations in Sn. If w and w′ have property
Ak for the same k and each has 1 in the same position parity, then w ≡ w′ under the
{123, 132, 321}-equivalence.

Proof. We will prove this inductively, with an inductive base case of n 6 5. Let n > 5.
Noting the inductive hypothesis, Lemma 2.1 implies that Ln−1 = Bn−1 and Rn−1 = Cn−1
(as Ln−1 and Rn−1 are defined in Subsection 4.3). Since n > 5, by Proposition 4.16,
every non-avoiding permutation in Sn is equivalent to some middled permutation. By
Theorem 4.17, this implies that every permutation in Sn is equivalent to some element of
Cn. Lemma 2.1 leads us to conclude that thus, the k for which Ak holds along with the
position parity of the letter 1 form a complete invariant for non-avoiding permutations in
Sn under the {123, 132, 321}-equivalence.

1In fact, if a letter is at least two places to the right of another letter, then the only way it can jump
over that other letter in one single application of one of these transformations is when these two letters
are the last and the first letter of a hit. But the letters j and j + 1 cannot be the last and the first letter
of any hit, respectively.
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Remark 2.6. Noting Lemmas 2.1 and 2.5, we see that every non-trivial class in Sn under
the equivalence has exactly one representative in Bn. When given a non-avoider w ∈ Sn,
the Bn-representative of its class can be easily found arithmetically by checking which of
the relations Ak are satisfied for w and checking the position parity of the letter 1 in w.

Proposition 2.7. Let n > 5. In Sn, there are n − 2 non-trivial classes under the
{123, 132, 321}-equivalence.

Proof. This follows from Lemma 2.1 and Lemma 2.5.

Proposition 2.8. Let n > 5. There are (n− 1)!! + (n− 2)!! + n− 2 classes in Sn under
the {123, 132, 321}-equivalence.

Proof. By Proposition 2.7, there are n− 2 non-trivial classes. By Theorem 3 of [3], there
are (n− 1)!! + (n− 2)!! trivial classes.

Remark 2.9. Proposition 2.8 is of particular interest because [2] collected computational
data in an attempt to enumerate the {123, 132, 321}-equivalence, but was unable to find
a formula for the number of classes in Sn. Proposition 2.8 provides this formula.

2.2 {123,132,231}-Equivalence

Definition 2.10. Let w be a word with no repeating letters. A left to right minimum of
w is a letter which is smaller than each letter to its left in w.

Definition 2.11. Let w be a word with no repeating letters. If x is a letter of w, then
the x-min of w is the first letter to x’s right that is a left to right minimum. The x-min
needs not exist for all x.

Definition 2.12. We call a letter x of a word w (with no repeating letters) odd-tailed if
x is a left to right minimum and the x-min exists and is of different position parity than
x.

Lemma 2.13. Let x be an odd-tailed letter of a permutation z ∈ Sn. Then, x is odd-tailed
in any permutation equivalent to z under the {123, 132, 231}-equivalence.

Proof. Let x be an odd-tailed letter of the permutation z in Sn. Let y be the x-min.
Notice that by their definitions, x is less than everything to its left and y is also less
than everything to its left (including x). As a consequence, x and y cannot be adjacent
letters in any 123 pattern, 132 pattern, or 231 pattern, and because x and y have different
position parity, they can not be in the same hit.

In a hit of the form 123, the only possible position for x is the first (since x is a left to
right minimum). The same holds for a hit of the form 132. In a hit of the form 231, the
first and the third positions are possible candidates for containing left to right minima,
but x cannot be in the first (because then, the x-min would be in the third place, but
that contradicts the fact that the x-min is of different position parity than x). Hence, if
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x lies in a hit, then x is acting as the 1 in the hit. So, after rearrangement, x is still a left
to right minimum and maintains its position parity.

What remains to be shown is that the position parity of the x-min is unchanged after
a transformation. This is trivial if y is not in the hit being transformed. If y is in the
hit, then there are three subcases. If y is the final letter in the hit then the hit must
be of the form 231, and after any rearrangement, y is still the x-min and has the same
position parity. We know that y can not be the second letter in a hit because a left to
right minimum can never be the second letter in a hit. The final possibility is that y is
the first letter in the hit. Then, any rearrangement of the hit is either 123 ↔ 132, in
which case y remains the x-min with the same position, or is one of the rearrangements
231↔ 123 and 231↔ 132. In the latter scenario, the new x-min is either the first or the
final letter in the hit after the rearrangement and thus has the same position parity as y
does in z.

Definition 2.14. A permutation is a V-permutation if its letters decrease until the letter
1 and then increase until the end of the permutation.

For example, 531246 is a V-permutation in S6. Note that there are 2n−1 V-permuta-
tions in Sn because for each letter other than 1, we can only choose if it is in the decreasing
part or the increasing part of the permutation.

Proposition 2.15. Let n > 3. In Sn, 2n−1 classes are created under the {123, 132, 231}-
equivalence.

Proof. We will first prove that permutations in Sn are each equivalent to some V-permut-
ation by inducting on n with a trivial base case of n = 3. Take w ∈ Sn. If n is in the
first position, leave it there. Otherwise, slide n to the final position through repeated
applications of 132 → 123 and 231 → 123. Applying the inductive hypothesis to the
other n−1 letters, we reach a V-permutation. Since there are 2n−1 V-permutations, there
are at most 2n−1 classes.

Note that the set of odd-tailed letters in a V-permutation is exactly the set of letters to
the left of the letter 1. (They are odd-tailed because for a letter x to the left of 1, x is a left
to right minimum and the x-min is the letter directly to x’s right and thus is of different
position parity than x.) This set is distinct for each V-permutation, so by Lemma 2.13,
none of the V-permutations are equivalent to each other. Hence, there are 2n−1 classes,
each determined by the set of odd-tailed letters in each of its permutations.

Remark 2.16. For n > 5, we can actually prove the above proposition without using any
knowledge about invariants. In fact, the proposition simply falls from Theorem 4.7 (stated
in Subsection 4.1). However, this proof provides far less insight into the workings of the
equivalence than does the above proof.

2.3 {123,132,312}-Equivalence

In this subsection, let f(n) = the number of classes created in Sn under the {123, 132, 312}-
equivalence.
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Lemma 2.17. Every permutation not ending with 1 is equivalent to a permutation of the
form . . . 1j for some j under the {123, 132, 312}-equivalence.

Proof. Such a permutation is reached through repeated applications of 123 → 312 and
132→ 312 using the actual letter 1.

Lemma 2.18. Permutations of the form . . . 12 are equivalent under the {123, 132, 312}-
equivalence.

Proof. Let w = 345 . . . 12 where the letters not shown are in increasing order. We will
show that w is equivalent to an arbitrary permutation x of the form . . . 12. The base cases
of S3 and S4 for the following induction are easy to show computationally. If the lemma
holds for Sn−1, then from x, we can rearrange the right-most n − 1 letters however we
want, while not moving the final two. We arrange them to be in increasing order, arriving
at x′. Then, we rearrange the final three letters of x′ with 312→ 123, arriving at x′′ where
1 and 2 are the actual letters 1 and 2 and 3 is not the actual letter 3 (because n > 4).
Performing the inductive hypothesis on the left-most n− 1 letters of x′′, the actual letter
3 is placed in the left-most position and we get w′′′ (requires n > 5). Rearranging the
final 3 letters of w′′′, 123 → 312, we reach y. Finally, applying the inductive hypothesis
to the right-most n− 1 letters of y, we reach w.

Corollary 2.19. Permutations of the form 1 . . . are equivalent to each other under the
{123, 132, 312}-equivalence.

Proof. By Lemma 2.17, every permutation of the form 1 . . . is equivalent to a permutation
of the form . . . 1j for some j. This j must be 2 (since the smallest letter to the right of
1 never changes, and that smallest letter is 2 in the original permutation). Thus every
permutation of the form 1 . . . is equivalent to a permutation of the form . . . 12. Since any
two permutations of the latter kind are equivalent (by Lemma 2.18), so must be any two
permutations of the former kind.

Lemma 2.20. No two permutations of the form . . . 1x and . . . 1y where x 6= y are equiv-
alent under the {123, 132, 312}-equivalence.

Proof. This falls easily from the fact that the smallest letter to the right of 1 never changes
under the equivalence.

Lemma 2.21. Let a 6= 2 be a letter. Let x and y be equivalent permutations ending
with 1a. Let x′ and y′ be the permutations made from the first n − 2 letters of x and y
respectively. Then, x′ is equivalent to y′ under the {123, 132, 312}-equivalence.

Proof. Let x, y, x′, and y′ be as described. Consider a sequence of permutations that
starts with x and ends with y, with each pair of consecutive permutations in the sequence
connected by a single transformation. In such a sequence, going from one permutation
to the next, a can never pass 1 and 1 can never pass 2 because the smallest letter to the
right of 1 can not change. Note that since 1 and 2 can never be in the same hit because
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in the hits considered, 1 is always to the right of 2. Thus neither 1 nor a can be in the
same hit as any letter that is to the left of 2. Consider two consecutive permutations in
the sequence, t and w. Let t′ and w′ be t and w respectively with 1 and a slid to the
two right-most positions as 1a. If the transformation between t and w involves either
1 or a, then it involves letters only to the right of the letter 2. However, these letters
(excluding 1 and a) can be rearranged freely in t′ and w′ by Corollary 2.19. Thus t′ and w′

are reachable from each other using transformations that do not involve 1 or a. This, of
course, also holds if the transformation between t and w involves neither 1 nor a (because
then, we can simply apply the same transformation to get w′ from t′). Thus there exists
a sequence of permutations in Sn−2 starting with x and ending with y, with each pair
of consecutive permutations in the sequence connected by transformations which do not
involve the final two letters 1a. Hence, x′ ≡ y′.

Lemma 2.22. Let a 6= 2. Permutations of the form . . . 1a break into f(n − 2) classes
under the {123, 132, 312}-equivalence for n > 5.

Proof. They clearly fall into at most f(n− 2) classes. By Lemma 2.21, there are at least
f(n− 2) classes.

Theorem 2.23. f(n) = f(n − 1) + (n − 2) · f(n − 2) + 1 when n > 5. As base cases,
f(3) = 4, and f(4) = 9.

Proof. Assume n > 5 (The lower cases are computed manually). The permutations
ending with 1 clearly fall into f(n − 1) classes because the final letter is immobile. By
Lemma 2.17, every permutation not ending with 1 is reachable from . . . 1j for some j
and by Lemma 2.20, this j is unique. Permutations reachable from . . . 12 fall into 1
class by Lemma 2.18. Permutations reachable from . . . 1j where j 6= 2 fall into f(n − 2)
classes for a given j by Lemma 2.22. There are n − 2 possibilities for such a j. Thus
f(n) = f(n− 1) + (n− 2) · f(n− 2) + 1 when n > 5, f(3) = 4, and f(4) = 9.

Remark 2.24. The referee for this paper made the following interesting observation. Using
the generating function f(x) =

∑
n>4 f(n)xn−1/(n− 1)!, we can obtain that

d/dx(f(x)− 2x2 − 1.5x3) = f(x)− 2x2 + xf(x) + (ex − 1− x− x2/2),

which implies that

f (x) =
(
−e−x−1/2x

2 − 2 e−x−1/2x
2

x+ 1/2
√
π
√

2erf
(

1/2
√

2x
)

+ 1
)

e1/2x(2+x).

2.4 {213,132,231}-Equivalence

Definition 2.25. In this subsection, let f(m) = the number of non-trivial classes created
in Sm under the {213, 132, 231}-equivalence. Let g(m) = the number of trivial classes
created under the {213, 132, 231}-equivalence in Sm.

Definition 2.26. A permutation in Sn is reductive if it satisfies the following three con-
ditions.
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• it does not start with n− 2;

• it ends with (n− 1)n;

• its left-most n− 1 letters are non-avoiding.

Definition 2.27. A permutation in Sn is decent if it satisfies the following two conditions.

• it starts with n− 2;

• its right-most n − 1 letters are non-avoiding, do not begin with n − 1, and do end
with n.

Lemma 2.28. Let n > 3. All non-avoiding permutations not beginning with n − 1 but
ending with n are equivalent in Sn under the {213, 132, 231}-equivalence.

Proof. We will prove this inductively using the easily checked base case of S4. Let n > 5
and assume that the result holds for Sn−1. Note that all reductive permutations are
reachable from each other by the inductive hypothesis applied to the left-most n − 1
letters.

Let w ∈ Sn be a non-avoiding permutation that is not beginning with n− 1 and that
ends with n. We will prove that w is equivalent to a reductive permutation. Since reduc-
tive permutations are all equivalent, this will complete the proof. Applying repeatedly
either 132→ 213 or 231→ 213 to w, we place n− 1 in the second to final position (while
keeping n in the final position). If the resulting permutation does not begin with n − 2,
then it is reductive (because its left-most n−1 letters are clearly non-avoiding, given how
we constructed it) and we are done. In the remaining case, the resulting permutation y
begins with n− 2.

Note that y begins with n− 2 and ends with (n− 1)n. Since y begins with n− 2 and
is of size > 5, the first three letters of y form a 312 or 321 and thus do not form a hit.
Since y is non-avoiding and cannot begin with a hit, the right-most n−1 letters of y must
be non-avoiding. Thus y is decent. Any two decent permutations are equivalent to each
other by the inductive hypothesis applied to the right-most n − 1 letters. Thus we only
need to show that some decent permutation is equivalent to a reductive permutation.

Consider the permutation w = (n− 2)1(n− 1)2n . . .. Note that the letters not shown
are those between 2 and n− 2, and are in increasing order from left to right. Sliding n to
the final position through repeated applications of 132 → 213, and then sliding (n − 1)
to the second to final position in the same manner, we reach w′ = (n− 2) . . . 21(n− 1)n.
One can easily check that w′ is decent. From w, we can obtain w′′ = 21(n− 1)n(n− 2) . . .
in the following way.

(n− 2)1(n− 1)2n . . .→

(n− 2)1(n− 1)n2 . . .→

1(n− 1)(n− 2)n2 . . .→

1(n− 1)2n(n− 2) . . .→
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21(n− 1)n(n− 2) . . .

From w′′, we can first slide n to the final position through repeated applications of 231
or 132 → 213, and then slide n− 1 to the second to final position in the same manner to
get w′′′. Note that w′′′ begins with the letter 2, ends with the letters (n − 1)n, and has
a hit in the penultimate three letters. Hence, w′′′ is a reductive permutation and we are
done.

Lemma 2.29. Let n > 3. All non-avoiding permutations of the form (n− 1)j . . . n with
j 6= n− 2 are equivalent in Sn under the {213, 132, 231}-equivalence. (The letter j is not
fixed here.)

Proof. Let w be such a permutation in Sn>3. Since w begins with n − 1, ends with n,
and is of size > 4, the first three letters of w form a 312 or 321 and thus don’t form a hit.
Since w is non-avoiding and cannot begin with a hit, the right-most n − 1 letters of w
must be non-avoiding. Thus they can be rearranged as the identity with n− 2 and n− 3
swapped (by Lemma 2.28).

Lemma 2.30. Let n > 3. All non-avoiding permutations of the form (n − 1) . . . n are
equivalent in Sn under the {213, 132, 231}-equivalence.

Proof. We will prove this inductively. Assume it is true for Sn−1. The base cases of S4

and S5 can be easily checked computationally. By Lemma 2.29, all such permutations
whose second letters are not n − 2 are equivalent. Let w be such a permutation whose
second letter is n − 2. Note that w has the form (n − 1)(n − 2) . . . n. By the inductive
hypothesis (applied to the right-most n− 1 letters), w is equivalent to any non-avoiding
permutation of the form (n− 1)(n− 2) . . . n.

One such permutation is y = (n − 1)(n − 2) . . . 1n. Here, the letters not shown are
the letters between 1 and n − 2 and are in increasing order from left to right. Through
repeated applications of 213→ 132, we can reach w′ = (n− 1)(n− 2)1n . . .. From w′, we
reach w′′ = (n− 1)n1(n− 2) . . . in the following manner.

(n− 1)(n− 2)1n . . .→

(n− 1)1n(n− 2) . . .→
(n− 1)n1(n− 2) . . .

From w′′, we may first slide n− 2 to the final position through repeated applications
of 132→ 213, and then slide n to the final position through repeated applications of 132
or 231 → 213. This yields a permutation which is non-avoiding, begins with n− 1, ends
with n, and has its second letter 6= n−2. Thus all non-avoiding permutations of the form
(n−1)(n−2) . . . n are equivalent to a non-avoiding permutation of the form (n−1)j . . . n
for some j 6= n − 2. Hence, by Lemma 2.29, all non-avoiding permutations of the form
(n− 1) . . . n are equivalent.

Definition 2.31. A permutation in Sn will be called fronted if it starts either with n− 1
or with jn(n− 1) for some j 6 n− 2.
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Lemma 2.32. Any permutation starting with n − 1 is only equivalent to permutations
where n− 1 is in the first or third position under the {213, 132, 231}-equivalence.

Proof. It is easy to see that any transformation, applied to a fronted permutation, yields
another fronted permutation. Hence, any fronted permutation is equivalent only to fronted
permutations. In particular, any permutation starting with n − 1 is only equivalent to
fronted permutations, and these have n− 1 either in the first or in the third position.

Lemma 2.33. Let n > 3. Non-avoiding permutations not beginning with n in Sn fall into
2 non-trivial classes under the {213, 132, 231}-equivalence.

Proof. From an arbitrary non-avoiding permutation not beginning with n, we can move n
to the right-most position through repeated applications of 132 or 231→ 213. By Lemmas
2.28 and 2.30, we have established that non-avoiding permutations not beginning with n
break into at most two classes: those containing permutations of the form (n − 1) . . . n,
and those containing permutations not beginning with n − 1 but ending with n. Noting
Lemma 2.32, and that there exists a non-avoiding permutation of the form (n − 1) . . . n
as well as one which is non-fronted and ending with n, they break into exactly two classes
in Sn for n > 3.

Proposition 2.34. f(n) = f(n− 1) + 2 for n > 3.

Proof. We will calculate f(n). Consider the non-avoiding permutations that have n as
the first letter. These clearly break into f(n− 1) nontrivial classes because the first letter
can be ignored. By Lemma 2.33, the remaining non-avoiding permutations fall into two
classes.

Lemma 2.35. If the n-th letter of an avoiding permutation in Sn is smaller than the
(n− 1)-th one, then the permutation must be the decreasing permutation.

Proof. Let w ∈ Sn be an avoiding permutation. Whenever, for some i ∈ {2, 3, . . . , n− 1},
the (i+ 1)-th letter of w is smaller than the i-th one, it is clear that the i-th letter must
be smaller than the (i − 1)-th one (since otherwise it would give a 132 or a 231 hit,
contradicting the avoidance). By applying this observation iteratively, we see that if the
n-th letter of w is smaller than the (n−1)-th one, then the (n−1)-th one must be smaller
than the (n − 2)-th one, which in turn must be smaller than the (n − 3)-th one, etc..
Altogether, this yields that, if the n-th letter of w is smaller than the (n− 1)-th one, the
permutation w must be decreasing.

Proposition 2.36. g(n) = g(n− 1) · 2− 1 for n > 3.

Proof. We will calculate g(n) for n > 3. Consider the avoiding permutations in Sn that
have n as the first letter. There are clearly g(n − 1) of them because the first letter can
be ignored. Now, consider the permutations that have n not as the first letter but are
avoiding. Then, n must be the final letter because otherwise there is a 132 or 231 in the
permutation. Ignoring the letter n, these permutations are avoiding permutations from
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Sn−1. The converse of this, however, is not true, but instead we have something more
delicate: If we take an arbitrary permutation w from Sn−1 and append n to the end, then
the resulting permutation is still avoiding if and only if the (n−1)-th letter of w is greater
than the (n − 2)-th one. This requirement holds in all but one case (since Lemma 2.35,
applied to Sn−1, shows that if the (n − 1)-th letter of an avoiding permutation in Sn−1
is smaller than the (n − 2)-th one, then this permutation must be (n − 1)(n − 2) . . . 1).
Hence, g(n) = g(n− 1) · 2− 1 for n > 3.

Theorem 2.37. The number of classes created in Sn under the {213, 132, 231}-equivalence
is 2n−2 + 2n− 4.

Proof. Let n > 3, noting that the case of n = 3 is trivial. Because f(3) = 1, Proposition
2.34 shows that f(n) = 2 · n − 5. Because g(3) = 3, Proposition 2.36 shows that g(n) =
2n−2 + 1. Thus the number of classes created in Sn is 2 · n− 5 + 2n−2 + 1 = 2n−2 + 2n− 4
for n > 3.

2.5 {213,132,231,312}-Equivalence, {123,132,213,231}-Equiva-
lence, and {123,132,231,321}-Equivalence

In this subsection, we reference results from Section 4.

Proposition 2.38. There are two classes in Sn under the {123, 132, 231, 321}-equivalence
for n > 4, one containing permutations equivalent to the identity, and one containing
permutations equivalent to the identity with 1 and 2 swapped.

Proof. Note that the position parity of 1 is invariant under the equivalence. Let xn,
yn be the identity and the identity with 1 and 2 swapped in Sn. Assume the result
inductively, with an inductive base case of S4, S5. It is not hard to see that in Sn>5, every
permutation is middled. By the inductive hypothesis along with the noted invariance,
we may conclude that Ln−1 = Rn−1 = {xn−1, yn−1}. By Theorem 4.17, this implies that
each permutation in Sn is equivalence to xn or yn. This along with the noted invariance
implies the proposition.

Proposition 2.39. There are n classes created in Sn under the {123, 132, 213, 231}-
equivalence.

Proof. We will prove this by inducting on n. The base case of S3 can easily be shown
computationally. Assume the result holds for Sn−1. Note that if the left-most letter of a
permutation is n, then n is stationary under the relation. Hence, the permutations starting
with n are clearly broken into n− 1 classes by the inductive hypothesis. Proposition 4.1
of [1] shows that the remaining permutations are equivalent.

There is a slightly cooler proof of the above proposition which goes as follows. By The-
orem 4.8, the {123, 132, 213, 231}-equivalence and the {123, 132, 213, 231} · ·· · -equivalence
are the same in Sn>4. By Theorem 4.7, there are n equivalence classes in Sn under the
{123, 132, 213, 231} · ·· · -equivalence for n > 5 (the smaller cases of n can be shown compu-
tationally).
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Proposition 2.40. Sn breaks into three classes under the {213, 132, 231, 312}-equivalence.

Proof. There are always two avoiding permutations. Assume that the remaining permu-
tations are each equivalent in Sn−1 for n > 5 (the base cases are easy to check). By
Proposition 4.16, every non-avoiding permutation in Sn is equivalent to a middled per-
mutation. By Theorem 4.17, every non-avoiding permutation in Sn is thus equivalent to
the identity with n and n− 1 swapped.

3 Double Replacements

In this section, we consider the classes created under replacement partitions of S3 with two
nontrivial parts, each of size two. Both the forgotten and Knuth relations are members
of this family of relations; they are the main inspiration for this direction of work. We
find the number of equivalence classes created in Sn in all but one of the unresolved cases
(up to symmetry). In the final case, the {231, 132}{213, 312}-equivalence, we provide
computational data for the use of future authors. When convenient, we also calculate the
size of the class containing the identity.

Surprisingly, class enumerations equal to those yielded by each of the Knuth relation
and forgotten relation show up in our study of the {123, 132}{213, 312}-equivalence and
{123, 231}{213, 132}-equivalence respectively. The reason for this is still largely a mystery.

The following subsections are concerned with one replacement partition each. In each
subsection, the replacement partition K is to be understood to be the partition mentioned
in the title of the subsection (unless otherwise specified).

3.1 {312,321}{123,132}-Equivalence

Lemma 3.1. (a) Letters to the right of 1 can be rearranged freely under the
{312, 321}{123, 132}-equivalence. (b) Letters to the right of n can be rearranged freely
under the {312, 321}{123, 132}-equivalence.

Proof. We first prove (a). It is sufficient to prove that in Sn, all permutations of the form
1 . . . are equivalent to the identity. We will prove this by induction. The base case of S3 is
trivial. Assume that we have shown the result to hold for Sn−1. Let w be a permutation
beginning with 1 in Sn. We will prove that w is reachable from the identity. We consider
two cases:

1. The final letter of w is 2.

2. The final letter of w is not 2.

We deal with Case 2 first. In this case, the letter 2 is among the first n− 1 positions
of w. Applying the inductive hypothesis to the first n− 1 letters of w, we rearrange the
first n− 1 letters as the identity, yielding w′. Note that the first two letters of w′ are 12.
Thus applying the inductive hypothesis to the final n − 1 letters of w′, we arrive at the
identity.
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Now, we consider Case 1. In this case, the final letter of w is 2. By the inductive
hypothesis, we can rearrange the first n−1 letters of w to be the identity with the final two
letters swapped. We apply 321 → 312 to the final three letters, yielding a permutation
starting with 1 but not ending with 2. Hence, we can proceed as in Case 2, and conclude
that in Case 1, w is equivalent to the identity.

Now, we note that (b) falls from (a) because whenever two permutations x and y are
equivalent under the {312, 321}{123, 132}-equivalence, so are their complements. (The
complement of a permutation a1a2 . . . an is defined as the permutation (n + 1 − a1)(n +
1− a2) . . . (n+ 1− an).)

Definition 3.2. The proximum of a word w is the left-most of the largest and smallest
letters in w.

For example, the proximum of 519234 is 1.

Definition 3.3. Let w be a word consisting of n pairwise distinct letters. We define the
set Ww (of letters) in the following way.

• If w has only one letter, then Ww = ∅.

• Otherwise, Ww = {u}∪Wf , where u is the proximum of w, and f is the factor of w
going from the first letter of w to u (inclusive).

For example, if w = 453216, then Ww contains 1 as well as the elements of W45321

which are 5 as well as the elements of W45, which are just 4. So, Ww contains 1, 5, and 4.

Lemma 3.4. If w and w′ are separated by a single transformation, then Ww = Ww′.

Proof. Assume that the lemma holds for smaller n, with an inductive base case of n = 1.
Let w and w′ in Sn be separated by a single transformation using the hit h. We notice
that the relative order of 1 and n can never change during a transformation (since this
would only be possible if 1 and n are in the same hit, but then they would have to be
acting as the 1 and the 3 of that hit). Hence, either 1 is to the left of n in each of
w and w′, or n is to the left of 1 in each of w and w′. We will only treat the former
of these cases; the latter is completely analogous. Assume that 1 is to the left of n
in w and w′. Let f and f ′ be the factors of w and w′ respectively which begin with
the first letter of w and w′ respectively, and end with 1. If h only involves letters to
the left of 1, then Ww = Wf ∪ {1} = Wf ′ ∪ {1} = Ww′ because Wf = Wf ′ by the
inductive hypothesis. If h only involves letters to the right of 1, then the lemma is
trivial. If h involves 1, then the greatest letter to 1’s left does not change under the
transformation. Hence, the greatest letter in f and f ′ is the same. Since the letters to
the left of that letter in f and f ′ clearly are static under the transformation, Wf = Wf ′

and Ww = Wf ∪ {1} = Wf ′ ∪ {1} = Ww′ .

Definition 3.5. The origin permutation of a permutation w in Sn is a permutation in
Sn beginning with the letters of Ww, in the same order that they appear in w, and then
continued with the remaining letters in increasing order.
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Lemma 3.6. Let w and w′ in Sn be such that Ww = Ww′. Then, the origin permutations
of w and w′ are the same.

Proof. As a consequence of the definition of Ww, for a given choice of letters to be in the
set, there is exactly one possibility for the order of those letters in w. One can find this
order in the following way. The right-most letter in Ww is 1 or n. Assume without loss
of generality that Ww contains n. Then, the next right-most letter is the smallest letter
in Ww, the next right-most letter is the second largest letter in Ww, the next right-most
letter is the second smallest letter in Ww and so on. This shows that the order in which
the letters of Ww appear in w is uniquely determined by the set Ww. But the origin
permutation of w only depends on the set Ww and the order in which the letters of Ww

appear in w. Hence, the origin permutation of w is uniquely determined by the set Ww,
and the origin permutations of w and w′ are the same.

Lemma 3.7. Let w ∈ Sn and w′ be the origin permutation of w. Then, w ≡ w′ under
the {312, 321}{123, 132}-equivalence.

Proof. Inductively assume the result holds in Sn−1 with a trivial base case of S1. Let w
be in Sn and w′ be the origin permutation of w. Let j1, j2, . . . , jk be the letters of Ww in
the order that they appear in w from left to right. If k = 1, then we may apply Lemma
3.1 to w to reach w′. Otherwise, we may apply Lemma 3.1 to the factor going from j1
to j2, and slide j2 to be adjacent to j1, reaching x which begins with j1j2. Applying the
inductive hypothesis to the final n− 1 letters of x, we reach w′.

Proposition 3.8. There are 2n−1 classes in Sn under the {312, 321}{123, 132}-equiva-
lence.

Proof. By Lemma 3.4, each class in Sn gives rise to a set W ⊆ {1, 2, . . . , n} such
that W = Ww for each w in the class, and such that W contains exactly one of 1
and n. Thus we obtain a map from the set of classes in Sn to {W ⊆ {1, 2, . . . , n} |
W contains exactly one of 1 and n}. This map is injective as a consequence of Lemma
3.6 and Lemma 3.7. We will now show that it is also surjective.

Let W be a set containing letters from 1 to n, including exactly one of 1 and n. Assume
without loss of generality that W contains n. Let k be the size of W . We define the word
f as the word of size k ending with the largest letter in W , following the smallest letter,
following the next largest letter, following the next smallest letter, etc.. Then, we define
w to be the permutation in Sn beginning with f and followed by the letters not in f in
increasing order. Note that Ww = W . Therefore, there is a bijection from the set of
classes in Sn to the set {W ⊆ {1, 2, . . . , n} | W contains exactly one of 1 and n}, and
thus the number of classes in Sn is

|{W ⊆ {1, 2, . . . , n} | W contains exactly one of 1 and n}| = 2n−1.

Definition 3.9. Let w ∈ Sn. Let g1, g2, . . . , gk be the letters of Ww in the order in which
they appear in w from right to left. Then, gi is a valley if it is less than each of its adjacent
letters in the sequence g1, g2, . . . , gk and is a peak if it is greater than its adjacent letters
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in the sequence g1, g2, . . . , gk. If k = 1, then if g1 = 1 it is a valley and if g1 = n it is a
peak. If n = 1, we consider g1 to be a valley.

Proposition 3.10. Let w ∈ Sn. Let g1, g2, . . . , gk be the letters of Ww in the order that
they appear in w from right to left. Let ji = gi if gi is a valley and ji = n− gi if gi is a
peak. The class containing w is of size

(n− 1)!
k−1∏
a=1

(ja + ja+1)

under the {312, 321}{123, 132}-equivalence.

Proof. We want the number of permutations w′ ∈ Sn with Ww′ = Ww for a given w ∈ Sn.
Recall that in such a situation, w and w′ must have the letters of Ww in the same order.
We will prove the result by inducting on k; the base case of k = 1 falls from Lemma 3.1.
Assume the corollary holds for smaller k. Let w ∈ Sn, g1, . . . , gk, and j1, . . . , jk be as
stated. Note that gk is the left-most letter of w and of w′. Also note that in this proof, a
letter a is said to be between two letters b and c if and only if min{b, c} < a < max{b, c}.
In particular, “between” refers to value, not position, and does not include the boundaries
of the interval.

Let E be the set of all w′ ∈ Sn such that Ww′ = Ww. Observe that E is the class of w.
Let I be the union of {gk} with the set of all letters between gk−1 and gk. An I-purged
word is a word which contains every letter from {1, 2, . . . , n} \ I exactly once (and no
other letters). Let S be the set of all I-purged words x with Wx = {g1, g2, . . . , gk−1}. Let
T be the set

{x ∈ Sn−|gk−gk−1||Wx = {gi|1 6 i 6 k − 1, gi is a valley} ∪
{gi − |gk − gk−1||1 6 i 6 k − 1, gi is a peak}}.

Let Y be the set of words of size n consisting of zeros and a single occurrence of each
letter between gk and gk−1 as well as gk which is the first letter.

A bijection between S and T can be created by mapping s ∈ S to its order permutation.
Hence |S| = |T |.

Let e ∈ E. Let s be the word obtained by striking the letters between gk and gk−1 as
well as gk from e. Let y be e except that each letter that is neither between gk and gk−1
nor gk is replaced with a zero. Then, we define f : E → S × Y such that f(e) = (s, y).
Note that s ∈ S because no gi with i < k is equal to gk or any letter between gk−1 and gk.
Now we go in the other direction; let s ∈ S and y ∈ Y be arbitrary. Then, g : S×Y → E
is defined such that g(s, y) is y except with each of the zeros of y replaced by the letters
of s (in the order that they appear in s). Since f and g are inverses of each other, we
have that |E| = |S × Y |. Since |S| = |T |, we have |E| = |T × Y |.

It is easy to see that |Y | = (n − 1)(n − 2) . . . (n − |gk − gk−1| + 1). By the inductive
hypothesis,

|T | = (n− |gk − gk−1| − 1)!
k−2∏
a=1

(j′a + j′a+1)
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where j′i6k−1 is gi = ji if gi is a valley and is (n−|gk−gk−1|)−(gi−|gk−gk−1|) = n−gi = ji
if gi is a peak. Therefore,

|E| = (n− 1)(n− 2) . . . (n− |gk − gk−1|+ 1) · (n− |gk − gk−1| − 1)!
k−2∏
a=1

(ja + ja+1)

.

This simplifies to

|E| = (n− 1)!
k−1∏
a=1

(ja + ja+1)

.

Proposition 3.11. The multiset of sizes of classes in Sn under the {123, 132}{213, 231}-
equivalence is the same as the multiset of sizes of classes in Sn under the
{312, 321}{123, 132}-equivalence.

Proof. Let us consider the multiset of sizes of classes in Sn under the {123, 132}{213, 231}-
equivalence. By the induction in the proof of Proposition 3.84, it is easy to see that in
each class in Sn, there is exactly one V-permutation.

Let v be a V-permutation. Consider the set Lv containing the letters to the left of 2
in v with the exception of the letter 1. Then, we may define k − 1 as the size of Lv and
l1 + 1, . . . , lk−1 + 1 to be the letters in Lv in increasing order (thus from right to left in
position in v). Then, by Corollary 3.85, the size of the class containing v is

(n− 1)!
k−1∏
i=1

li

.

For a given choice of letters l1 < l2 < · · · < lk−1 with lk−1 6 n − 1 and l1 > 1, there
are exactly two classes containing a V-permutation v such that Lv consists of the letters
li + 1. (The two V-permutations are identical except with 1 and 2 swapped.)

Now, we consider the multiset of sizes of classes in Sn under the {312, 321}{123, 132}-
equivalence.

Let j1, . . . , jk be distinct letters from 0 to n− 1 such that j1 is 1 or 0, j2 > 1 if k > 1,
ji < ji−2 for i > 2, jk + jk−1 6 n − 1 if k > 1, and k > 1. Let gi = ji if i is odd and
j1 = 1 or if i is even and j1 = 0. Let gi = n− ji otherwise. Then, since the set g1, . . . , gk
contains exactly one of 1 or n, we know that there is exactly one class in Sn such that
Ww = {g1, . . . , gk} and that it is of size

(n− 1)!
k−1∏
a=1

(ja + ja+1)

.

Given a permutation w in Sn, we can construct g1, . . . , gk and j1, . . . , jk for some k > 1
as done in Proposition 3.10 so that they meet the stated restrictions and so that w is in
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a class of size
(n− 1)!

k−1∏
a=1

(ja + ja+1)

.

Thus there is a bijection between sets {j1, . . . , jk} ⊆ {1, 2, . . . , n} for some k > 1 such
that j1 is 1 or 0, j2 > 1 if k > 1, ji < ji−2 for i > 2, and jk + jk−1 6 n − 1 if k > 1 and
classes in Sn which are of size

(n− 1)!
k−1∏
a=1

(ja + ja+1)

.

For such a set J , let L be the set containing li = ji + ji+1 for i < k. Since ji < ji+2,
li < li+1 for i < k − 1. Since jk−1 + jk 6 n − 1, li is from 1 to n − 1 for i < k. If L is
not empty, then since a2 > 1, l1 > 1. For any set L ⊆ {2, 3, . . . , n− 1} (possibly empty),
there are two possible (and valid) J which could yield such a set L, one with j1 = 1 and
one with j1 = 0. Thus for a given choice of letters l1 < l2 < · · · < lk−1 with lk−1 6 n− 1
and l1 > 1, there are exactly two classes of size

(n− 1)!
k−1∏
i=1

li

.

Hence, the multiset of sizes of classes in Sn is the same for both equivalences.

3.2 {132,312}{321,213}-Equivalence

Lemma 3.12. There are n−1 trivial classes under the {132, 312}{321, 213}-equivalence.

Proof. Because 312 and 213 are hits, we only need to consider Λ-permutations, that is
permutations that increase to n and then decrease until the final letter. Since 321 is a
hit, we only need to consider Λ-permutations which increase for at least the first n − 1
letters. There are n such permutations because given an ending letter, the rest of such a
permutation can be uniquely determined. Since the final possible hit is a 132, the final
letter can be any letter except for n− 1. Hence, there are n− 1 trivial classes.

Definition 3.13. We say that w ∈ Sk is in Tk if and only if the letters of w other than 1
and 2 are in increasing order, and the letters 1 and 2 are adjacent and in 21 order.

For example, T5 = {21345, 32145, 34215, 34521}.

Lemma 3.14. The elements of Tn form an equivalence class under the
{132, 312}{321, 213}-equivalence.

Proof. Let w ∈ Tn. Clearly, the only possible hits in w are k21 and 21j for some k and j
with the actual letters 2 and 1. We can rearrange such a hit as 21k and j21 respectively.
By the definition of Tn, the permutation reached is in Tn. Furthermore, sliding the letters
21 in this way, all of the permutations in Tn are reachable from each other.
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Note that any three-letter factor abc with a > b must form a hit. This will be useful
in the proof of Lemma 3.15.

Lemma 3.15. Let w ∈ Sn be non-avoiding and not in Tn. Then, w is equivalent to a
permutation which begins with the letter n under the {132, 312}{321, 213}-equivalence.

Proof. Assume inductively that the proposition holds for Sk for k < n. Inductive base
cases of n ∈ {3, 4, 5} can easily be shown computationally.

We can assume that the final n− 1 letters of w are non-avoiding. In fact, if the only
hit is in the first three letters, then the hit is either 312 or 213 and rearranging it as either
a 132 or 321 creates a hit to the right.

We can also assume that the final n − 1 letters of w do not form a permutation in
Tn−1. In fact, if they do, then they can be rearranged as the identity in Sn−1 with 1
and 2 swapped. Then, the first four letters are either 1324, 2314, 3214, or k213 where
k > 3. The third case will never happen because then w would have to be in Tn. In
each remaining case there is a series of steps with which one can reach a permutation
which is non-avoiding in the final n − 1 letters and for which the final n − 1 letters do
not form a permutation in Tn−1: 1324 → 1432 → 4132, 2314 → 2431 → 4231, and
k213→ k321→ 32k1.

Noting these two assumptions, we can apply the inductive hypothesis to the final n−1
letters of w, placing n either in the first or second position of w, and obtaining w′. Because
of the position of n, the first n − 1 letters of w′ can not form a permutation in Tn−1 for
n > 5. Also, because of the position of n, the first 4 letters contain a hit. Therefore, since
n > 5, applying the inductive hypothesis to the first n− 1 letters, we can place n in the
first position.

Proposition 3.16. The number of classes containing permutations in Sn>3 that are non-
avoiding and not in Tn equals the number of classes created in Sn−1 under the
{132, 312}{321, 213}-equivalence.

Proof. Let f(n) be the number of classes created in Sn. By Lemma 3.15, a non-avoiding
permutation in Sn that is not in Tn is reachable from a permutation beginning with n.
Since n > 3, every permutation beginning with n is non-avoiding and not in Tn; we just
need to consider how many classes they fall into. Since we can ignore the first letter,
permutations beginning with n fall into at most f(n− 1) classes. In a hit involving n, no
two letters that are not n can change relative order. Hence, the permutations beginning
with n fall into at least f(n− 1) classes, and we are done.

Proposition 3.17. There are
n(n+ 1)

2
−2 classes in Sn>3 under the {132, 312}{321, 213}-

equivalence.

Proof. We will show that with the step from Sn−1 to Sn, n classes are added to the
enumeration. Noting the base case of S3, this will inductively prove the proposition. Let
f(n) be the number of classes created in Sn. By Lemma 3.12 there are n − 1 trivial
classes. By Lemma 3.14 and Lemma 3.15, there is one nontrivial class containing no
permutations beginning with n. By Proposition 3.16, the remaining permutations fall
into f(n− 1) classes. So, f(n > 3) = f(n− 1) + n and we are done.
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3.3 {123,231}{213,132}-Equivalence

Let f(m) be the number of classes in Sm under the {123, 231}{213, 132}-equivalence.

Lemma 3.18. The permutations of a given parity which end with n and which do not
begin with n− 1 are all equivalent under the {123, 231}{213, 132}-equivalence.

Proof. We will prove this inductively. The result is simple to show computationally for
n 6 5. Assume (as an induction hypothesis) that whenever x ∈ Sn−1 ends with n and
does not begin with n− 1, x is equivalent either to the identity or the identity but with
1 and 2 swapped. Let w be a permutation in Sn ending with n and not beginning with
n− 1. Applying 123 → 231 and 213 → 132 repeatedly, we place n− 1 in position 2 and
then n in position n− 1. Then, applying the inductive hypothesis to the left-most n− 1
letters, we rearrange them as the identity or the identity with 1 and 2 swapped depending
on the parity of the permutation that they form, yielding w′. Note that the first letter of
w′ is 1, 2, or 3. Sliding n from the second to final position to the final position with an
application of either 132→ 213 or 231→ 123, we then apply the inductive hypothesis to
the right-most n−1 letters of w′ and get w′′. Note that w′′ is the identity in Sn except with
the first three letters possibly in any order. Finally, applying the inductive hypothesis to
the first n − 1 letters of w′′, we reach the identity or the identity with 1 and 2 swapped
in Sn. Hence, all such w of a given parity are equivalent.

Lemma 3.19. A permutation beginning with a decreasing subsequence of consecutive
values starting with n (that is, a permutation beginning with n(n−1)(n−2) . . . (n−k+1)
for some k > 0) will always have that same decreasing subsequence at its start after
transformations. In particular, the longest such subsequence never changes in length under
the {123, 231}{213, 132}-equivalence.

Proof. It is sufficient to note that no hits begin with the largest letter in the hit.

Definition 3.20. We define a k-hill to be k consecutively positioned and consecutively
valued letters in a permutation in Sn, each of which is greater than all of the letters to
its right in the permutation which are not n. A k-hill may also be called a hill if k is
unknown.

Definition 3.21. In this subsection, we consider a permutation in Sn to satisfy the
property Ck if either

• the permutation begins with (n − 1) and begins with a k-hill not followed directly
by n, or

• the permutation begins with a g-hill followed by the letters jn and then a (k−g)-hill
for some integer g between 0 and k inclusive and for some letter j, where n − 1 is
the first letter of those in the mentioned hills (meaning that n− 1 is the first letter
of the first hill if g > 0, and of the second hill if g = 0).
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Remark 3.22. Alternatively, we consider a permutation in Sn to satisfy the property Ck if
either it begins with a factor (n− 1)(n− 2)(n− 3) . . . (n− k+ 1) not followed directly by
n or if it begins with a factor (n−1)(n−2) . . . (n− i+1)jn(n− i)(n− i−1) . . . (n−k+1)
(where . . . denotes inbetween letters in decreasing order).

Lemma 3.23. If a permutation satisfies Ck, then any equivalent permutation will as well
under the {123, 231}{213, 132}-equivalence.

Proof. Let w be a permutation satisfying property Ck. We will show that after a trans-
formation, the resulting permutation will still satisfy Ck. There are two cases for w:

1. In the first case, w begins with a k-hill not directly followed by n. If a transformation
does not involve any letters in the k-hill, then it is easy to see that the resulting
permutation still starts with a k-hill not directly followed by n. If a transformation
does involve letters in the k-hill, the transformation must be (n−k)jn→ jn(n−k)
for some j. This results in a permutation which starts with a g-hill followed by the
letters jn and then a (k− g)-hill for g = k− 1. Hence, the yielded permutation still
satisfies Ck.

2. In the second case, w begins with a g-hill followed by the letters jn and then a
(k − g)-hill for some integer g and letter j. There are three subcases for a hit
involved in a transformation. The hit can contain only letters to the right of n
(subcase 1); contain letters only to the left of n (subcase 2); contain n (subcase 3).
In subcase 1, by Lemma 3.19, after a transformation using the hit, the resulting
permutation will still satisfy Ck. Subcase 2 can never happen because the letters to
the left of n are in strictly decreasing order. In subcase 3, the hit is either 213 or 132
where 3 is the actual n, 1 is the letter referred to as j in the definition of Ck, and 2
is a letter in one of the two hills mentioned in the definition of Ck. If the hit is used
in an application of 213→ 132, the resulting permutation must begin with a g-hill
followed by the letters jn and then a (k−g)-hill for one lesser g than before and the
same j. If the hit is used in an application of 132 → 213, then either the resulting
permutation begins with a g-hill followed by the letters jn and then a (k − g)-hill
for one greater g than before and the same j, or it begins with a k-hill not followed
directly by the letter n. Hence, the resulting permutation satisfies Ck.

Proposition 3.24. There are n2 − 3n+ 4 classes in Sn under the {123, 231}{213, 132}-
equivalence.

Proof. Consider the permutations that begin with n for n > 3. They clearly fall into
f(n − 1) classes because we can ignore the n. From a permutation not beginning with
n, n can be moved to the final position through repeated applications of 231 → 123
and 132 → 213. Hence, each of the remaining uncounted equivalence classes contains a
permutation which ends with n. By Lemma 3.18, permutations ending with n and not
beginning with n−1 fall into two classes, divided by parity. Hence, we need only consider
permutations of the form (n−1) . . . n which are not reachable from any permutation ending
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with n but not beginning with n−1. By Lemma 3.23, these are exactly the permutations
of the form (n − 1) . . . n since such permutations each satisfy C1 and permutations not
beginning with n− 1 and ending with n do not.

Let x and y in Sn both begin with n − 1 and end with n. If x and y are of different
parity, then clearly they are not equivalent. Assume that x and y are the same parity.
Let k be the largest k such that x begins with a k-hill and k is less than n − 1 (when
k = n− 1, the k-hill is followed by n). Let k′ be the largest k′ such that y begins with a
k′-hill and k′ is less than n− 1.

If k 6= k′, then by Lemma 3.23, x and y are not equivalent.
Otherwise, assume that k′ = k. If k = n − 2 or k = n − 3, then it is easy to check

that x must equal y. Thus there is a total of two classes for the cases of k = n − 2 and
k = n− 3.

Otherwise, assume that k < n− 3. Then, x and y begin with the same first k letters,
the remaining letters do not begin with n − k (because then x or y would begin with a
(k+1)-hill), and they do end with n. Hence, we can apply Lemma 3.18 to those remaining
letters to conclude that x and y are equivalent.

Thus x is equivalent to y exactly when they are of the same parity and they satisfy
Cj for the same j. When the highest such j is between 1 and n − 4 inclusive, there are
2(n− 4) resulting classes. As mentioned previously, there is one additional class for each
of the cases where the highest such j is n − 2 and n − 3. Note also that it is impossible
for a permutation to satisfy Cn−1. This means that permutations beginning with n − 1
and ending with n fall into 2(n− 4) + 2 classes. Recall that permutations beginning with
n fall into f(n − 1) classes, and that the permutations ending with n but not beginning
with n−1 fall into two more classes. So, f(n > 3) = f(n−1) + 2(n−4) + 2 + 2, f(3) = 4.
This recursion inductively implies that there are n2 − 3n+ 4 classes.

Proposition 3.25. The number of elements in the class containing the identity in Sn is
((n− 2)(n− 1)!)/2 for n > 3 under the {123, 231}{213, 132}-equivalence.

Proof. Consider permutations in Sn>3. By Lemma 3.23, no permutations equivalent to the
identity satisfy C1. A permutation w fails to satisfy C1 exactly when w begins with neither
n−1 nor jn(n−1) for any j, or when w begins with (n−1)n. If a permutation is equivalent
to the identity, then it also can not begin with n. There are (n − 2)(n − 1)! − (n − 2)!
permutations not beginning with n− 1, jn(n− 1), or n. There are (n− 2)! permutations
beginning with (n − 1)n. It is easy to see that half of the permutations counted in
each of these enumerations are odd and half are even. If we consider only the even ones
(noting that transformations do not change parity), there are at most (n − 2)(n − 1)!/2
permutations that can be equivalent to the identity. From an even permutation not
starting with n or n − 1 and not starting with three letters of the form jn(n − 1) for
some j, through repeated applications 132 → 213 and 231 → 123, one can reach an
even permutation ending with n and not starting with n − 1 which by Lemma 3.18 is
equivalent to the identity. Similarly, all even permutations of the form (n − 1)n . . . are
equivalent to the identity. Thus the number of elements in the class containing the identity
is (n− 2)(n− 1)!/2 for n > 3.
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3.4 {123,132}{231,312}-Equivalence

Lemma 3.26. The class containing the identity contains exactly the permutations begin-
ning with 1 under the {123, 132}{231, 312}-equivalence.

Proof. We will prove this inductively. In S3, the lemma is trivial. Assume the lemma
holds in Sn−1. Let w be a permutation beginning with 1 in Sn. We rearrange the first n−1
letters of w as the identity (using the inductive hypothesis), resulting in w′. If w′ ends
with 2 (i.e., does not have 2 in the second position), then through repeated applications
of 231→ 312 (where the actual two is the lowest letter in the hit), we move it to the third
position; then, applying 132 → 123 to the first three letters, we arrive at a permutation
starting with 12. Thus w is equivalent to a permutation starting with 12, and applying
the inductive hypothesis to the final n − 1 letters of such a permutation, we reach the
identity.

Lemma 3.27. Every permutation is reachable from a permutation of the form w1 . . .
where w is a word and w1 is avoiding. Note that this means w1 is decreasing. Thus by
Lemma 3.26, all permutations are reachable from a V-permutation under the
{123, 132}{231, 312}-equivalence.

Proof. This is trivial for n = 3. Assume that the result holds for n − 1. If 1 is not in
the final position of a permutation, then using the inductive hypothesis, we are done.
Let x be a permutation ending with 1. By the inductive hypothesis (on the first n − 1
letters), x is reachable from a permutation which is a V-permutation in the first n − 1
letters and ends with 1. Let y be such a permutation. If 2 is not the second to final letter,
then the final three letters can be rearranged as 231 → 312 yielding a permutation not
ending with 1 (a case for which we have already shown that the lemma holds). If 2 is the
second to final letter, then the entire permutation is decreasing and we have thus reached
a V-permutation.

Lemma 3.28. A V-permutation of the form j . . . and a V-permutation of the form k . . .
where k 6= j can not be equivalent under the {123, 132}{231, 312}-equivalence.

Proof. The largest letter to the left of the 1 does not change under the transformations
considered.

Definition 3.29. Let En be the set of permutations in Sn which are the descending
permutation except with two consecutive letters swapped.

For example, E4 = {3421, 4231, 4312}.

Lemma 3.30. The permutations in En form an equivalence class under the
{123, 132}{231, 312}-equivalence.

Proof. We will first show that the set En is closed under the transformations considered.
Let w ∈ En. There are at most two hits in w, a 231 hit and a 312 hit, each using the
pair of letters in increasing order in w. After a 231↔ 312 rearrangement, we have simply
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swapped which pair of consecutive letters is in increasing order, resulting in a permutation
in En.

What remains to be shown is that all of the permutations in En are equivalent.
Through repeated applications of the rearrangement 312 → 231, we can go from the
descending permutation with 1 and 2 swapped to each of the permutations in En. Hence,
the permutations in En form an equivalence class.

Lemma 3.31. Each V-permutation of the form . . . 21 . . . is not equivalent to any other
V-permutations under the {123, 132}{231, 312}-equivalence.

Proof. Let w be a V-permutation of the form j . . . 21 . . .. Since no hit can begin with 21,
the letters to the left of 1 are in decreasing order, and hits beginning with 1 can only be
rearranged to form other hits beginning with 1, we have that all permutations equivalent
to w must have the letters leading up to 1 exactly the same as in w. So, w can not be
equivalent to any V-permutations other than itself.

Lemma 3.32. Each V-permutation of the form . . . 31 . . . is not equivalent to any other
V-permutations under the {123, 132}{231, 312}-equivalence.

Proof. Let w be a V-permutation of the form . . . 31 . . . with k letters to the left of 1. We
posit that the letters to the left of 1 in each permutation equivalent to w are either exactly
the same as in w and are in decreasing order, or form a permutation in Ek+1 using the
same letters as are to the left of 1 in w as well as the letter 2. Assume inductively that this
is true for permutations which are j transformations away from w, with an inductive base
case of j = 0. We will show that the claim holds for permutations j + 1 transformations
away from w, completing the proof. Let x ∈ Sn be j transformations away from w and
x′ ∈ Sn be one transformation away from x. There are two cases.

• The letters to the left of 1 in x are in decreasing order and are the same letters as in
w. If x′ is reached using a hit to the right of 1, then the claim is trivial. Otherwise,
the rearrangement must be 312 → 231 using the actual letters 1, 2, 3. Then, the
letters to the left of 1 in x′ form a permutation in Ek+1 and are exactly the letters
to the left of 1 in w in addition to the letter 2.

• The letters to the left of 1 in x form a permutation in Ek+1 using the same let-
ters as are to the left of 1 in w in addition to the letter 2. If x′ is reached by a
transformation using letters only to the right of 1, then the claim is trivial. If x′ is
reached by a transformation using letters only to the left of 1, then by Lemma 3.30,
the claim holds. If x′ is reached using a transformation using the letter 1, then the
transformation is 231→ 312 using the actual letters 1, 2, 3, and the letters before 1
in x′ are in decreasing order and are the same as in w.

Lemma 3.33. V-permutations of the form j . . . k1 . . . as well as the V-permutation of
the form j1 . . . where j > 4 is fixed and k is any letter > 4 are equivalent under the
{123, 132}{231, 312}-equivalence.
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Proof. By computation, one can show that 51 . . . is reachable from 541 . . . (we will refer to
this as the hypothesis): 51234→ 51324→ 35124→ 35142→ 34512→ 35412→ 35241→
52341→ 52413→ 54123. Consider an arbitrary V-permutation w of the form j . . . k1 . . .
for some j and for some k > 4. By the hypothesis, this is reachable from a permutation
starting with the same decreasing factor which ends with 1 except with k excluded. By
Lemma 3.26, this is equivalent to the V-permutation starting with the same factor which
terminates with 1 as w does except with k excluded. Thus all such V-permutations are
equivalent to the V-permutation j1 . . . and we are done.

Proposition 3.34. In Sn, there are 3·2n−3+n−2 classes under the {123, 132}{231, 312}-
equivalence.

Proof. For n = 3 this is trivial. Let n > 3. By Lemma 3.27, we simply have to count
the number of classes in Sn that the V-permutations break into. By Lemma 3.32, there
are 2n−2 classes with only V-permutations of the form . . . 21 . . . and 2n−3 classes with
only V-permutations of the form . . . 31 . . .. By Lemma 3.33, there are n− 3 classes with
V-permutations of the form . . . k1 . . . where k > 3. Finally, by Lemma 3.26, there is 1
class containing only the remaining permutations, those of the form 1 . . .. So, there are
2n−2 + 2n−3 + n− 3 + 1 = 3 · 2n−3 + n− 2 classes in Sn.

3.5 {123,132}{213,321}-Equivalence

Definition 3.35. We call a permutation w bushy-tailed if the following is true. Let x be
the factor of w containing the letters in w to the left of 1 as well as 1. In x, the letters in
odd positions are in decreasing order, the letters in even positions are in decreasing order,
and each of the letters of the same position parity as 1 is less than the adjacent letter to
its right and the one to its left (if there is such a letter). In addition, we ask that the
letters to the right of 1 in w be in increasing order.

Note that for a permutation ending with 1 to form a bushy-tailed permutation is
equivalent to it avoiding 123, 132, 321, and 213. (This is not actually very useful, but is
interesting to note.)

Definition 3.36. Let w be a bushy-tailed permutation. A letter in w which is to the left
of 1 or is 1 is a w-starter.

Lemma 3.37. Let y be a bushy-tailed permutation. Let x be a permutation equivalent to
y under the {123, 132}{213, 321}-equivalence. In x, the y-starters are in the same relative
order as they are in y (property 1). Furthermore, ignoring each other, they are all left to
right minima (property 2). Finally, in x, each y-starter other than 1 (the final y-starter)
is less than each letter between it and the next-in-position y-starter (property 3). As a
consequence, no two distinct bushy-tailed permutations are equivalent.

Proof. Let x be a permutation equivalent to a bushy-tailed permutation y which satisfies
properties 1, 2, and 3. We will show that any single rearrangement using a hit in x will
result in a permutation for which the properties still are satisfied. Assume a rearrangement
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exists which swaps two y-starter letters j and k (where k is without loss of generality, to
the right of j in x). There are three cases for such a rearrangement.

• The rearrangement is 213 → 321. Due to property 1, not all three letters can be
y-starters. So, in order for j and k to be swapped, j must play the role of 3 in
the hit, and k must play the role of 2 or 1. Because the remaining letter is not a
y-starter, property 2 is not satisfied in x, a contradiction.

• The rearrangement is 321 → 213. Clearly, not all three letters can be y-starters.
So, j must play the role of 3 and k must play the role of either 2 or 1. If k plays the
role of 1, then property 3 is not satisfied in x, a contradiction. If k plays the role of
2, then property 3 is again not satisfied in x, a contradiction.

• The rearrangement is either 123 → 132 or 132 → 123. Since not all three letters
can be y-starters (property 1), in both cases, property 2 is not satisfied in x, a
contradiction.

Assume a rearrangement exists which results in a permutation not satisfying property 2.
There are two possible cases for the rearrangement.

• The rearrangement is 132 → 123 where the letters playing the roles of 1 and 3 are
y-starters and the letter playing the role of 2 is not (the letter playing the role of 1 is
a y-starter by property 2; by property 1, not all three letters can by y-starters, and
for property 2 to be broken by the transformation, 3 must be a y-starter). However,
because 2 is not a y-starter, property 3 is not satisfied in x, a contradiction.

• The rearrangement is 321 → 213 where the letter playing the 3 is a y-starter and
one of the remaining letters is not. However, then property 3 is not satisfied in x, a
contradiction.

Assume a rearrangement exists which results in a permutation not satisfying property 3.
Let j and k be the first and second y-starter respectively which have a letter less than j
being brought between them by the rearrangement. Such a letter can not come from the
left of j by property 2. Such a letter can not come from the right of k because then k
would be playing the role of 1 in 213→ 321 and property 3 could not be satisfied in x, a
contradiction. Thus such a rearrangement cannot exist.

Lemma 3.38. Every permutation is equivalent to a bushy-tailed permutation under the
{123, 132}{213, 321}-equivalence.

Proof. The lemma is easy to show for S3 and S4. Assume inductively that the result
holds in Sn−1 for n > 4. By Lemma 3.37, every bushy-tailed permutation in Sn−1 is the
lexicographically smallest permutation in its class. It follows, that from a permutation
w ∈ Sn, repeatedly rearranging the first n− 1 letters to form a bushy-tailed permutation,
then the final n− 1 letters, then the first n− 1 letters, and so on, is a process that must
halt (because we cannot keep reaching smaller and smaller permutations in Sn forever).
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Thus, w ∈ Sn is equivalent to some permutation whose first and final n − 1 letters both
form bushy-tailed permutations. Conveniently, since n > 4, such a permutation must be
bushy-tailed.

Corollary 3.39. Permutations of the form 1 . . . are equivalent. Thus there are (n − 1)!
elements in the class containing the identity under the {123, 132}{213, 321}-equivalence.

Proof. It follows from Lemmas 3.37 and 3.38 that every permutation beginning with 1 is
equivalent to the identity in Sn.

Proposition 3.40. The number of classes in Sn is the sum of the first n − 1 Motzkin
numbers under the {123, 132}{213, 321}-equivalence.

Proof. By Lemmas 3.37 and 3.38, the number of classes in Sn is exactly the number of
bushy-tailed permutations. Let f(n) be the number of classes in Sn (and thus the number
of bushy-tailed permutations). Then, the number of bushy-tailed permutations in Sn with
n not to the left of 1 is clearly f(n− 1) because we can just append n to the end of each
bushy-tailed permutation from Sn−1. Consider a bushy-tailed permutation w with n to
the left of 1. Let k be the number of letters to the left of 1 in w. Note that k can be
any value greater than 0 and less than n. There are

(
n−2
k−1

)
ways to choose these letters

without yet fixing their order.
Let g(k) be the number of possible arrangements for a given set of letters to the left

of 1 in a bushy-tailed permutation with exactly k letters to the left of 1. Assume that k is
even. Then, each arrangement of the letters corresponds with a 2× k/2 standard Young
tableau (in English notation); reading from right to left in the permutation (starting
with the letter preceding 1), we fill the first column of the tableau, then the second, and
so on2. The number of 2 × k/2 standard Young tableaux is Ck/2 where Cn denotes the
n-th Catalan number3. Hence, g(k) = Ck/2 for even k. If k is odd, then n is forced in the
first position, and ignoring it, we see that g(k) = g(k − 1) = C(k−1)/2. So,

f(n) = f(n− 1) +
n−1∑
k=1

(
n− 2

k − 1

)
· Cbk/2c

= f(n− 1) +
n−2∑
k=0

(
n− 2

k

)
· Cdk/2e

= f(n− 1) +

b(n−2)/2c∑
k=0

(
n− 2

2k

)
· Ck +

b(n−1)/2c∑
k=1

(
n− 2

2k − 1

)
· Ck.

2i.e., if the letter 1 is the g-th letter, then the i-th column contains the g − (2i− 1)-th and g − 2i-th
letter.

3This is well known. It is also easy to prove by bijecting such standard Young tableaux with Catalan
paths by means of traversing the cells of the Young tableau by increasing letter and using each letter in
the bottom row to represent a side step and each letter in the top row to represent a down step.
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Recall that Mn is the number of Motzkin n-paths, paths from (0, 0) to (n, 0) in the
grid N × N using only steps U = (1, 1), F = (1, 0) and D = (1,−1). We will enumerate
Mn. Consider the paths where F is used exactly n− j times for a given j. The uses can
be distributed in any of

(
n

n−j

)
=
(
n
j

)
ways. The remaining j steps must consist of uses

of U and D. If k is even, then there are clearly Ck/2 arrangements for these steps. Note
that k can not be odd. So,

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck.

Hence,

Mn−2 =

b(n−2)/2c∑
k=0

(
n− 2

2k

)
Ck.

So,

f(n) = f(n− 1) +Mn−2 +

b(n−1)/2c∑
k=1

(
n− 2

2k − 1

)
· Ck.

Consider
b(n−1)/2c∑

k=1

(
n−2
2k−1

)
· Ck. We will show that this is the difference between Mn−2

and Mn−1. Note that Mn−2 is the number of Motzkin n− 1-paths that go through point
(n − 2, 0). We will now enumerate those Motzkin n − 1-paths which do not go through
(n− 1, 0). (There are Mn−1−Mn−2 such paths.) In such a path, excluding the final step,
there must be one more use of U than of D. So, the number of uses of both combined
must be odd. Let that value be 2h− 1. We pick 2h− 1 of the first n− 2 steps to be the
steps which are not F . These 2h − 1 steps, with a D appended to the end must form a
Catalan path of length 2h. Thus there are Ch possibilities for the arrangements of these
steps. Hence,

Mn−1 −Mn−2 =

b(n−1)/2c∑
k=1

(
n− 2

2k − 1

)
· Ck.

So, f(n) = f(n − 1) + Mn−1. Inductively, f(n) is the sum of the first n − 1 Motzkin
numbers.

3.6 {123,132}{213,312}-Equivalence

In this subsection, f(n) be the number of classes that Sn breaks into under the
{123, 132}{213, 312}-equivalence.

Definition 3.41. We call the root-permutation (or root) of a permutation w the permu-
tation obtained from w by applying 123 → 132 and 213 → 312 repeatedly to the hit
ending with n in order to bring n to the first or second position (We will call this sliding
n).
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We first make two observations. When sliding n in x, each transformation only uses
letters that were to the left of n before the transformation (observation 1). Additionally,
the letters to the left of n after the transformation were static in the transformation
(observation 2).

Lemma 3.42. Let x and y be two permutations reachable from each other through a
single transformation under the {123, 132}{213, 312}-equivalence. Let x′ and y′ be the
root-permutations of x and y respectively. Then, either x′ and y′ are each of the form
n . . ., or they are each of the form jn . . . for the same j.

Proof. Let x, y, x′, y′ be such permutations. Consider the transformation connecting x to
y. There are the following cases.

• The transformation involves a hit using letters only to the right of n. In this case,
the series of transformations from x to x′ is the same as the series from y to y′.

• The transformation uses a hit containing n. In this case, x′ and y′ are clearly the
same; the series of transformations used to obtain from x′ from x is the same as the
one used to obtain y′ from y′ except plus or minus an extra transformation.

• The transformation uses a hit involving only letters to the left of n. There are two
subcases.

1. The rearrangement connecting y to x is 123→ 132 (without loss of generality,
in that order). Let j, k, and r be the letters playing the roles of 1, 2, and 3
respectively, and w be the factor containing the letters to the left of the hit.
In x, we may slide n within the factor going from k to the end of x to reach
a permutation of the form either wjkn . . . or wjn . . . (observation 2). In the
first case, if we continue sliding n, we reach a permutation of the form wjn . . ..
In y, we may slide n within the factor going from r to the end of y to reach
a permutation of the form either wjrn . . . or wjn . . . (observation 2). In the
first of the two cases, if we continue sliding n, we reach a permutation of the
form wjn . . .. Hence, noting observation 1, completing the sliding of n in x
and y will result in either a permutation beginning with n in both cases or a
permutation of the form jn . . . for the same j in both cases.

2. The rearrangement connecting y to x is 213→ 312 (without loss of generality,
in that order). Let j, k, and r be the letters playing the roles of 1, 2, and 3
respectively, and w be the factor containing the letters to the left of the hit.
In x, we may slide n within the factor going from r to the end of x to reach a
permutation of the form either wkjrn . . . or wkjn . . . (observation 2). In each
case, we may continue sliding n to reach a permutation of the form wn . . . (we
go wkjrn . . . → wkjn . . . → wn . . . and wkjn . . . → wn . . . respectively). In
y, we may slide n within the factor going from k to the end of y to reach a
permutation of the form either wrjkn . . . or wrjn . . . (observation 2). In each
case, we may continue sliding n to reach a permutation of the form wn . . .
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(we go wrjkn . . . → wrjn . . . → wn . . . and wrjn . . . → wn . . . respectively).
Hence, noting observation 1, completing the sliding of n in x and y will result
in either a permutation beginning with n in both cases or a permutation of the
form jn . . . for the same j in both cases.

Lemma 3.43. Let x, y ∈ Sn be permutations separated by a single transformation under
the {123, 132}{213, 312}-equivalence. Let x′, y′ be the root-permutations of x and y. Then,
x′ is reachable from y′ using hits only to the right of n under the {123, 132}{213, 312}-
equivalence.

Proof. We use as a base case (the “hypothesis”) that this holds in S5. One can also easily
show that the result holds in S65. Assume that n > 5. Let x, y, x′, y′ be as described in
Sn. There are three cases for the hit used to reach x from y:

1. The hit uses only letters to the right of n. Then x′ and y′ are reachable from each
other with the same transformation (observation 1).

2. The hit contains n. Then x′ = y′ because the transformation is undone in sliding n
to the left in one of x or y.

3. The hit uses only letters to the left of n. Then, n can be slid within the letters
to the right of the hit to reach a and b from x and y respectively. In both a and
b, n is either immediately to the right of the hit, or to the right of the hit and
separated from it by one letter. Consider the factors of each a and b containing
the hit and the two letters to its right, w and w′ respectively. By the hypothesis,
the root-permutations of w and w′ are reachable from each other using only hits
containing letters to the right of n. Hence, sliding n within w and w′ of a and b
respectively, we reach a′ and b′ such that the letters to the left of n form exactly the
same factor, and the letters to the right of n form permutations that are equivalent
in a′ and b′. So, the root-permutations of a′ and b′ are reachable from each other by
using hits only containing letters to the right of n (observation 1). Noting that the
root-permutations of a and b are x′ and y′, x′ is reachable from y′ using hits only
containing letters to the right of n.

Proposition 3.44. f(n > 3) = f(n− 1) + (n− 1) · f(n− 2).

Proof. Sliding n to the left in a given permutation, we can reach a permutation either
of the form jn . . . or n . . . for any permutation. By Lemma 3.42, permutations of those
forms are not equivalent for distinct j. By Lemma 3.43, permutations of the form jn . . .
fall into f(n−2) classes for a given j and permutations of the form n . . . fall into f(n−1)
classes. So, f(n > 3) = f(n− 1) + (n− 1) · f(n− 2).

3.7 {123,321}{132,231}-Equivalence

Definition 3.45. The fall of a permutation x ∈ Sn is the set
{k ∈ {1, 2, . . . , n} | each letter greater than k in x has the same position parity as k}.
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Proposition 3.46. Let x be a permutation containing letters a and b separated by one
letter. Let k be the greatest letter of different position parity than a and b. Assume that
a and b are not both in the fall of x. Then, x is equivalent to the permutation which is
identical to x except with a and b swapped under the {123, 321}{132, 231}-equivalence.

Proof. Let x be such a permutation with letters a, b, and k as described. Note that k > a
or k > b because a and b are not both in the fall of x. We will prove the proposition
by inducting on n. Assume, inductively, that the result holds for lesser n with a trivial
base case of n = 3. Due to symmetries of the relation, we can assume without loss of
generality that a and k are to the left of b. If k is between a and b, then we simply swap
them. Otherwise, consider the factor of x beginning with k and ending with b. If it is of
length less than n, then applying the inductive hypothesis to it, we are done. If it is of
length n, then n must be even. Thus we can slide the letter 1 to the first or final position
by repeatedly swapping it with the letter two positions to its left or right respectively.
Applying the inductive hypothesis to the remaining n − 1 letters, we can swap a and b.
Then, sliding 1 back to its previous position by repeatedly swapping it with the letter two
positions to its right or left respectively, we reach the desired permutation.

Proposition 3.47. The set of permutations equivalent to a permutation x under the
{123, 321}{132, 231}-equivalence is exactly the set of all permutations with the letters in
their fall being in the same relative order as in x and with all letters having the same
position parity as in x.

Proof. By Proposition 3.46, every permutation in the latter set is equivalent to x. Observe
that under the relation, any permutation equivalent to x must have each letter be of the
same position parity as in x. Therefore, such a permutation must also have the same
fall as x has. The relation never allows two letters in the fall of a permutation to swap
relative positions. Hence, any permutation equivalent to x is in the set.

Corollary 3.48. Let x be a permutation with a fall of size j. Then, the size of the class
containing x is bn/2c!·dn/2e!

j!
under the {123, 321}{132, 231}-equivalence.

Proof. Any two letters of the same position parity not both in the fall of x can be swapped.
There would be bn/2c! · dn/2e! elements in the class if letters both in the fall could be
swapped as well. However, keeping in mind that they can not, we must divide by the
number of ways they can be sorted, j!.

Corollary 3.49. Let l be bn/2c and h be dn/2e. There are
l∑

j=1

j! ·
(
n−j−1
h−1

)
+

h∑
j=1

j! ·
(
n−j−1
l−1

)
classes in Sn under the {123, 321}{132, 231}-equivalence.

Proof. Each class is determined by its fall, the order of the letters in its fall in each
permutation in the class, the position parity of the letters in its fall, and the position
parity of each of the remaining letters. So, if the letters in its fall are of a given position
parity and the fall is of size j (each possibility is summed over in the final equation), then
there are j! possible orderings for the letters in the fall. Then, out of the n− j remaining
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letters, the position parity of the letter n − j is already determined as the opposite of
that of n, but the other n − j − 1 letters can be of either position parity, thus yielding
the binomial coefficient portion of the equation.

3.8 {123,231}{321,213}-Equivalence

Let ik be the identity in Sk and uk be the identity in Sk except with 1 and 2 swapped.

Definition 3.50. A permutation is layered if each letter of one position parity is less
than each letter of the other.

Remark 3.51. Note that when studying the {123, 231}{321, 213}-equivalence, we will often
use the symmetry (specific to the relation) between a permutation and its complement.
(The complement of a permutation a1a2 . . . an is defined as the permutation (n + 1 −
a1)(n+ 1− a2) . . . (n+ 1− an).)

Lemma 3.52. Let x be a permutation in Sn>5 containing a factor which forms either i5
or u5. Then, x is equivalent to either in or un under the {123, 231}{321, 213}-equivalence.

Proof. We will prove this by inducting on n, using S5 and S6 as our base cases. (These
can easily be checked computationally.) Assume the lemma holds in Sn−1. Let x be a
permutation as described. Without loss of generality, x contains a factor forming i5 or u5
in its first n− 1 letters. Applying the inductive hypothesis to the first n− 1 letters, and
then the final n − 1 letters (reaching a permutation ending with n), and then the first
n− 1 letters again, we reach either in or un.

Lemma 3.53. Let n > 5. Let w be a permutation in Sn not equivalent to in or un under
the {123, 231}{321, 213}-equivalence. For symmetry reasons, we may assume without loss
of generality that x begins with a descent. Under the transformations considered, all
permutations equivalent to x begin with a descent as well under the {123, 231}{321, 213}-
equivalence.

Proof. One can check computationally that the lemma holds in S6. Let w ∈ Sn>6 not
be equivalent to in or un, begin with a descent, and be equivalent to a permutation
not beginning with a descent. Then, there is some transformation which connects two
permutations in w’s equivalence class, one of which begins with a descent and one of
which begins with an ascent. Applying the inductive hypothesis to the first six letters
of such a permutation, we rearrange them to form i6 or u6, and by Lemma 3.52, we can
reach either in or un.

Lemma 3.54. Let a be the decreasing permutation and b be the decreasing permutation
with its first two letters swapped, both in Sn>5. Then, a and b are each equivalent to a
different one of in and un under the {123, 231}{321, 213}-equivalence.

Proof. Computationally, one can easily check that this holds for n = 6. For n > 6, we
may rearrange the first 6 letters of a and b to form either i6 or u6. Then, applying Lemma
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3.52, we reach either in or un from each of a and b. Noting that that parity is invariant
under the relation, we conclude that a and b are each equivalent to a different one of in
and un.

For the rest of this subsection, we ask for the reader to remember that Lemma 3.54
makes a permutation being equivalent to ik or uk the same as a permutation being equiva-
lent to a or b (as defined in the proof of the lemma). This means that when a permutation
is equivalent to one of uk or ik, the permutation which is the same but with each letter j
mapped to k − j + 1 is as well; this argument of symmetry, although nontrivial, will be
assumed to work for the rest of the subsection.

Lemma 3.55. Let x ∈ Sn>5 be a layered permutation not beginning with n or n− 1, but
starting with a decrease. Then, x is equivalent to in or un under the {123, 231}{321, 213}-
equivalence.

Proof. Inductively assume the lemma holds in Sn−2, using S6 and S7 as base cases (these
can be checked computationally). Let x be a permutation as described. Assume x is not
equivalent to in or un. We must not be able to apply the inductive hypothesis to the first
n − 2 letters, or else x would be equivalent to in or un by Lemma 3.52. Hence, x must
have n or n− 1 in the final two positions and start with n− 2. Since we must also not be
able to apply the inductive hypothesis to the final n− 2 letters, the third letter in x must
be either n − 1 or n. So, we know that we can slide the right-most of n − 1 and n two
positions to the left through a 123 → 231 or 213 → 321 rearrangement without moving
any other of n, n− 1, or n− 2. Then, applying the inductive hypothesis to the first n− 2
letters, and noting Lemma 3.52, x is equivalent to in or un, a contradiction.

Lemma 3.56. Let x ∈ Sn>5. For symmetry reasons, we assume without loss of generality
that x begins with a decrease. Then, x is equivalent to a layered permutation starting with
n or n − 1 which starts with a decrease or x is equivalent to either in or un under the
{123, 231}{321, 213}-equivalence.

Proof. Let x ∈ Sn be not equivalent to the in or un and begin with a decrease. We assume
inductively that the result holds in Sn−1 with an inductive base case of S6. Applying the
inductive hypothesis to the first n−1 letters of x, we reach a permutation which is layered
in all of its letters but possibly its final letter (otherwise, they could be rearranged as in−1
or un−1, we would be able to apply Lemma 3.52, and x would be equivalent to the identity).
Without loss of generality, this permutation begins with n, n − 1, or n − 2 because its
first n − 1 letters do not form a permutation equivalent to in−1 or un−1 (Lemma 3.55).
This creates the following three cases.

1. The first letter is n. Applying the inductive hypothesis to the final n − 1 letters
(Using symmetry, they may be rearranged to be either layered or to form in−1 or
un−1; by Lemma 3.52, they must form a layered permutation; by Lemma 3.53,
this layered permutation begins with an increase.), we reach a layered permutation
starting with n.
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2. The first letter is n− 1. Applying the inductive hypothesis to the final n− 1 letters
(Using symmetry, they may be rearranged to be either layered or to form in−1 or
un−1; by Lemma 3.52, they must form a layered permutation; by Lemma 3.53,
this layered permutation begins with an increase.), we reach a layered permutation
starting with a n− 1.

3. The first letter is n− 2. Applying the inductive hypothesis to the final n− 1 letters
(Using symmetry, they may be rearranged to be either layered or to form in−1 or
un−1; by Lemma 3.52, they must form a layered permutation; by Lemma 3.53,
this layered permutation begins with an increase.), we reach a layered permutation
starting with a descent and starting with n − 2. By a Lemma 3.55, we reach a
contradiction, as such permutation is equivalent to in or un.

Lemma 3.57. Let x ∈ Sn>5 be a layered permutation beginning with (n − 1) and not
equivalent to in or un under the {123, 231}{321, 213}-equivalence. Then, n is in the final
position of odd parity.

Proof. As a base case, one can show computationally that this holds in S6 and S7. Induc-
tively, it holds in Sn−2. Let w be a layered permutation in Sn>6 beginning with (n − 1)
and not equivalent to in or un. Assume that n is not in the final position of odd parity
in w. Then, so that we can not apply the inductive hypothesis to the first n − 2 letters
and then apply Lemma 3.52 to reach in or un, n must be in the second to final position of
odd parity. Furthermore, so that we can not apply Lemma 3.55 to the final n− 2 letters
and then Lemma 3.52 to reach in or un, the third letter of x must be n − 2. However,
applying the inductive hypothesis to the final n − 2 letters and then using Lemma 3.52,
this means we can reach in or un from x, a contradiction.

Lemma 3.58. Excluding the class containing in and the class containing un, the classes
containing some permutation starting with n in Sn>6 are exactly the classes with permuta-
tions not equivalent to in−1 or un−1 and beginning with an ascent in Sn−1, except with n ap-
pended to the beginning of each permutation in each class, under the {123, 231}{321, 213}-
equivalence.

Proof. Let n > 6. Consider a layered permutation in Sn−1 which is not equivalent to in
or un and which (without loss of generality) starts with an ascent. Appending n to the
beginning, we reach a layered permutation x ∈ Sn. In permutations equivalent to x, n
can never be involved in a hit because by Lemma 3.53, the two letters to the right of
it will always be in increasing order under the relation considered. Thus x is a layered
permutation which is not equivalent to in or un. Now, consider y, an arbitrary layered
permutation not equivalent to in or un. By Lemma 3.52 and symmetry, the final n − 1
letters of y must form a layered permutation not equivalent to in−1 or un−1. Hence, if
y starts with n, then y is one of the permutations found in the manner that x is found,
completing the proof.

Let s ∈ Sn for odd n be the permutation beginning with 2 and then followed by
consecutive values every two positions until the third to final position, ending with 1,
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and then going from right to left, increasing every two positions from the second to final
letter. Let s′ be s except with each letter j mapped to n− j + 1.

Let d ∈ Sn for even n be the permutation starting with 2 and then followed by
consecutively increasing letters every two positions until the second to final position,
ending with 1, and increasing from right to left in the remaining positions. Let f be d
except with the final two letters swapped. Let d′ and f ′ be f and d respectively except
with each letter j mapped to n− j + 1.

Under the transformations considered, parity is maintained. Hence, it is worth noting
that if n ≡ 1 (mod 4), then s and s′ are equivalent only to even permutations; if n ≡ 1
(mod 4) then s and s′ are only equivalent to even and odd permutations respectively; if
n ≡ 0 (mod 4), then d and d′ are only equivalent to even permutations while f and f ′

are only equivalent to odd ones; if n ≡ 2 (mod 4), then d and f ′ are only equivalent to
odd permutations while d′ and f are only equivalent to even ones.

Lemma 3.59. Consider the layered permutations not equivalent to in or un under the
{123, 231}{321, 213}-equivalence which do not begin with 1 or n for n > 6. For odd n,
there are two of them, s and s′, each in a class of size (n + 1)/2. For even n, there are
four of them, d, f , d′ and f ′, each in classes of size n+1, n/2, n+1, and n/2 respectively.

Proof. Assume the lemma holds in Sn−1 and Sn−2 (with inductive base cases of S6 and
S7). For simplification, we will consider only the permutations beginning with a decrease
and note that this describes the others as well by symmetry (and are separate by Lemma
3.53). By the inductive hypothesis for Sn−1, and the inductive hypothesis for Sn−2 working
along with Lemma 3.58 (applied using symmetry so that we append 1 rather than n− 1),
in Sn−1 there is exactly one layered permutation ending with (n−1) and not equivalent to
in−1 or un−1, and two layered permutations with n−1 in the second to final position which
are not equivalent to in−1 or un−1. Recall that any layered permutation not equivalent
to in or un and not beginning with n must begin with n − 1 by Lemma 3.55. Further
noting that the final n−1 letters of such a permutation must form a layered permutation4

with n− 1 in the final position of odd parity (Lemma 3.57), we may conclude that there
are at most 2 layered permutations with n in the second to final position and 1 layered
permutation with n in the final position in Sn which are not equivalent to in or un. By
explicitly describing the classes they determine, we will complete the proof.

Keeping symmetry in mind, it is sufficient to show that s is in a class of size (n+1)/2,
d is in a class of size n + 1, f is in a class of size n/2, and none of these classes overlap.
We will do this by characterizing each class.

The class containing s clearly just contains copies of s except with 1 slid an even
number of positions to its left. So, the class containing s has (n + 1)/2 elements. For
example, in S5 the class contains 25341, 25134, and 12534.

From d, the only transformation is to slide the third to final letter to the right-most
position (321 → 213), bringing us to e. From e, 1 can then be slid two positions to the
left (231→ 123), resulting in e′ (without going back to d, this is the only transformation
possible). From e′, one can rearrange the first three letters as a 231 and then slide 1 two

4Every factor of a layered permutation forms a layered permutation.
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positions to the right. Other than that, without returning to e, from e′, one can only slide
the 1 an even number of positions to the left (repeated 231→ 123 rearrangements), and
choose if the last hit will form a 123 or 231 pattern for each of slide of 1. This results
in 5 + 2(n − 4)/2 = n + 1 permutations being in the class. As an example, in S8, the
class containing d contains 28374651, 28374516, 28371456, 28371564, 28475614, 28137456,
28137564, 12837456, and 1283756.

From f , one can only slide 1 to any position of the same position parity, resulting
in n/2 permutations being in its class. For example, when n = 6, the class contains
263541, 263154, and 216354.

Proposition 3.60. For n > 5 odd, there are 3n− 1 classes in Sn under the
{123, 231}{321, 213}-equivalence. For n > 5 even, there are 3n classes.

Proof. Let n > 6. Permutations equivalent to un or in (or to un or in except with each
letter j mapped to n − j + 1 by Lemma 3.54) fall into two classes, separated by parity.
The remaining permutations fall into the same number of classes as they fall into in Sn−1
(Lemma 3.58), with the exception of, when n is even, four additional classes, and when n
is odd, two additional classes (Lemma 3.59). So, noting the number of classes in S6, for
n > 5 odd, there are 3n− 1 classes, and for n > 5 even, there are 3n classes.

Proposition 3.61. For n > 5, one can easily count the number of permutations in
the class containing in or in the class containing un under the {123, 231}{321, 213}-
equivalence. For the sake of brevity, enumerations are provided inside of the proof.

Proof. Recall that there are two large classes containing permutations equivalent to in or
un in Sn. For n > 6, these classes each consist of the permutations of a given parity not
in the smaller classes which were constructed in the proofs of Lemma 3.59 and Lemma
3.58. To find how many permutations are in each of the two, it is sufficient to count how
many odd and even permutations are in the smaller classes. Let oin, odn, ein, edn be the
number of permutations in these smaller classes that are odd/even and beginning with an
increase/decrease as indicated by the variables. We will keep track of these in a matrix
(as shown below). Bearing in mind the construction of the classes provided in Lemmas
3.59 and 3.58, these variables can be kept track of in the following manner. Let

Hn =

(
oin odn
ein edn

)
.

If n ≡ 0 (mod 4), then

Hn =

(
odn−1 + n/2 ein−1 + n/2
edn−1 + n+ 1 oin−1 + n+ 1

)
.

If n ≡ 1 (mod 4), then

Hn =

(
odn−1 oin−1

edn−1 + (n+ 1)/2 ein−1 + (n+ 1)/2

)
.
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If n ≡ 2 (mod 4), then

Hn =

(
odn−1 + n+ 1 ein−1 + n/2
edn−1 + n/2 oin−1 + n+ 1

)
.

If n ≡ 3 (mod 4), then

Hn =

(
odn−1 oin−1 + (n+ 1)/2

edn−1 + (n+ 1)/2 ein−1

)
.

Keeping these identities in mind, enumerations for the variables fall inductively. As-
sume as the inductive hypothesis that

H4k+0 =

(
4k2 + 3k + 4 4k2 + 3k + 4
4k2 + 3k − 1 4k2 + 3k − 1

)
.

Note that the hypothesis holds for a base case of k = 2. Using the identities, we get
that

H4k+1 =

(
4k2 + 3k + 4 4k2 + 2k + 4

4k2 + 5k 4k2 + 5k

)
,

and that

H4k+2 =

(
4k2 + 7k + 7 4k2 + 7k + 1
4k2 + 7k + 1 4k2 + 7k + 7

)
,

and that

H4k+3 =

(
4k2 + 7k + 1 4k2 + 9k + 9
4k2 + 9k + 9 4k2 + 7k + 1

)
,

and that

H4k+4 =

(
4k2 + 11k + 11 4k2 + 11k + 11
4k2 + 11k + 6 4k2 + 3k + 6

)
=

(
4(k + 1)2 + 3(k + 1) + 4 4(k + 1)2 + 3(k + 1) + 4
4(k + 1)2 + 3(k + 1)− 1 4(k + 1)2 + 3(k + 1)− 1

)
.

Hence, the inductive hypothesis holds for k+ 1. Although we use S8 as our base case,
we only do this for aesthetic reasons. We could instead use S6 (for which the proposition
holds) as a base case, and it is easy to see that the inductive step would still work.

3.9 {123,321}{132,213}-Equivalence

Definition 3.62. Let j and k be two letters in a permutation w. A letter s is a j, k-
extreme if s is positioned between j and k and s is either less than j or greater than
k.

Definition 3.63. Let j and k be two letters in a permutation. We say that j and k are
a dangerous pair of letters when the following requirements are satisfied.

the electronic journal of combinatorics 20(4) (2013), #P10 40



• We require that j is to the left of k, j < k, and both j and k are of the same position
parity.

• We require that there are more j, k-extremes which are of different position parity
than j and k than there are of the same.

Lemma 3.64. Let j and k be two letters in a permutation w. Let w′ be a permutation
reached from w through a single 321 → 123 transformation using the hit h in w. If j
and k do not form a dangerous pair of letters in w, then they are not a dangerous pair of
letters in w′.

Proof. Let j, k, w, w′, and h be as stated. Because of the definition of dangerous, we only
need to consider the case where j is to the left of k, j < k, and j and k are of the same
position parity in w. If the hit h does not contain j or k, then the lemma is trivial. The
hit cannot contain both j and k because j < k and j is to the left of k. If the hit contains
only one of j and k, then by symmetry, we may assume without loss of generality that it
contains j. Hence, there are three cases.

1. In this case, j is the first letter of h. Then, in w′, there are two less j, k-extremes
(acting as 2 and 1 in h) than in w, one of each position parity. Hence, j and k are
not a dangerous pair of letters in w′.

2. In this case, j is the second letter of h. Then, in w′, a j, k-extreme of different
position parity than j and k (acting as 1 in h) is replaced with a letter which may
or may not be a j, k-extreme (acting as 3 in h). Hence, there still are still as least as
many j, k-extremes of the same position parity as j and k as there are of different
position parity in w′, and j and k are not a dangerous pair of letters in w′.

3. In this case, j is the final letter of h. Since the transformation using h only adds
letters to the set of letters which are between j and k, the number of j, k-extremes of
each position parity can only increase. If a j, k-extreme of different position parity
than j and k is added (acting as the 2 in h), then so is one of the same position
parity (acting as the 3 in h). Hence, j and k are not a dangerous pair of letters in
w′.

Definition 3.65. A permutation is zipped if for each letter except for the final two letters,
the letter two positions to its right is smaller.

Definition 3.66. A permutation is k-downed for k > 0 if every permutation which can
be reached through a single 123→ 321 rearrangement is k− 1-downed. A permutation is
0-downed if it is zipped.

Proposition 3.67. Let d be a downed permutation and w be a permutation equivalent
to d under the {123, 321}{132, 213}-equivalence. Let k be the number of transformations
needed for d to be reached from w. Then, w is k-downed and both 132 and 213 avoiding.
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Proof. We will prove this by inducting on k, with a trivial base case of k = 0. Assume as
the inductive hypothesis, that the proposition holds for all smaller k. Let d and w be as
described. Since w is reachable from d through some k transformations, let us pick such
a sequence of transformations and let r be w after the first transformation which uses the
hit h. By the inductive hypothesis, r is k − 1-downed. If w is reached from r through a
123→ 321 transformation, then w is k−2-downed, which cannot be. If w is reached from
r through a 132↔ 213 transformation, then r is a k−1-downed permutation which is not
132 and 213 avoiding, a contradiction. Hence, w is reached from r through a 321→ 123
rearrangement.

Since w can be reached from d through as sequence of 321→ 123 transformations, by
Lemma 3.64, w contains no pair of dangerous letters. Hence, w is 231 and 213 avoiding
since both patterns contain a pair of dangerous letters.

It remains to show that w is k-downed. Because of the inductive hypothesis, it is suffi-
cient to show that any 123→ 321 transformation applied to w brings us to a permutation
r′ which can be reached from d through k − 1 transformations5. Let r′ be a permutation
reached from w through a single 123→ 321 rearrangement using the hit h′. If h′ = h then
r′ = r which clearly can be reached from d in k transformations. If h includes just some
of the letters of h′, then the letters around and including h must form a 1234 pattern; in
r, this becomes a pattern which contains a 132 or 213 pattern, which cannot be. In the
final case, h′ and h do not use any of the same letters. Let x be the permutation reached
from r by rearranging h and from r′ by rearranging h′. Since x can be reached from r
through a 123 → 321 rearrangement, it is k − 2-downed, and hence reachable from d in
k − 2 transformations. Thus r′ is reachable from d in k − 1 transformations, and we are
done.

Definition 3.68. A permutation is partially zipped if for each letter but the final three
letters, the letter two positions to its right is smaller, and the final two letters are 1n.

Definition 3.69. A permutation is k-pdowned for k > 0 if every permutation which can
be reached through a single 123→ 321 rearrangement is k− 1-pdowned and each permu-
tation reached through a single 1nl → l1n rearrangement is k-pdowned. A permutation
is 0-pdowned if it is zipped.

Note that the preceding definition is both explicitly and implicitly recursive, with two
actual recursion parameters. Given the shortest path of transformations from a k-downed
permutation and a 0-downed permutation, we use both k, the parameter for the number
of 123→ 321 rearrangements in this path, and the number of 1nl → l1n rearrangements
in the path as parameters.

Definition 3.70. A pair of letters in a permutation is pdangerous if the pair is dangerous
and one of the following is true.

• Neither letter is 1 or n.

5Note that r′ cannot be i-downed for i < k − 1 because then w would not require k transformations
to be reached from d.
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• Exactly one of the two letters is 1 or n and the other of 1 or n is not between the
two letters.

Lemma 3.71. Let w be a permutation which contains no pair of pdangerous letters, which
has 1 and n with different position parities and which has 1 to the left of n, and for which
the letters positioned between 1 and n can be paired up so that each letter with the same
position parity as 1 is paired with a smaller letter of the same position parity as n. Let w′

be a permutation reached from w with a single 321→ 123 rearrangement or a l1n→ 1nl
rearrangement. Then, w′ satisfies the properties noted for w.

Proof. If the rearrangement going from w to w′ does not involve n or 1, then this falls from
Lemma 3.64. If the rearrangement involves both n and 1, then it must be ln1→ 1nl. In
this case, the set of letters between 1 and n does not change; no pair of letters with either 1
or n can be pdangerous because 1 and n are adjacent; and any pair of pdangerous letters,
j and k, remains pdangerous after the transformation because if either 1 or n changes its
state of being a j, k-extreme, so does the other which is of different position parity.

In the remaining case, the transformation from w to w′ uses exactly one of n or 1. Let
h be the hit in w involved in the transformation. Because of symmetry, we can assume
without loss of generality that h uses n as its first letter and is of the form nab in w and
ban in w′. By Lemma 3.64, no pair of letters in w′ which does not include one of n or 1
can be pdangerous in w′ which was not pdangerous in w. Pairing up a with b, we see that
the claim of “the letters positioned between 1 and n can be paired up so that each letter
with the same position parity as 1 is paired with a smaller letter of the same position
parity as n” still holds after the transformation. As a consequence, a and 1 cannot form
a pdangerous pair in w′ because because there are at least as many 1, a-extremes with
the same position parity as 1 and a as there are with different position parity; this means
there are no pdangerous pairs of letters including 1 in w′. As an additional consequence, n
cannot be in a pdangerous pair in w′ because the pair of letters would have the same letters
between them as in w except with the addition of a and b; since a being a j, n-extreme
implies b is as well, there are still at least as many j, n-extremes with the same position
parity as n and j as there are with different position parity. So, w′ has no pdangerous
pairs of letters.

Lemma 3.72. Let w be a k-pdowned permutation with 1 and n adjacent. Let w′ be w
after a j1n→ 1nj rearrangement. Then, w′ is k-pdowned.

Proof. Let w and w′ be as specified. Let h and h′ be the hit w and w′ respectively which
can be rearranged to obtain w′ and w respectively. It is trivial to note that rearranging h′

in w′ yields a k-downed permutation. We need to show that any 123→ 321 rearrangement
in w′ using the hit g results in a k − 1-pdowned permutation. Assume inductively that
the lemma holds for lower k, with a trivial inductive base case of k = 0. Since w is
k-pdowned, w with 1n slid to the right-most position, yielding x, is k-pdowned as well.
Note that x is also equal to w′ with 1n slid to the right-most position. Since g cannot
involve 1 or n, g is still a hit in x using the same letters as in w′. Let x′ be x but with that
hit rearranged. Since x is k-pdowned, x′ is k − 1-pdowned. Note that x′ can be reached
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from w′ with g rearranged be sliding 1n to the end of w′ with g rearranged. Therefore,
by repeated applications of the inductive hypothesis, we see that w′ with g rearranged is
k − 1-pdowned as well, and we are done.

Proposition 3.73. Let d be a partially zipped permutation and w be a permutation equiv-
alent to d under the {123, 321}{132, 213}-equivalence. Of the transformations needed for
d to be reached from w in the fewest number of transformations possible, let k be the least
number of necessary transformations which are not 1nj → j1n. Then, w is k-pdowned.
Furthermore, w is 132 and 213 avoiding except for when 1 and n act as 1 and 3 respec-
tively.

Proof. Let d and w be as stated. If 1 and n are adjacent in w, then by Lemma 3.72,
we may assume that w ends with 1n. We will assume inductively that the lemma holds
for smaller k, with a trivial base case of k = 0. Since w is reachable from d through a
series of transformations, k of which are not 1nj → j1n, let us pick such a sequence of
transformations and let r be w after the first transformation which uses the hit h. If h
is a 132 or 213 pattern that does not use 1 and n as 1 and 3, then r is a k − 1-pdowned
permutation containing a 132 or 213 pattern of that form, a contradiction. Note that h
cannot be 1nj for any j since we already assumed that if 1 and n are adjacent, they are
at the end of w. If w is reached from r through a j1n→ 1nj transformation, then by the
inductive hypothesis, w is k−1-pdowned, a contradiction. If w is reached from r through
a 123 → 321 transformation, then by the inductive hypothesis, w is k − 2-pdowned, a
contradiction. Hence, w is reached from r through a 321 → 123 rearrangement and by
the inductive hypothesis, r is k − 1-pdowned.

Since r is k − 1-pdowned and r is reached from w by a 123 → 321 rearrangement,
by repeated applications of Lemma 3.71 (noting that the lemma can be applied to any
partially zipped permutation), w must meet the requirements set by the lemma. As a
consequence, w is 132 and 213 avoiding except for when 1 and n act as 1 and 3 respectively.

It remains to show that w is k-pdowned. Because of the inductive hypothesis, it is also
sufficient to show that any 123 → 321 or 1nj → j1n transformation applied to w brings
us to a permutation r′ from which d can be reached through 1nj → j1n and 123 → 321
transformations, k − 1 of which are 123 → 321. Recall that we already assumed no 1nj
hit exists, so we do not need to consider that case. Let r′ be a permutation reached from
w through a single 123 → 321 rearrangement using the hit h′. If h′ = h then r′ = r
which is k − 1-pdowned. If h and h′ do not use any of the same letters, then let x be
the permutation reached from r by transforming h′ and from r′ by transforming h; noting
the inductive hypothesis, x is k − 2-pdowned. Hence, d is reachable from r′ through
1nj → j1n and 123 → 321 transformations, k − 1 of which are 123 → 321. In the final
case, h and h′ share some but not all of their letters. Since, h and h′ share some letters,
the letters surrounding h must form the permutation 1234 where h is the final or first
three letters of the permutation. In order for r to be 132 and 213 avoiding except for
cases where 1 and n play the role of 1 and 3, 1 and n must play the role of 1 and 4 in
the 1234. Hence, in order for h′ to exist in w, it must contain the other of either the first
three or final three letters in the 1234. Let x be w except with the 1234 rearranged as
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3214. Either r is x or r with a 1nj → j1n rearrangement is x. Hence, x is k−1-pdowned.
Either r′ is x or r′ with a 1nj → j1n rearrangement is x. Hence, d is reachable from r′

through 1nj → j1n and 123 → 321 transformations, k − 1 of which are 123 → 321 and
we are done.

Proposition 3.74. Let f(n) be the number of classes created in Sn under the
{123, 321}{132, 213}-equivalence for n > 4. Then,

f(n) =

(
n

bn/2c

)
+

(
n− 2

b(n− 2)/2c

)
+ 3.

Proof. Let n be > 5. By Proposition 3.67 and Proposition 3.73, zipped and partially
zipped permutations are each in their own classes. This accounts for the first two terms
of the formula. We will show that the remaining permutations fall into 3 classes.

There must be at least three remaining classes because the number of inversions in a
permutation modulo 3 is an invariant in the relation considered. We will now show that
all permutations in the remaining classes (for n > 5) are equivalent to one of 12543678 . . .,
21435678 . . ., and 12435678 . . .. It is not hard to see that these permutations have 3, 2,
and 1 inversions respectively, putting them into each of the three prospective classes. Our
reason for choosing them is because each has a 132 hit starting in the second position.
This will be useful to us shortly.

Let w be a permutation not equivalent to a zipped or partially zipped permutation.
Through repeated applications of 123→ 321, one can reach a 123 avoiding permutation.
Because the permutation is not zipped or partially zipped, it must contain a 132 or 213
pattern. If 1 and n are in the said pattern, we can slide them to the right-most positions
and repeat the process on the remaining letters, bringing us to a permutation which
contains a 132 or 213 pattern which does not use both 1 and n. Hence w is equivalent to
some w′ which contains a 132 or 213 pattern not using 1 and n as the letters 1 and 3.

If w′ has a 132 or 213 hit in the first n− 1 letters such that it does not use both the
smallest and largest of the n−1 letters or in the final n−1 letters such that it does not use
both the smallest and largest of the n− 1 letters, we define w′′ as w. Otherwise, if w′ has
only one 132 or 213 hit which does not use both n and 1, the said hit is in the right-most
position and contains both 1 and n, n is in the first position of w′, then arranging the
hit as 132, we reach a w′ such that its first n− 1 letters form a permutation containing a
213 hit that does not use both the highest and lowest letter. Similarly, if 1 is in the final
position of w′ and the only 132 or 213 hit not using 1 and n in w′ instead uses n and 2
and is in the final three positions, then arranging the hit as 213, we reach a w′′ such that
the final n − 1 letters contain a 132 pattern does not use both the highest and smallest
letter of those n− 1 letters.

If w′ has a 132 or 213 hit in the first n− 1 letters such that it does not use both the
smallest and largest of the n−1 letters or in the final n−1 letters such that it does not use
both the smallest and largest of the n− 1 letters, we define w′′ as w′. Otherwise, (noting
symmetry) w′ either begins with 1 and ends with 2jn or j2n or ends with 1 and begins
with 2jn or j2n for 2 < j < n. In each of these cases, if we were not able to already define
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w′′ simply as w, it is not hard to see that a rearrangement of the hit creates a new 132 or
213 hit either starting with the second letter or ending with the second to final letter of
the new permutation. This yields a w′′ which has a 132 or 213 hit in the first n−1 letters
such that it does not use both the smallest and largest of the n− 1 letters or in the final
n− 1 letters such that it does not use both the smallest and largest of the n− 1 letters.

Assume as an inductive hypothesis for the rest of the proof, that any permutation
containing a 132 or 213 pattern not using both 1 and n in Sk for k < n is equivalent to
one of 12543678 . . ., 21435678 . . ., and 12435678 . . .. The base cases of k = 5 and k = 6 for
this induction are easy to check computationally. We will now show that w′′ is equivalent
to one of 12543678 . . ., 21435678 . . ., and 12435678 . . ., completing the proof. If w′′ has a
hit in the first n − 1 letters not using the highest and smallest letter of those first n − 1
letters, we apply the inductive hypothesis to them, reaching x. Because of the hit that x
has in the final n− 1 letters (starting with the second letter), we can apply the inductive
hypothesis to the final n− 1 letters to reach x′ which has n in the final position. Finally,
applying the inductive hypothesis to the first n − 1 letters (using the hit starting in the
third position), we are done. If instead, w′′ initially has a 132 or 213 pattern in the final
n− 1 letters not using both of the highest and lowest letters in the final n− 1 letters, we
can apply the inductive hypothesis to the final n − 1 letters to reach an instance of the
case we have already covered.

3.10 {123,231}{213,312}-Equivalence

We will first count the number of classes which contain only 123 and 231 avoiding per-
mutations.

Definition 3.75. A peak in a word is a letter that is greater than each of its adjacent
letters in the word. A dip in a word is a letter that is less than each of its adjacent letters
in the word.

Definition 3.76. The 321-leading factor of a permutation w is the factor containing the
letters before the first occurrence of 321 in w as well as the first letter of that occurrence.
If there is no occurrence, then it is simply w.

Definition 3.77. We consider the k-length of a permutation to be the number of peaks
in its 321-leading factor.

Definition 3.78. We define the 321-leading segments of a permutation w to be the factors
beginning with the final two letters of a 321 hit and going to the first letter of the next
321 hit. The 321-leading factor as well as the factor going from the second letter of the
final 321 hit to the end of a permutation are considered 321-leading segments as well.

Definition 3.79. The k-length of a 321-leading segment is the number of peaks in the
321-leading segment.

Definition 3.80. We say that a permutation w is compact if it satisfies one of the following
two conditions.
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• (condition 1) w begins with a decrease. The 321-leading factor of w is alternating,
with the letters in the odd positions of the factor being the largest letters in w.
Also, The portion of w not included in the 321-leading factor, w′ either satisfies this
condition (recursively) or is of length 0. Finally, if it is not of length 0, then where
k is the k-length of w, k′ is the k-length of w′, and j is the value of the letter in the
final dip of 321-leading factor of w, we have k + k′ 6 n− j.

• (condition 2) w begins with an increase. The final n− 1 letters of w form a permu-
tation satisfying condition 1.

Proposition 3.81. Each compact permutation is only equivalent to permutations avoiding
both 123 and 231 under the {123, 231}{213, 312}-equivalence. Each class containing only
permutations avoiding both 123 and 231 contains exactly one compact permutation.

Proof. We will first show that each compact permutation determines a unique class con-
taining only 123 and 231 avoiding permutations. We claim that the class containing a
compact permutation w contains exactly the permutations which are w except with the
peaks in each 321-leading segment rearranged arbitrarily. Assume as the inductive hy-
pothesis that the claim holds for permutations with r or less 321-leading segments (with
the base cases of r = 1 and r = 0 being fairly obvious).

Let w be a compact permutation with r+ 1 321-leading segments. Let w′ be w except
excluding the 321-leading factor. Let l be the 321-leading factor of w and l′ be the 321-
leading factor of w′. Let k be the k-length of w, k′ be the k-length of w′, and j be the
value of final dip l (if it does not exist, then the 321-leading factor of w is of size 1 and
the claim easily falls from the inductive hypothesis). Note that l ends with a peak since
otherwise, there would be a 321-leading factor prior to the first one in w. Recall that
w is compact. Since all of the dips in l are less than or equal to j, all of the peaks in
l are among the greatest k letters of w, all of the peaks of l′ are among the greatest k′

letters of w′, and k + k′ 6 n − j, each peak in l′ is greater than j (observation 1). By
the inductive hypothesis, the permutations contained in the equivalence class of w′ are
simply copies of w′ where the peaks in each 321-leading segment are possibly scrambled
(observation 2). Also, by the inductive hypothesis, the permutations contained in the
equivalence class of l are simply copies of l except with its peaks arbitrarily scrambled
(observation 3). By observations 1, 2, and 3, for any permutation x reachable from w
by rearrangements of hits in l and rearrangements of hits in w′, the letter immediately
following l is a peak in w′ which is greater than j. We also know the said letter is less
than the peak immediately following j. Hence, j and the two letters following it form a
132 pattern in x. Since the three letters following j form a 321 pattern in x, there is no
hit in x containing both letters from l and w′. Therefore, the class containing w contains
only versions of w where the peaks within each 321-leading segment have been scrambled
arbitrarily and only permutations avoiding 123 and 231. Thus w uniquely determines
such a class.

We will now show that every class C containing only 123 and 231 avoiding permuta-
tions contains a compact permutation w, thus completing the proof. Let x be a permu-
tation in such a class C. Applying repeated 213 → 312 rearrangements to x, we reach
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a permutation w consisting only of 321, 132, and 312 patterns. We will prove that this
permutation either meets condition 1 or condition 2. Assume as the inductive hypothesis
that this claim is true if w were to have m or less 321-leading segments (with a base case
of m = 0). Assume w has m + 1 321-leading segments. The 321-leading factor of w is
alternating, has peaks decreasing from left to right, and dips increasing from left to right.
The peaks of the 321-leading factor of w must be the largest letters in the w because
otherwise a 123 or 213 would occur somewhere. By the inductive hypothesis, the portion
of w not included in its 321-leading factor satisfies condition 1. Finally, if there are more
than one 321-leading segments in w, then where k is the k-length of w, k′ is the number
of peaks in the second to left-most 321-leading segment in w, and j is the value of the
final dip in the 321-leading factor of x, k+ k′ 6 n− j. This inequality must hold because
otherwise a peak in the second 321-leading segment in w which has value less than j could
be moved to the position two to the right of j, forming a 231 pattern, a contradiction.
Thus w is compact.

Proposition 3.82. Let g(n, k) count the number of permutations meeting condition 1 for
compactness and with a 321-leading factor containing k− 1 dips and k peaks. We assume
that k is such that at least one such permutation exists. Then,

g(n, k) =



1, if n = 1 or n− 2k + 1 = 0
b(n−1)/2c∑

j=1

g(n− 1, j), if k = 1

n−k∑
x=k−1

n−k−x∑
j=1

(
x−1
k−2

)
· g(n− 2k + 1, j), otherwise.

Proof. If n = 1, then it is trivial that k = 1 and g(n, k) = 1. If n − 2k + 1 = 0, then
there is only one permutation which g(n, k) counts, having peaks in decreasing order and
containing the larger half of the letters, and the dips increasing from left to right and
containing the remaining letters.

Otherwise, if k = 1, then we need the number of possible permutations of size n −
1 satisfying condition 1. (We know n − 1 > 0; we can simply append n to each of
these permutations.) We define j as the number of peaks in the 321-leading factor of a
permutation in Sn−1. Then, j can be anywhere from 1 to b(n− 1)/2c. So,

g(n, k) =

b(n−1)/2c∑
j=1

g(n− 1, j).

Otherwise, we know that n > 1, k > 1, and n− 2k − 1 6= 0. Let w be a permutation
counted by g(n, k) in this case. We define x to be the value of the final dip in the 321-
leading factor of w. Because the dips in the 321-leading factor increase from left to right,
x is at least k− 1. Because the largest k letters in w are used in peaks of the 321-leading
factor, x is at most n− k. However, x can be any value in-between inclusive. We define
j to be the number of peaks in the second 321-leading segment of w. Note that j can
be anywhere between 1 and n− k − x inclusive (by the inequality in condition 1). Now,
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given x and j, we choose k−2 dips in the 321-leading segment of w (x is already chosen).
They can have any values less than x. So, there are

(
x−1
k−2

)
choices. Then, we choose w′,

the permutation created by the letters to the right of the 321-leading factor of w. There
are g(n− 2k + 1, j) choices for w′. So, we get

g(n, k) =
n−k∑

x=k−1

n−k−x∑
j=1

(
x− 1

k − 2

)
· g(n− 2k + 1, j).

Proposition 3.83. Let the function g be defined as in the previous proposition. Let f(n)
be the number of classes in Sn under the {123, 231}{213, 312}-equivalence. Then,

f(n) =

bn/2+1c∑
k=1

g(n+ 1, k) + n− 2.

Proof. First, we calculate the number of classes containing only 123 and 231 avoiding
permutations. The number of these containing permutations starting with a decrease is

b(n−1)/2c∑
k=1

g(n+ 1, k).

This is also the same as the number of such classes in Sn+1 containing only permutations
starting with a 321 pattern (we create a bijection by just appending n + 1 to the left).
The number of such classes Sn that contain permutations starting with an increase is
the same as the number of such classes in Sn+1 containing permutations starting with a
decrease but not with a 321. This falls from the definition of condition 2. Adding these
together, we get that the number of such classes in Sn is the number of such classes in Sn+1

starting with a 321 added to the number of such classes in Sn+1 starting with a decrease
but not a 321, which is just the number of classes containing only 123 and 231 avoiding

permutations starting with a decrease in Sn+1. We know that this is
bn/2+1c∑

k=1

g(n+ 1, k).

Now, will calculate the number of classes containing at least one permutation which
contains a 123 or 231 pattern. First we note an invariant. Let w be a permutation in
Sn. If 1 and 2 are of the same position parity as each other and 1 is to the left of 2,
then they cannot be involved in a hit with each other until one of them changes position
parity under the transformations considered. However, unless they are in the same hit,
they always both act as 1 in any hit, thus maintaining their position parity. So, in this
case, 1 and 2 can never swap relative order and can never change position parity under
the transformations considered. Then, if 3 is to the right of 2 and of the same position
parity, then 3 and 2 can never swap relative order or change position parity. Similarly, if
the k smallest letters are ordered increasing from left to right and are of the same position
parity, then none of their position parities can ever change and none of them can ever
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swap relative order. So, the highest k for which this is true and the parity of the lowest k
letters for a permutation does not change under the transformations considered. Let k be
that highest such k for a given permutation w in Sn. If 1 has an odd position, k can have
any of dn/2e values. If 1 has an even position, k can have any of bn/2c values. However,
in the case where every odd position is less than every even position or vice versa, w is
in one of the 123 and 231 avoiding classes. Hence, there are at least n− 2 classes which
contain a permutation containing 123 or 231 patterns fall into.

We will now show that permutations containing a 123 or 231 fall into exactly n − 2
classes. Let w ∈ Sn contain either a 123 or 231 pattern. Let k be the largest k such
that the lowest k letters are in increasing order from left to right and each of the same
position parity in w. Let p be the position parity of 1 in w. We will show that w is
equivalent to w′, the permutation which increases from left to right except with 1 inserted
in the left-most position with parity p and the next k − 1 letters in value inserted every
two positions to its right. (e.g., if k = 3, n = 8, and 1 is of odd position parity, then
w′ = 14253678.) Assume as an inductive hypothesis that this claim holds in Sn−1 (with
the base cases of n 6 5 easy to check). Note that all such w′ have their final three letters
in increasing order because we are not considering the cases where all the letters of one
position parity are greater than those of the other.

If a 123 or 231 pattern occurs only in the final three letters of w, then applying the
inductive hypothesis to the final n− 1 letters, we reach a permutation where that is not
the case. Hence, we may assume that w has a 123 or 231 pattern in its first n− 1 letters.
We apply the inductive hypothesis to them, reaching a permutation x which has the three
letters preceding its final letter in increasing order. If 1 is in the first position of x, then
we apply the inductive hypothesis to the right-most n− 1 letters of x and reach w′. If 1
is in the second position in x, then we apply the inductive hypothesis to the right-most
n − 1 letters of x to reach x′ which has its final three letters in increasing order. If x′

is not w′, then through an application of 312 → 213, we place the first letter in w′ in
the first position in x′ (note that this letter was previously in the third position in x′).
Then, applying the inductive hypothesis to the right-most n − 1 letters, we reach w′. If
1 is in the final position of x, then we apply the inductive hypothesis to the final n − 1
letters, reaching a permutation which starts with some letter t and increases afterwards,
m. Applying the inductive hypothesis to the first n− 1 letters of m and then the to the
final n− 1 letters, we are done (and we reach the identity). Hence, w and w′ are always
equivalent and the proposition holds.

3.11 {123,132}{213,231}-Equivalence

Proposition 3.84. There are 2n−1 classes in Sn under the
{123, 132}{213, 231}-equivalence.

Proof. For n 6 5, this can be shown computationally. For n > 5, this falls from Theorem
4.7 (proved in Subsection 4.1).
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Corollary 3.85. Let w be in Sn>1 and w′ be w with n struck. The size of the equivalence
class of w under the {123, 132}{213, 231}-equivalence is the size of the class containing
w′ if n is in the first position in w and is the size times n− 1 of the class containing w′

otherwise.

Proof. For the sake of brevity, we leave this as a simple exercise for the reader.

Corollary 3.86. The number of permutations in Sn in the class containing the identity
under the {123, 132}{213, 231}-equivalence is (n− 1)!.

Proof. As a result of Corollary 3.85, this falls from straightforward computation.

3.12 {123,321}{213,231}-Equivalence

In this subsection, we use several results proven in Subsection 4.3.

Lemma 3.87. All non-avoiding permutations are equivalent in Sn for n > 5 under the
{123, 321}{213, 231}-equivalence.

Proof. Assume inductively that the result holds for smaller n (with a base case of n = 6).
Let n > 6. By Proposition 4.16, each non-avoiding permutation in Sn is equivalent to some
middled permutation. It follows from Theorem 4.17 that every permutation is equivalent
to the identity in Sn.

Proposition 3.88. There are 3 classes in Sn under the {123, 321}{213, 231}-equivalence
for n > 5.

Proof. By Lemma 3.87, there is one nontrivial class. It is easy to check that there are
always two trivial classes.

Corollary 3.89. The class containing the identity in Sn contains n! − 2 elements for
n > 5 under the {123, 321}{213, 231}-equivalence.

Proof. This is because all n!− 2 of the non-avoiding permutations are reachable from the
identity.

3.13 {123,231}{132,321}-Equivalence

Proposition 3.90. There are 2n−1 classes in Sn under the {123, 231}{132, 321}-
equivalence.

Proof. One wants to show inductively that the permutations with the letter 1 in an odd
position (type 1) break into 2n−2 classes and that those with 1 in an even position (type
2) break into 2n−2 classes, thus completing the proof. For the sake of brevity, we leave
this as an exercise for the reader.
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Definition 3.91. A permutation is trivializable if is equivalent to the identity.

Proposition 3.92. In Sn, under the {123, 231}{132, 321}-equivalence, the number of triv-
ializable permutations is dn/2e!2 if n is even and dn/2e!2/dn/2e if n is odd. By symmetry,
the same holds for the number of permutations equivalent to the descending permutation.

Proof. We leave this proof as an exercise for the reader. It basically relies on the fact
that the permutations in the class containing the identity in Sn are the permutations in
the class containing the identity in Sn−1, except with a new smallest letter inserted in an
odd-numbered position.

3.14 {132,231}{213,312}-Equivalence Experimental Data

Table 1 provides computational data for the number of classes created in Sn by the
{132, 231}{213, 312}-equivalence for n 6 12. This equivalence is the only replacement
partition of S3 with two nontrivial parts, each of size two, which has yet to be enumerated.

Table 1: The number of classes created in Sn by the {132, 231} {213, 312}-equivalence.

n 3 4 5 6 7 8 9 10 11 12
# classes 4 10 26 76 234 782 2804 10972 47246 224648

4 General Results

In this section, we discuss several general trends that arise in the study of pattern-
replacement relations, such as when equivalence classes can be counted using pattern-
avoidance (Subsection 4.1), when two pattern-replacement relations are the same (Sub-
section 4.2), and the role of stooge-sort-like algorithms in counting equivalence classes
(Subsection 4.3).

4.1 Connecting pattern-avoidance to the enumeration of equiv-
alence classes

In this subsection, we study the connection between pattern-avoidance and the enumer-
ation of equivalence classes.

Let P be a partition of Sc. Let D be the set of permutations which are lexicographically
smaller than every other permutation in their part. Let U = Sc \D.

We define Nn as the number of classes in Sn under the P -equivalence. We define An

as the number of permutations in Sn which avoid each permutation in U .
In Theorem 4.7, we show that for any k > 2c − 1, Nk = Ak =⇒ Nn = An for

all n > k. Although the result is quite simple, its effects are wide-ranging. Among
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its uses in this paper have been to prove that there are 2n−1 classes in Sn under the
{123, 132}{213, 231}-equivalence (Proposition 3.84), and as one proof that there are 2n−1

classes in Sn under the {123, 132, 231}-equivalence (Remark 2.16). The fact that we
can use it in the case of the {123, 132, 231}-equivalence in particular says something
interesting about the power of Theorem 4.7. Indeed, the other proof that we provide for
the enumeration uses a clever complete invariant; it seems very unintuitive that we can
actually prove the enumeration without ever noting the very invariant that seems to causes
it. [2] studied pattern-replacement equivalences where one does not require that letters
in patterns be consecutive in a permutation; this modified concept of an equivalence was
referred to as P

· ·· · -equivalence for the replacement partition P . It is trivial to modify
the proof of Theorem 4.7 so that it holds for these equivalence relations as well6. Thus,
the result can also be used to provide very short alternative proofs of the enumeration of
the classes for each of the {123, 132} · ·· · -equivalence and the {123, 132, 213} · ·· · -equivalence.
Although the theorem serves as an alternative proof for each of these results, one should
not consider it to substitute their proofs; each of the already known proofs provide insight
into the characterization of the equivalence classes in Sn, while the theorem does little
more than to enumerate them.

Definition 4.1. We say that a rearrangement of a hit from U to be a hit from D is a
down jump.

Definition 4.2. We call w an avoider if w avoids each permutation in U .

Note that this notion of an avoider is slightly different from the one used in the other
sections of the paper.

Definition 4.3. We say that the height of a permutation w is the largest k such that
through k down jumps, we may go from w to an avoider (Lemma 4.6 shows that such a
k exists).

Definition 4.4. We say that a permutation is secure if after repeatedly performing down
jumps to it, we always reach the same avoider.

Definition 4.5. A pair of permutations is matched if each permutation in the pair is
secure, and repeated down jumps applied to one of the permutations in the pair brings
us to the same avoider as repeated down jumps applied to the other.

Lemma 4.6. Let w ∈ Sn. If we repeatedly perform down jumps on w, we will eventually
reach an avoider.

Proof. Each down jump brings us to a permutation which is lexicographically smaller.
Since there are a finite number of permutations in Sn, repeated down jumps must always
eventually bring us to an avoider.

6For the sake of brevity, we do not provide the modified proof here. However, one only needs to
redefine Nn as the number of classes in Sn under the P

· ·· · -equivalence, redefine the notion of avoidance
to not require that letters in patterns be adjacent, and to redefine f in the proof of Theorem 4.7 as a
subword rather than a factor.
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Theorem 4.7. Let k > 2c− 1. If Nk = Ak, then Nn = An for all n > k.

Proof. Since Nk = Ak, we may conclude that each class in Sk contains exactly one avoider
(by Lemma 4.6). Hence, each permutation in Sk is secure.

Assume that each of the permutations in Sn>k of height 6 h − 1 are secure. We will
show that so are each of the permutations in Sn of height h. The base case for this
induction of h = 0 is trivial.

Let w be a permutation in Sn of height h. Let a and b be permutations which can be
reached from w through a down jump using hits x and y respectively. By the inductive
hypothesis, a and b are secure. By showing that a and b are matched, we will establish
that w is secure.

If x and y are the same, then a = b and a and b are trivially matched.
If x and y are disjoint, then let w′ be w except with each hit x and y rearranged in

the same manner as in a and b respectively. Then, w′ is matched to each of a and b since
it can be reached from either by a down jump and because of the inductive hypothesis.
Hence, a and b are matched.

If x and y overlap but are not equal, then we consider a factor7 f of w containing both
x and y which is of size k. We define f ′ as the avoider reached from f through repeated
down jumps. (f is secure since it is in Sk.) Rearranging f as f ′ in w, we reach a secure
permutation w′ by the inductive hypothesis. Furthermore, since f is secure, f ′ and f with
either of x or y rearranged in a down jump are matched. This implies that a is matched
to w′ and b is matched to w′. Hence, a and b are matched.

Thus, each permutation in Sn>k is secure. Hence, no two avoiders in Sn are equivalent.
Since every permutation in Sn is equivalent to an avoider (Lemma 4.6), Nn = An.

4.2 Two Relations Can Be Equivalent

It is easy to not notice the importance of a very simple equivalence between pattern-
replacement relations. For a partition P of Sc, in Sn>c, the P -equivalence is the same
as the P ′-equivalence where P ′ is the partition of Sc+1 into which the P -equivalence
partitions Sc+1. For the {213, 231, 312, 321}-equivalence (enumerated by Proposition 2.5),
for example, this is fairly useful. It tells us that our results describing the equivalence
classes under the relation also describe the classes under the {W ⊂ Sc|W = {w ∈ Sc|wk =
n − k + 1 for k < i, wi 6= n − i + 1 if i 6= n}, 1 6 i 6 n}-equivalence in Sn>c for any
c. This equivalence between pattern-replacement relations also plays an interesting role
with regard to Theorem 4.7. In fact, a pattern-replacement relation that is not confluent
when expressed with a replacement partition of Sc can be confluent when expressed as a
replacement partition of Sk>c.

We now consider when the P -equivalence and P
· ·· · -equivalence are the same.

Theorem 4.8. Let P be a partition of Sc such that the equivalence classes in Sk are
the same under both the P -equivalence and the P

· ·· · -equivalence for some k > c. Then,

7As noted previously, to modify the proof to hold for the P
· ·· · -equivalence, we simply consider a

subword rather than a factor.
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the equivalence classes in Sn are the same under both the P -equivalence and the P
· ·· · -

equivalence for all n > k

Proof. Assume that the theorem holds in Sn−1 with an inductive base case of n = k.
Let w and w′ in Sn be two permutations equivalent under the P

· ·· · -equivalence through a
single replacement using the hit h in w. By showing that w and w′ are also equivalent
under the P -equivalence, we will have completed the proof (since the other direction of
implication is trivial).

Let j be the left-most position that does not contain a letter in h in w. Let x be w
with wj struck and x′ be w′ with wj struck. By the inductive hypothesis, there is a series
of replacements (using hits with adjacent letters only) bringing us from x to x′. We may
construct a series of transformations bringing us from w to w′ using exactly the same
replacements. In doing this, we use only hits each of which fit into a factor of size c+ 1.
By the inductive hypothesis, each such transformation is a valid rearrangement under the
P -equivalence and hence w ≡ w′ under the P -equivalence.

An example relation to which Theorem 4.8 is applicable is the {123, 132, 213, 231}-
equivalence. (See Subsection 2.5.)

4.3 Generalizing Stooge Sort

The following results help to encapsulate the idea of a stooge sort8 and its role in pattern-
replacement relations. Previously in this paper, they have played crucial roles in enumerat-
ing classes under the {123, 132, 231, 321}-equivalence, the {213, 132, 231, 312}-equivalence,
the {123, 321}{213, 231}-equivalence, and most significantly, the {123, 132, 321}-equiva-
lence (the enumeration of which was a previously open problem).

Consider the P -equivalence where P partitions Sc.
In this subsection, we assume that one has a pre-picked relation between permutations

in which they are well-ordered such that rearranging a factor of a permutation to be
smaller also brings us to a smaller permutation (like lexicographic comparison). Each time
that the results are used in this paper, it is implicitly assumed we are using lexicographic
comparison.

Definition 4.9. A permutation is lefted if it contains a hit in its final n− 1 letters.

Definition 4.10. A permutation is righted if it contains a hit in its first n− 1 letters.

Definition 4.11. A permutation is middled if it contains a hit which involves neither the
final or first letter of the permutation.

Definition 4.12. Let n > c + 1. We define Ln as the set containing the each lefted
permutation which is the smallest lefted permutation in its equivalence class in Sn.

8Stooge sort is a sorting algorithm in which one recursively sorts the first two thirds, than the second
two thirds, and then the first two thirds again of a list. It is easy to check that this results in a completely
sorted list.
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Definition 4.13. Let n > c + 1. We define Rn as the set containing the each righted
permutation which is the smallest righted permutation in its equivalence class in Sn.

Definition 4.14. Let n > c + 2. We define In as the set containing each middled
permutation which is the smallest middled permutation in its equivalence class in Sn.

Definition 4.15. Let w ∈ Sn be middled. Then, we define l(w) as w with its left-most
n − 1 letters rearranged to form the element of Ln−1 that they are equivalent to. (Note
that such an element does exist.) Similarly, we define r(w) as w with its right-most n− 1
letters rearranged to form the element of Rn−1 that they are equivalent to. Both r(w)
and l(w) are middled.

Proposition 4.16. If each non-avoiding permutation in Sn−1 is equivalent to some mid-
dled permutation, then the same is true in Sn.

Proof. Let w ∈ Sn be non-avoiding. By the assumption, we can rearrange one of the first
n− 1 letters of the last n− 1 letters to form a middled permutation in Sn−1, bringing us
to a middled permutation in Sn.

Theorem 4.17. Let w ∈ Sn for n > c+ 2 be middled. Then, w is equivalent to a middled
permutation w′ such that the first n − 1 letters of w′ form an element of Ln−1 and the
final n− 1 letters of w′ form an element of Rn−1.

Proof. Unless the first n− 1 letters of w form an element of Ln−1, then l(w) < w. Unless
the final n− 1 letters of w form an element of Rn−1, then r(w) < w. But since there are a
finite number of permutations in Sn, we can not keep reaching smaller permutations over
and over again in an unending process. Instead, through repeated applications of r and l
to w, we must reach a permutation whose first n− 1 letters form an element of Ln−1 and
final n− 1 letters form an element of Rn−1.

Definition 4.18. We say a hit is a global minimum if it is the smallest hit in some
nontrivial part of P .

Now we study the connections between Ln, Rn, and In.

Proposition 4.19. Assume that we are using lexicographic comparison to compare per-
mutations. Let m ∈ In. Then, the element w of Ln such that w ≡ m exists and either is
m or is m with its final c letters rearranged to form a global minimum.

Proof. Let m ∈ In and w ∈ Ln be such that w ≡ m. (It is trivial that w exists.) Let
m′ and w′ be the factors of m and w containing the first n − c letters of each. Assume
w 6= m and thus w < m. If w contains a hit in the first n − 1 letters, then we have a
contradiction since m ∈ In, not w ∈ In. Since w ≡ m, some rearrangement of the hit
in w must create a hit which is in the first n − 1 letters. Hence there exists a middled
permutation x ≡ w such that the first n− c letters of x are the same as those of w. Hence
if w′ 6= m′ and thus w′ < m′, then we have a contradiction since this would imply that
x ∈ In, not m ∈ In. Therefore, and w is simply m with its final c letters rearranged to
form a global minimum.
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Note that there is not a similar proposition to be said for Ln. In fact, the closest we
can come is with the following proposition.

Proposition 4.20. (a) Assume that no elements of Rn−1 contain a hit in the first c
letters. Then the same is true for Rn. (b) Assume that no elements of Ln−1 contain a
hit in the final c letters. Then, the same is true for Ln.

Proof. Assume that for our method of comparison of permutations, we have that rear-
ranging a factor of a permutation to be smaller always yields a smaller permutation.
Assume that no elements of Rn−1 contain a hit in the first c letters. Assume that there
is an element w of Rn containing a hit in the first c letters. Then, rearranging the first
n − 1 letters of w to form a permutation in Rn−1 (which we can do since the first n − 1
letters of w form a righted permutation), we reach a smaller righted permutation in Sn

than w, a contradiction. This proves (a); (b) can be proved analogously.

5 Conclusion and Future Work

In our study of pattern-replacement relations, several new recurring ideas came to light.
First, in proofs by induction, we found that modified versions of stooge sort could often
be used. Second, we found that sometimes it is easier to treat nontrivial and trivial
classes separately. In addition, several previously known tools played an important role
in our research, for example the search for invariants and systems of representatives (sets
of permutations such that each class has exactly one element of the set).

While the proofs of our results use a common set of tools, they are creatures of different
ilks: they vary in difficulty and structure. This makes it all the more surprising that
the results show some unexpected similarities, like the 2n−1 occurring four times in our
enumerations of the classes in Sn (and the multiset of class sizes in Sn being the same
in two cases). If our results are combined with those of previous works, [1] and [2], even
more similarities occur. Analyzing the sources of these similarities, as well as viewing
our equivalence relations from the more advanced viewpoint of algebra, is a promising
direction for future study. It would be interesting to find formulas for the number of
classes created by several replacement partitions not yet well-understood, specifically
{132, 231}{213, 312}. In addition, there are the following directions of future work:

1. In Section 3, we only provide the size of the class containing the identity for relations
when the result is convenient. Future authors might further study the sizes of the
classes created under those relations.

2. Are there connections between equivalence relations having the same number of
classes. Is there a reason why the enumerations for each of the Knuth relation
and the forgotten relation show up again in our study of the {123, 132}{213, 312}-
equivalence and {123, 231}{213, 132}-equivalence respectively?

3. [2] deals with relations that allow re-ordering only adjacently valued letters or,
alternatively, re-ordering any subword (rather than only a contiguous set of adjacent
letters). This is an important direction of research to continue.

the electronic journal of combinatorics 20(4) (2013), #P10 57



4. Some equivalence classes have additional structure. Can one classify permutations in
a given equivalence class based on characteristics such as inversions, length (number
of inversions), the locations of hits, ascents, Major index, etc.?

5. We can consider theK-equivalence not only on permutations, but on arbitrary words
(cf. the Knuth relations). By linearization, this corresponds to studying binomial
ideals in noncommutative polynomial rings, and the quotient rings modulo these
ideals. These have revealed interesting properties in the cases of the Knuth and
forgotten relations. Do similar properties arise in the relations that we have studied?
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